
Additional Topics on Linear Regression

Ping Yu

School of Economics and Finance
The University of Hong Kong

Ping Yu (HKU) Additional Topics 1 / 49



1 Tests for Functional Form Misspecification

2 Nonlinear Least Squares

3 Omitted and Irrelevant Variables

4 Model Selection

5 Generalized Least Squares

6 Testing for Heteroskedasticity

7 Regression Intervals and Forecast Intervals
Ping Yu (HKU) Additional Topics 2 / 49



Review of Our Assumptions

Assumption OLS.0 (random sampling): (yi ,x i ), i = 1, � � � ,n, are i.i.d.

Assumption OLS.1 (full rank): rank(X) = k .

Assumption OLS.1 0: rank(E [xx 0]) = k .

Assumption OLS.2 (first moment): E [y jx] = x0β .

Assumption OLS.2 0: y = x0β +u with E [xu] = 0.

Assumption OLS.3 (second moment): E [u2] < ∞.
Assumption OLS.3 0 (homoskedasticity): E [u2jx] = σ2.

Assumption OLS.4 (normality): ujx � N(0,σ2).

Assumption OLS.5 : E [u4] < ∞ and E
h
kxk4

i
< ∞.
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y = x0β +u Implied Properties
E [xu] = 0 linear projection =) consistency

[
E [ujx] = 0 linear regression =) unbiasedness

[
E [ujx] = 0
E [u2jx] = σ2

homoskedastic
linear regression

=) Gauss-Markov Theorem

Table 1: Relationship between Different Models
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Our Plan of This Chapter

Examine the validity of these assumptions and cures when they fail, especially,
OLS.2 and OLS.30.

Assumption OLS.2 has many implications. For example, it implies
- the conditional mean of y given x is linear in x.
- all relevant regressors are included in x and are fixed.

Section 1 and 2 examine the first implication:
- Section 1 tests whether E [y jx] is indeed x0β .
- Section 2 provides more flexible specifications of E [y jx].
Section 3 and 4 examine the second implication:
- Section 3 checks the benefits and costs of including irrelevant variables or
omitting relevant variables.
- Section 4 provides some model selection procedures based on information
criteria.

Section 5 and 6 examine Assumption OLS.30:
- Section 5 shows that there are more efficient estimators of β when this
assumption fails.
- Section 6 checks whether this assumption fails.

Section 7 examines the external validity of the model.
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Tests for Functional Form Misspecification

Tests for Functional Form Misspecification
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Tests for Functional Form Misspecification

Ramsey’s REgression Specification Error Test (RESET)

Misspecification of E [y jx] may be due to omitted variables or misspecified
functional forms. We only examine the second source of misspecification here.

A Straightforward Test: add nonlinear functions of the regressors to the
regression, and test their significance using a Wald test.
- fit yi = x0i

eβ +z0ieγ+eui by OLS, and form a Wald statistic for γ = 0, where zi = h(x i )
denote functions of x i which are not linear functions of x i (perhaps squares of
non-binary regressors).

RESET: The null model is
yi = x0i β +ui .

Let

zi =

0B@ by2
i
...bym
i

1CA
be an (m�1)-vector of powers of byi = x0i

bβ . Then run the auxiliary regression

yi = x0i
eβ + z0ieγ+ eui (1)

by OLS, and form the Wald statistic Wn for γ = 0.
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Tests for Functional Form Misspecification

continue...

Under H0, Wn
d�! χ2

m�1. Thus the null is rejected at the α level if Wn exceeds the
upper α tail critical value of the χ2

m�1 distribution.

To implement the test, m must be selected in advance. Typically, small values
such as m = 2,3, or 4 seem to work best.

The RESET test is particularly powerful in detecting the single-index model,

yi = G(x0β )+ui ,

where G(�) is a smooth "link" function.

Why? Note that (1) may be written as

yi = x0i
eβ +�x0i

bβ�2eγ1+ � � �+
�

x0i
bβ�meγm�1+ eui ,

which has essentially approximated G(�) by an mth order polynomial.

