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Introduction

If ujx � N(0,σ2), we have shown that bβ jX� N
�

β ,σ2 (X0X)�1
�

.

In general the distribution of ujx is unknown.

Even if it is known, the unconditional distribution of bβ is hard to derive sincebβ = (X0X)�1X0y is a complicated function of fx ign
i=1.

The asymptotic (or large sample) method approximates (unconditional) sampling
distributions based on the limiting experiment that the sample size n tends to
infinity.

It does not require any assumption on the distribution of ujx, and only some
moments restrictions are imposed.

Three steps: consistency, asymptotic normality and estimation of the covariance
matrix.
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Asymptotics for the LSE

Asymptotics for the LSE
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Asymptotics for the LSE

Consistency

Express bβ as

bβ = (X0X)�1X0y = (X0X)�1X0 (Xβ +u) = β+(X0X)�1X0u. (1)

To show bβ is consistent, we impose the following additional assumptions.

Assumption OLS.1 0: rank(E [xx 0]) = k .

Assumption OLS.2 0: y = x0β +u with E [xu] = 0.

Assumption OLS.10 implicitly assumes that E
h
kxk2

i
< ∞.

Assumption OLS.10 is the large-sample counterpart of Assumption OLS.1.

Assumption OLS.20 is weaker than Assumption OLS.2.
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Asymptotics for the LSE

Theorem

Under Assumptions OLS.0, OLS.10, OLS.20 and OLS.3, bβ p�! β .

Proof.

From (1), to show bβ p�! β , we need only to show that (X0X)�1X0u
p�! 0. Note that

(X0X)�1X0u =

 
1
n

n

∑
i=1

x ix
0
i

!�1 
1
n

n

∑
i=1

x iui

!

= g

 
1
n

n

∑
i=1

x ix
0
i ,

1
n

n

∑
i=1

x iui

!
p�! E [x ix

0
i ]
�1E [x iui ] = 0.

Here, the convergence in probability is from (I) the WLLN which implies

1
n

n

∑
i=1

x ix
0
i

p�! E [x ix
0
i ] and

1
n

n

∑
i=1

x iui
p�! E [x iui ]; (2)

(II) the fact that g(A,b) = A�1b is a continuous function at
�
E [x ix0i ],E [x iui ]

�
. The last

equality is from Assumption OLS.20.
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Asymptotics for the LSE

Proof.

[Proof continue] (I) To apply the WLLN, we require (i) x ix0i and x iui are i.i.d., which is
implied by Assumption OLS.0 and that functions of i.i.d. data are also i.i.d.; (ii)

E
h
kxk2

i
< ∞ (OLS.10) and E [kxuk] < ∞. E [kxuk] < ∞ is implied by the

Cauchy-Schwarz inequality,a

E [kxuk] � E
h
kxk2

i1/2
E
h
juj2

i1/2
,

which is finite by Assumption OLS.10 and OLS.3. (II) To guarantee A�1b to be a
continuous function at

�
E [x ix0i ],E [x iui ]

�
, we must assume that E [x ix0i ]

�1 exists which
is implied by Assumption OLS.10.b

aCauchy-Schwarz inequality: For any random m�n matrices X and Y, E [kX0Yk] � E
h
kXk2

i1/2
E
h
kYk2

i1/2
,

where the inner product is defined as hX,Yi= E [kX0Yk], and for a m�n matrix A,

kAk=
�

∑m
i=1 ∑n

j=1 a2
ij

�1/2
= [trace(A0A)]1/2.

bIf xi 2R, E [xi x 0i ]
�1 = E [x2

i ]
�1 is the reciprocal of E [x2

i ] which is a continuous function of E [x2
i ] only if

E [x2
i ] 6= 0.
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Asymptotics for the LSE

Consistency of bσ2 and s2

Theorem

Under the assumptions of Theorem 1, bσ2 p�! σ2 and s2 p�! σ2.

Proof.

Note that

bui = yi �x0i
bβ

= ui + x0i β �x0i
bβ

= ui �x0i
�bβ �β

�
.