Other tests: Hausman test, Conditional Moment (CM) test, Zheng’s score test.
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Nonlinear Least Squares

Nonlinear Least Squares
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Nonlinear Least Squares

Nonlinear Least Squares

If the specification test rejects the linear specification, we may consider to use a
nonlinear setup for E [y jx].
Suppose E [yi jx i = x] =m(xjθ ). Nonlinear regression means that m(xjθ ) is a
nonlinear function of θ (rather than x).

The functional form of m(xjθ ) can be suggested by an economic model, or as in
the LSE, it can be treated as a nonlinear approximation to a general conditional
mean function.

m(xjθ ) = exp (x0θ ): Exponential Link Regression
- The exponential link function is strictly positive, so this choice can be useful
when it is desired to constrain the mean to be strictly positive.

m(x jθ ) = θ1+θ2xθ 3 , x > 0: Power Transformed Regressors
- A generalized version of the power transformation is the famous Box-Cox (1964)
transformation, where the regressor xθ 3 is generalized as x (θ 3) with

x (λ ) =

(
xλ�1

λ
,

logx ,
if λ > 0,
if λ = 0.

- The function x (λ ) nests linearity (λ = 1) and logarithmic (λ = 0) transformations
continuously.
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Nonlinear Least Squares
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Figure: Box-Cox Transformation for Different λ Values: all pass (1,0)
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Nonlinear Least Squares

continue...

m(x jθ ) = θ1+θ2 exp (θ3x): Exponentially Transformed Regressors

m(xjθ ) = G(x0θ ), G known
- When G(�) = (1+exp(��))�1, the regression with m(xjθ ) = G(x0θ ) is called the
logistic link regression .
- When G(�) = Φ(�) with Φ(�) being the cdf of standard normal, it is called the
probit link regression .

m(xjθ ) = θ
0
1x1+θ

0
2x1G

�
x2�θ 3

θ 4

�
: Smooth Transition

m(x jθ ) = θ1+θ2x +θ3 (x �θ4)1(x > θ4): Continuous Threshold Regression

m(xjθ ) = (θ 01x1)1(x2 � θ3)+ (θ
0
2x1)1(x2 > θ3): Threshold Regression

- When θ4 = 0, the smooth transition model (STM) reduces to the threshold
regression (TR) model.
- When θ4 = ∞, the STM reduces to linear regression.
- For CTR and TR, m(xjθ ) is not smooth in θ .
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Nonlinear Least Squares
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Figure: Difference Between STM, CTR and TR
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Nonlinear Least Squares

The NLLS Estimator

The nonlinear least squares (NLLS) estimator is

bθ = argmin
θ

n

∑
i=1
(yi �m(x i jθ ))2.

The FOCs for minimization are 0= ∑n
i=1 mθ (x i jbθ )bui with mθ (xjθ ) = ∂

∂θ
m(xjθ ).

Theorem

If the model is identified and m(xjθ ) is differentiable with respect to θ ,

p
n
�bθ �θ0

�
d�! N (0,V) ,

where V= E
�
mθ im0

θ i

��1 E
h
mθ im0

θ iu
2
i

i
E
�
mθ im0

θ i

��1 with mθ i =mθ (x i jθ0).

V can be estimated by

bV= 1
n

n

∑
i=1

bmθ i bm0
θ i

!�1 
1
n

n

∑
i=1

bmθ i bm0
θ ibu2

i

!�1 
1
n

n

∑
i=1

bmθ i bm0
θ i

!�1

,

where bmθ i =mθ (x i jbθ ), and bui = yi �m(x i jbθ ).
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Omitted and Irrelevant Variables
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Omitted and Irrelevant Variables

Omitted Variables

The true model is a long regression

yi = x01i β 1+ x02i β 2+ui ,E [x iui ] = 0, (2)

but we estimate a short regression

yi = x01i γ1+ vi ,E [x1ivi ] = 0. (3)

β 1 6= γ1. Why?

γ1 = E
�
x1ix

0
1i
��1 E [x1iyi ]

= E
�
x1ix

0
1i
��1 E [x1i

�
x01i β 1+ x02i β 2+ui

�
]

= β 1+E
�
x1ix

0
1i
��1 E [x1ix

0
2i ]β 2

= β 1+Γβ 2,

where Γ = E
�
x1ix01i

��1�1 E [x1ix02i ] is the coefficient from a regression of x2i on
x1i .
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Omitted and Irrelevant Variables

Direct and Indirect Effects of x1 on y

γ1 6= β 1 unless Γ = 0 or β 2 = 0. The former means that the regression of x2i on
x1i yields a set of zero coefficients (they are uncorrelated), and the latter means
that the coefficient on x2i in (2) is zero.

The difference Γβ 2 is known as omitted variable bias .

γ1 includes both the direct effect of x1 on y (β 1) and the indirect effect (Γβ 2)
through x2. [Figure here]

To avoid omitted variable bias the standard advice is to include potentially relevant
variables in the estimated model.

But many desired variables are not available in a given dataset. In this case, the
possibility of omitted variable bias should be acknowledged and discussed in the
course of an empirical investigation.
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Omitted and Irrelevant Variables

Figure: Direct and Indirect Effects of x1 on y
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Omitted and Irrelevant Variables

Irrelevant Variables

When β 2 = 0 and β 1 is the parameter of interest, x2i is "irrelevant".

In this case, the estimator of β 1 from the short regression, β 1 = (X
0
1X1)

�1X01y, is
consistent from the analysis above.

Efficiency comparison under homoskedasticity:

n �AVar
�

β 1

�
= E

�
x1ix

0
1i
��1

σ
2 �Q�1

11 σ
2,

and

n �AVar
�bβ 1

�
= Q�1

11.2σ
2 �

�
Q11�Q12Q�1

22 Q21

��1
σ

2.

If Q12 = E [x1ix02i ] = 0 (so the variables are orthogonal) then the two estimators
have equal asymptotic efficiency. Otherwise, since Q12Q�1

22 Q21 > 0, Q11 >Q11.2
and consequently

Q�1
11 σ

2 <Q�1
11.2σ

2.

This means that β 1 has a lower asymptotic variance matrix than bβ 1 if the irrelevant
variables are correlated with the relevant variables.
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Omitted and Irrelevant Variables

Intuition

The irrelevant variable does not provide information for yi , but introduces

multicollinearity to the system, so decreases the denominator of AVar
�bβ 1

�
from

Q11 to Q11.2 without decreasing its numerator σ2.

Take the model yi = β 0+β 1xi +ui and suppose that β 0 = 0.

Let bβ 1 be the estimate of β 1 from the unconstrained model, and β 1 be the
estimate under the constraint β 0 = 0 (the least squares estimate with the intercept
omitted.).

Then we can show under homoskedasticity,

n �AVar
�

β 1

�
=

σ2

σ2
x + µ2

,

while

n �AVar
�bβ 1

�
=

σ2

σ2
x
,

where E [xi ] = µ, and Var (xi ) = σ2
x .

When µ = E [1 �x ] 6= 0, β 1 has a lower asymptotic variance.
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Omitted and Irrelevant Variables

When β 2 6= 0 and Q12 = 0

If x2 is relevant (β 2 6= 0) and uncorrelated with x1, then it decreases the numerator

without affecting the denominator of AVar
�bβ 1

�
, so should be included in the

regression.

For example, including individual characteristics in a regression of beer
consumption on beer prices leads to more precise estimates of the price elasticity
because individual characteristics are believed to be uncorrelated with beer prices
but affect beer consumption.

β 2 = 0 β 2 6= 0
Q12 = 0 β 1 consistent β 1 consistent

same efficiency long more efficient
Q12 6= 0 β 1 consistent depends on Q12 �β 2

short more efficient undetermined

Table 2: Consistency and Efficiency with Omitted and Irrelevant Variables
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Omitted and Irrelevant Variables

The Heteroskedastic Case

From the last chapter, we know that when the model is heteroskedastic, it is
possible that bβ 1 is more efficient than β 1 (= bβ 1R) even if x2 is irrelevant, or adding
irrelevant variables can actually decrease the estimation variance.