Thus bu2
i = u2

i �2uix
0
i

�bβ �β

�
+
�bβ �β

�0
x ix

0
i

�bβ �β

�
(3)

and bσ2 =
1
n

n

∑
i=1

bu2
i
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Asymptotics for the LSE

Proof.

[Proof continue]

=
1
n

n

∑
i=1

u2
i �2

 
1
n

n

∑
i=1

uix
0
i

!�bβ �β

�
+
�bβ �β

�0 1
n

n

∑
i=1

x ix
0
i

!�bβ �β

�
p�! σ

2,

where the last line uses the WLLN, (2), Theorem 1 and the CMT.
Finally, since n/(n�k)! 1, it follows that

s2 =
n

n�k
bσ2 p�! σ

2

by the CMT.

One implication of this theorem is that multiple estimators can be consistent for the
population parameter.

While bσ2 and s2 are unequal in any given application, they are close in value
when n is very large.
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Asymptotics for the LSE

Asymptotic Normality

To study the asymptotic normality of bβ , we impose the following additional
assumption.

Assumption OLS.5 : E [u4] < ∞ and E
h
kxk4

i
< ∞.

Theorem

Under Assumptions OLS.0, OLS.10, OLS.20, OLS.3 and OLS.5,

p
n
�bβ �β

�
d�! N(0,V),

where V= Q�1ΩQ�1 with Q= E
�
x ix0i

�
and Ω = E

h
x ix0iu

2
i

i
.

Proof.

From (1),

p
n
�bβ �β

�
=

 
1
n

n

∑
i=1

x ix
0
i

!�1 
1p
n

n

∑
i=1

x iui

!
.
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Asymptotics for the LSE

Proof.

[Proof continue] Note first that

E
hx ix

0
iu

2
i

i� E
hx ix

0
i

2
i1/2

E
h
u4

i

i1/2
� E

h
kx ik4

i1/2
E
h
u4

i

i1/2
< ∞, (4)

where the first inequality is from the Cauchy-Schwarz inequality, the second inequality
is from the Schwarz matrix inequality,a and the last inequality is from Assumption
OLS.5. So by the CLT,

1p
n

n

∑
i=1

x iui
d�! N (0,Ω) .

Given that n�1 ∑n
i=1 x ix0i

p�!Q,

p
n
�bβ �β

�
d�!Q�1N (0,Ω) = N(0,V)

by Slutsky’s theorem.

aSchwarz matrix inequality: For any random m�n matrices X and Y, kX0Yk � kXkkYk. This is a special form
of the Cauchy-Schwarz inequality, where the inner product is defined as hX,Yi= kX0Yk.

In the homoskedastic model, V reduces to V0 = σ2Q�1. We call V0 the
homoskedastic covariance matrix .
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Asymptotics for the LSE

Partitioned Formula of V0

Sometimes, to state the asymptotic distribution of part of bβ as in the residual
regression, we partition Q and Ω as

Q=
�

Q11 Q12
Q21 Q22

�
,Ω =

�
Ω11 Ω12
Ω21 Ω22

�
.

Recall from the proof of the FWL theorem,

Q�1 =

 
Q�1

11.2 �Q�1
11.2Q12Q�1

22
�Q�1

22.1Q21Q�1
11 Q�1

22.1

!
,

where Q11.2 = Q11�Q12Q�1
22 Q21 and Q22.1 = Q22�Q21Q�1

11 Q12.

Thus when the error is homoskedastic, n �AVar
�bβ 1

�
= σ2Q�1

11.2, and

n �ACov
�bβ 1,

bβ 2

�
= �σ2Q�1

11.2Q12Q�1
22 .

We can also derive the general formulas in the heteroskedastic case, but these
formulas are not easily interpretable and so less useful.
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Asymptotics for the LSE

LSE as a MoM Estimator

The LSE is a MoM estimator, and the moment conditions are

E [xu] = 0 with u = y �x0β .

The sample analog is the normal equation

1
n

n

∑
i=1

x i
�
yi �x0i β

�
= 0,

the solution of which is exactly the LSE.

M= �E
�
x ix0i

�
= �Q, and Ω = E

h
x ix0iu

2
i

i
, so

p
n
�bβ �β

�
d�! N

�
0,Q�1ΩQ�1

�
= N (0,V) .