This result seems to contradict our initial motivation for pursuing restricted
estimation (or short regression) - to improve estimation efficiency.

It turns out that a more refined answer is appropriate. Constrained estimation is
desirable, but not the RLS estimation.

While least squares is asymptotically efficient for estimation of the unconstrained
projection model, it is not an efficient estimator of the constrained projection
model; the efficient minimum distance estimator is the choice.

Ping Yu (HKU) Additional Topics 21 / 49



Model Selection

Model Selection
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Model Selection

Introduction

We discussed the costs and benefits of inclusion/exclusion of variables. How does
a researcher go about selecting an econometric specification, when economic
theory does not provide complete guidance?

In practice, a large number of variables usually are introduced at the initial stage of
modeling to attenuate possible modeling biases.

On the other hand, to enhance predictability and to select significant variables,
econometricians usually use stepwise deletion and subset selection.

It is important that the model selection question be well-posed. For example, the
question: "What is the right model for y?" is not well-posed, because it does not
make clear the conditioning set. In contrast, the question, "Which subset of
(x1, � � � ,xK ) enters the regression function E [yi jx1i = x1, � � � ,xKi = xK ]?" is well
posed.
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Model Selection

Setup

In many cases the problem of model selection can be reduced to the comparison
of two nested models, as the larger problem can be written as a sequence of such
comparisons.

We thus consider the question of the inclusion of X2 in the linear regression

y = X1β 1+X2β 2+u,

where X1 is n�k1 and X2 is n�k2.

This is equivalent to the comparison of the two models

M1 : y = X1β 1+u, E [ujX1,X2] = 0,
M2 : y = X1β 1+X2β 2+u, E [ujX1,X2] = 0.

Note that M1 �M2. To be concrete, we say that M2 is true if β 2 6= 0.

Notations: OLS residual vectors bu1 and bu2, estimated variances bσ2
1 and bσ2

2, etc.
for Model 1 and 2.

For simplicity, use the homoskedasticity assumption E [u2
i jx1i ,x2i ] = σ2.
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Model Selection

Consistent Model Selection Procedure

A model selection procedure is a data-dependent rule which selects one of the
two models. We can write this as cM .

A model selection procedure is consistent if

P
� cM =M1jM1

�
! 1,

P
� cM =M2jM2

�
! 1.

Selection Based on the Wald Wn: For some significance level α, let cα satisfy

P
�

χ2
k2
> cα

�
= α. Then select M1 if Wn � cα , else select M2.

Inconsistency : If α is held fixed, then P( cM =M1jM1)! 1�α < 1 although
P( cM =M2jM2) = 1.
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Model Selection

Information Criterion

Intuition : There exists a tension between model fit, as measured by the
maximized log-likelihood value, and the principle of parsimony that favors a simple
model. The fit of the model can be improved by increasing model complexity, but
parameters are only added if the resulting improvement in fit sufficiently
compensates for loss of parsimony.

Most popular information criteria (IC) include the Akaike Information Criterion
(AIC) and the Bayes Information Criterion (BIC). The former is inconsistent while
the latter is consistent.

The AIC under normality for model m is

AICm = log
�bσ2

m

�
+2

km

n
, (4)

where bσ2
m is the variance estimate for model m and is roughly �2ln (neglecting the

constant term) with ln being the average log-likelihood function, and km is the
number of coefficients in the model. The rule is to select M1 if AIC1 < AIC2, else
select M2.
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Model Selection

Inconsistency of the AIC

Inconsistency : The AIC tends to overfit. Why? Under M1,

LR = n
�

log
�bσ2

1

�
� log

�bσ2
2

��
d�! χ

2
k2
, (5)

so

P
� cM =M1jM1

�
= P (AIC1 < AIC2jM1)

= P
�

log
�bσ2

1

�
+2

k1

n
< log

�bσ2
2

�
+2

k1+ k2

n

����M1

�
= P (LR < 2k2jM1)! P

�
χ

2
k2
< 2k2

�
< 1.
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Model Selection

Consistency of the BIC

The BIC is based on

BICm = log
�bσ2

m

�
+ logn

km

n
. (6)

Since log(n)> 2 (if n > 8), the BIC places a larger penalty than the AIC on the
number of estimated parameters and is more parsimonious.
Consistency : Because (5) holds under M1,

LR
log(n)

p�! 0,

so

P
� cM =M1jM1

�
= P (BIC1 < BIC2jM1) = P (LR < log (n)k2jM1)

= P
�

LR
log (n)

< k2jM1

�
! P (0< k2) = 1.

Also under M2, one can show that

LR
log(n)

p�! ∞,

thus

P
� cM =M2jM2

�
= P

�
LRn

log(n)
> k2

����M2

�
! 1.
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Model Selection

Difference between the AIC and BIC

Essentially, to consistently select M1, we must let the significance level of the LR
test approach zero to asymptotically avoid choosing a model that is too large, so
the critical value (or the penalty) must diverge to infinity.

On the other hand, to consistently select M2, the penalty must be o(n) so that LR
divided by the penalty converges in probability to infinity under M2.

Compared with the fixed penalty scheme such as the AIC, the consistent selection
procedures sacrifice some power to exchange for an asymptotically zero type I
error.

Although the AIC tends to overfit, this need not be a defect of the AIC. The AIC is
derived as an estimate of the Kullback-Leibler information distance
KLIC(M ) = E [log f (yjX)� log f (yjX,M )] between the true density and the model
density. In other words, the AIC attempts to select a good approximating model for
inference. In contrast, the BIC and other IC attempt to estimate the "true" model.
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Model Selection

Figure: Difference Between AIC and Other IC
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Model Selection

Ordered and Unordered Regressors

The general problem is the model

yi = β 1x1i +β 2x2i + � � � ,β K xKi +ui ,E [ui jx i ] = 0

and the question is which subset of the coefficients are non-zero (equivalently,
which regressors enter the regression).
Ordered regressors:

M1 : β 1 6= 0,β 2 = β 3 = � � �= β K = 0,

M2 : β 1 6= 0,β 2 6= 0,β 3 = � � �= β K = 0,

...

MK : β 1 6= 0,β 2 6= 0, � � � ,β K 6= 0,

which are nested. The AIC estimates the K models by OLS, stores the residual
variance bσ2 for each model, and then selects the model with the lowest AIC.
Similarly for the BIC.
Unordered regressors: a model consists of any possible subset of the regressors
fx1i , � � � ,xKig, but there are 2K such models, which can be a very large number;
e.g., 210 = 1024, and 220 = 1,048,576. So this case seems computationally
prohibitive.
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Model Selection

Recent Developments

There is no clear answer as to which IC, if any, should be preferred.

From a decision-theoretic viewpoint, the choice of the model from a set of models
should depend on the intended use of the model. For example, the purpose of the
model may be to summarize the main features of a complex reality, or to predict
some outcome, or to test some important hypothesis.

Claeskens and Hjort (2003) propose the focused information criterion (FIC) that
focuses on the parameter singled out for interest. This criterion seems close to the
target-based principle.

Shrinkage: continuously shrink the coefficients rather than discretely select the
variables, e.g., LASSO, SCAD and MCP

Model Averaging

Ping Yu (HKU) Additional Topics 32 / 49



Generalized Least Squares

Generalized Least Squares
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Generalized Least Squares

The Weighted Least Squares (WLS) Estimator

Recall that when the only information is E [x iui ] = 0, the LSE is
semi-parametrically efficient.

When extra information E [ui jx i ] = 0 is available, the LSE is generally inefficient,
while the WLS estimator is efficient.

The WLS estimator:

β =
�

X0D�1X
��1�

X0D�1y
�
, (7)

where D= diag
n

σ2
1, � � � ,σ

2
n

o
and σ2

i = σ2(x i ) = E [u2
i jx i ].

Intuition :

β = argmin
β

n

∑
i=1

�
yi �x0i β

�2 1

σ2
i

= argmin
β

n

∑
i=1

�
yi

σ i
�

x0i
σ i

β

�2

,

where the objective function takes the form of weighted sum of squared residuals,
and the model

yi

σ i
=

x0i
σ i

β +
ui

σ i

is homoskedastic (why?). Under homoskedasticity, the Gauss-Markov theorem
implies the efficiency of the LSE which is the WLS estimator in the original model.
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Generalized Least Squares

The Feasible GLS Estimator

A feasible GLS (FGLS) estimator replaces the unknown D with an estimate bD=
diag

nbσ2
1, � � � , bσ2

n

o
.

Model the conditional variance using the parametric form

σ
2
i = α0+ z01i α1 = α

0zi ,

where z1i is some q�1 function of x i . Typically, z1i are squares (and perhaps
levels) of some (or all) elements of x i . Often the functional form is kept simple for
parsimony.

Let η i = u2
i . Then

E [η i jx i ] = α0+ z01i α1

and we have the regression equation

η i = α0+ z01i α1+ ξ i , (8)

E [ξ i jx i ] = 0.

This regression error ξ i is generally heteroskedastic and has the conditional
variance

Var (ξ i jx i ) = Var
�

u2
i jx i

�
= E

h
u4

i jx i

i
�
�

E
h
u2

i jx i

i�2
.
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Generalized Least Squares

Skedastic Regression

Suppose ui (and thus η i ) were observed. Then we could estimate α by OLS:

α =
�
Z0Z
��1 Z0η

and p
n (α�α)

d�! N (0,Vα ) ,

where Vα =
�
E
�
ziz0i

���1
�

E
h
ziz0i ξ

2
i

i��
E
�
ziz0i

���1
.

While ui is not observed, we have the OLS residual bui = yi �x0i
bβ = ui �x i (

bβ �β ).

φ i = bη i �η i = bu2
i �u2

i = �2uix
0
i (
bβ �β )+ (bβ �β )0x ix

0
i (
bβ �β ),

1p
n

n

∑
i=1

zi φ i = �2
n

n

∑
i=1

ziuix
0
i
p

n(bβ �β )+
1
n

n

∑
i=1

zi (
bβ �β )0x ix

0
i
p

n(bβ �β )
p�! 0.

Let eα = �Z0Z��1 Z0bη (9)

be from OLS regression of bη i on zi . Then
p

n (eα�α) =
p

n (α�α)+
�

n�1Z0Z
��1

n�1/2Z0φ d�! N (0,Vα ) . (10)

Thus the fact that η i is replaced with bη i is asymptotically irrelevant.
We call (9) the skedastic regression , as it is estimating σ2(�).
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Generalized Least Squares

Practical Consideration

Estimate σ2
i = z0i α by eσ2

i = eα 0zi . (11)

Suppose that eσ2
i > 0 for all i . Then set

eD= diag
neσ2

1, � � � , eσ2
n

o
and the FGLS estimator

eβ = �X0eD�1X
��1�

X0eD�1y
�
.

We can iterate between eD and eβ until convergence.

If eσ2
i < 0, or eσ2

i � 0 for some i , use a trimming rule

σ
2
i =max

neσ2
i ,σ

2
o

for some σ2 > 0.
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Generalized Least Squares

Asymptotics for the FGLS Estimator

Theorem

If the skedastic regression is correctly specified,

p
n
�

β � eβ� p�! 0,

and thus p
n
�eβ �β

�
d�! N(0,V),

where V= E
h
σ
�2
i x ix i

i�1
.

The natural estimator of the asymptotic variance of eβ is

eV0 =

 
1
n

n

∑
i=1

eσ�2
i x ix

0
i

!�1

=

�
1
n

X0eD�1X
��1

,

which is consistent for V as n! ∞.

Ping Yu (HKU) Additional Topics 38 / 49



Generalized Least Squares

Asymptotics for the Quasi-FGLS Estimator

If α 0zi is only an approximation to the true conditional variance σ2
i , we have shown

in the last chapter that

V=
�

E
h�

α
0zi
��1 x ix

0
i

i��1
E
h�

α
0zi
��2

σ
2
i x ix

0
i

i�
E
h�

α
0zi
��1 x ix

0
i

i��1
.

V takes a sandwich form similar to the covariance matrix of the OLS estimator.
Unless σ2

i = α 0zi , eV0 is inconsistent for V.

An appropriate solution is to use a White-type estimator in place of eV0,

eV =

 
1
n

n

∑
i=1

eσ�2
i x ix

0
i

!�1 
1
n

n

∑
i=1

eσ�4
i bu2

i x ix
0
i

! 
1
n

n

∑
i=1

eσ�2
i x ix

0
i

!�1

= n
�

X0eD�1X
��1�

X0eD�1bDeD�1X
��

X0eD�1X
��1

where bD= diag
nbu2

1 , � � � ,bu2
n

o
.

This estimator is robust to misspecification of the conditional variance.
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Generalized Least Squares

Choice Between the FGLS and OLS

FGLS is asymptotically superior to OLS, but we do not exclusively estimate
regression models by FGLS.

First, FGLS estimation depends on specification and estimation of the skedastic
regression. Since the form of the skedastic regression is unknown, and it may be
estimated with considerable error, the estimated conditional variances may contain
more noise than information about the true conditional variances. In this case,
FGLS perfoms worse than OLS in practice.

Second, individual estimated conditional variances may be negative, and this
requires trimming to solve. This introduces an element of arbitrariness to empirical
researchers.

Third, OLS is a more robust estimator of the parameter vector. It is consistent not
only in the regression model (E [ujx] = 0), but also under the assumptions of linear
projection (E [xu] = 0). The GLS and FGLS estimators, on the other hand, require
the assumption of a correct conditional mean.

The point is that the efficiency gains from FGLS are built on the stronger
assumption of a correct conditional mean, and the cost is a reduction of
robustness to misspecification.
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Testing for Heteroskedasticity

General Idea

If heteroskedasticity is present, more efficient estimation is possible, so we need
test for heteroskedasticity.
Heteroskedasticity may come from many resources, e.g., random coefficients,
misspecification, stratified sampling, etc. So rejection of the null may be an
indication of other deviations from our basic assumptions.
The hypothesis of homoskedasticity is that E [u2jx] = σ2, or equivalently that

H0 : α1 = 0

in the skedastic regression (8). So We may test this hypothesis by the Wald test.
We usually impose the stronger hypothesis and test the hypothesis that ui is
independent of x i , in which case ξ i is independent of x i and the asymptotic

variance for eα simplifies to Vα = E
�
ziz0i

��1 E
h
ξ

2
i

i
.

Theorem

Under H0 and ui independent of x i , the Wald test of H0 is asymptotically χ2
q .

Most tests for heteroskedasticity take this basic form. The main difference
between popular "tests" lies in which transformation of x i enters zi .
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Testing for Heteroskedasticity

The Breusch-Pagan Test

Breusch-Pagan (1979) assume ui follows N(0,α 0zi ) and use the Lagrange
Multiplier (LM) test to check whether α1 = 0:

LM =
1

2bσ4

 
n

∑
i=1

zi fi

!0 n

∑
i=1

ziz
0
i

!�1 n

∑
i=1

zi fi

!
,

where fi = bu2
i � bσ2.

This LM test statistic is similar to the Wald test statistic; a key difference is thatbE hξ 2
i

i
is replaced by 2bσ4 which is a consistent estimator of E

h
ξ

2
i

i
under H0

where ui follows N(0,σ2).

Koenker (1981) shows that the asymptotic size and power of the Breusch-Pagan
test is extremely sensitive to the kurtosis of the distribution of ui , and suggests to
renormalize LM by n�1 ∑n

i=1 f 2
i rather than 2bσ4 to achieve the correct size.
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Testing for Heteroskedasticity

The White Test

White (1980) observes that when H0 holds, bΩ = n�1 ∑n
i=1 x ix0ibu2

i andbσ2 bQ= �n�1 ∑n
i=1 bu2

i

��
n�1 ∑n

i=1 x ix0i
�

should have the same probability limit, so

the difference of them should converge to zero.

Collecting non-redundant elements of x ix0i , denoted as zi = (1,z01i )
0 as above, we

are testing whether Dn = n�1 ∑n
i=1 z1i

�bu2
i � bσ2

�
� 0.

Under the auxiliary assumption that ui is independent of x i ,

nD0nbB�1
n Dn

d�! χ
2
q

under H0, where

bBn =
1
n

n

∑
i=1

�bu2
i � bσ2

�2
(z1i �z1) (z1i �z1)

0

is an estimator of the asymptotic variance matrix of
p

nDn.
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Testing for Heteroskedasticity

Simplification

Given that ui is independent of x i , bBn can be replaced by

eBn =
1
n

n

∑
i=1

�bu2
i � bσ2

�2 1
n

n

∑
i=1
(z1i �z1) (z1i �z1)

0 .

From Exercise 7, Koenker and White’s test statistics can be expressed in the form
of nR2 in some regression.

The Breusch-Pagan and White tests have degrees of freedom that depend on the
number of regressors in E [y jx]. Sometimes we want to conserve on degrees of
freedom.

A test that combines features of the Breusch-Pagan and White tests but has only
two dfs takes z1i = (byi ,by2

i )
0, where byi are the OLS fitted values.

This reduced White test has some similarity to the RESET test.

nR2 from bu2
i on 1,byi ,by2

i has a limiting χ2
2 distribution under H0.
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Regression Intervals and Forecast Intervals

Regression Intervals

All previous sections consider the interval validity. We now consider the external
validity, i.e., prediction.

Suppose we want to estimate m(x) = E [yi jx i = x] = x0β at a particular point x
(which may or may not be the same as some x i ) and note that this is a (linear)
function of β .

Letting r (β ) = x0β and θ = r (β ), we see that bm(x) = bθ = x0bβ and R= x, so

s(bθ ) =pn�1x0bVx. Thus an asymptotic 95% confidence interval for m(x) ish
x0bβ �2

p
n�1x0bVx

i
.

Viewed as a function of x, the width of the confidence set is dependent on x.

Figure 5: the confidence bands take a hyperbolic shape, which means that the
regression line is less precisely estimated for very large and very small values of x .

For a given value of x i = x, we may also want to forecast (guess) yi

out-of-sample.1 A reasonable forecast is still bm(x) = x0bβ since m(x) is the
mean-square-minimizing forecast of yi .

1x cannot be the same as any x i observed, why?
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Regression Intervals and Forecast Intervals

Figure: Typical Regression Intervals
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Regression Intervals and Forecast Intervals

Forecast Intervals

The forecast error is bui = yi � bm(x) = ui �x0(bβ �β ). As the out-of-sample error ui

is independent of the in-sample estimate bβ , this has variance

E
hbu2

i

i
= E

h
u2

i jx i = x
i
+ x0E

h
(bβ �β )(bβ �β )0

i
x = σ

2(x)+n�1x0Vx.

Assuming E
h
u2

i jx i

i
= σ2, the natural estimate of this variance is bσ2+n�1x0bVx, so

a standard error for the forecast is bs(x) =qbσ2+n�1x0bVx.
This is different from the standard error for the conditional mean. If we have an
estimate of the conditional variance function, e.g., eσ2(x) = eα 0z, then the forecast

standard error is bs(x) =qeσ2(x)+n�1x0bVx.

A natural asymptotic 95% forecast interval for yi is
h
x0bβ �2bs(x)i, but its validity is

based on the asymptotic normality of the studentized ratio, i.e., the asymptotic

normality of ui�x0(bβ�β )bs(x) . But no such asymptotic approximation can be made

unless ui � N(0,σ2) which is generally invalid.
To get an accurate forecast interval, we need to estimate the conditional
distribution of ui given x i = x, which is hard. Usually, people focus on the simple

approximate interval
h
x0bβ �2bs(x)i.
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