Note that the asymptotic variance V takes the sandwich form. The larger the
E
�
x ix0i

�
, the smaller the V.

Although the LSE is a MoM estimator, it is a special MoM estimator because it can
be treated as a "projection" estimator.
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Asymptotics for the LSE

Intuition

Consider a simple linear regression model

yi = βxi +ui ,

where E [xi ] is normalized to be 0.

From introductory econometrics courses,

bβ =
n
∑

i=1
xiyi

n
∑

i=1
x2

i

=
dCov(x ,y)dVar (x)

,

and under homoskedasticity,

AVar
�bβ�= σ2

nVar (x)
.

So the larger the Var (x), the smaller the AVar
�bβ�. Actually, Var (x) =

��� ∂E [xu]
∂β

���.
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Asymptotics for the LSE

Asymptotics for the Weighted Least Squares (WLS) Estimator

The WLS estimator is a special GLS estimator with a diagonal weight matrix.

Recall that bβ GLS = (X
0WX)�1X0Wy,

which reduces to bβ WLS =

 
n

∑
i=1

wix ix
0
i

!�1 n

∑
i=1

wix iyi

!
when W= diagfw1, � � � ,wng.
Note that this estimator is a MoM estimator under the moment condition (check!)

E [wix iui ] = 0,

so p
n
�bβ WLS�β

�
d�! N (0,VW) ,

where VW = E
�
wix ix0i

��1 E
h
w2

i x ix0iu
2
i

i
E
�
wix ix0i

��1.

Ping Yu (HKU) Large-Sample 14 / 63



Covariance Matrix Estimators

Covariance Matrix Estimators
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Covariance Matrix Estimators

Sample Analogs

Since Q= E
�
x ix0i

�
and Ω = E

h
x ix0iu

2
i

i
,

bQ= 1
n

n

∑
i=1

x ix
0
i =

1
n

X0X,

and bΩ =
1
n

n

∑
i=1

x ix
0
ibu2

i =
1
n

X0diag
nbu2

1 , � � � ,bu2
n

o
X� 1

n
X0bDX (5)

are the MoM estimators (exercise) for Q and Ω, where
�bui
	n

i=1 are the OLS
residuals.

Given that V= Q�1ΩQ�1, it can be estimated by

bV= bQ�1 bΩbQ�1,

and AVar (bβ ) is estimated by

bV/n =
�
X0X

��1 X0bDX
�
X0X

��1
.
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Covariance Matrix Estimators

History and Limitation

People thought Ω =E
h
x ix0i σ

2
i

i
whose estimation requires estimating n conditional

variances.bV appeared first in the statistical literature Eicker (1967) and Huber (1967), and
was introduced into econometrics by White (1980c). So this estimator is often
called the "Eicker-Huber-White formula" or something of the kind.

Other popular names for this estimator include the "heteroskedasticity-consistent
(or robust) convariance matrix estimator" or the "sandwich-form convariance
matrix estimator"

In the homoskedastic case, we can estimate V by bV0 = bσ2 bQ�1.

Practical Suggestion : Use bV rather than bV0 whenever possible.

[AVar
�bβ j

�
why?
= ∑n

i=1 wijbu2
i /SSRj

homo�! [AVar
�bβ j

�
= n�1 ∑n

i=1 bu2
i /SSRj .

It is hard to judge which formula, homoskedasticity-only or
heteroskedasticity-robust, is larger (why?).

Although either way is possible in theory, the heteroskedasticity-robust formula is
usually larger than the homoskedasticity-only one in practice.

It can be shown that the former is actually more variable than the latter, which is
the price paid for robustness.
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Covariance Matrix Estimators

Consistency of bV
Theorem

Under the assumptions of Theorem 3, bV p�! V.

Proof.

From the WLLN, bQ is consistent. As long as we can show bΩ is consistent, by the CMTbV is consistent. Using (3)

bΩ =
1
n

n

∑
i=1

x ix
0
ibu2

i

=
1
n

n

∑
i=1

x ix
0
iu

2
i �

2
n

n

∑
i=1

x ix
0
i

�bβ �β

�0
x iui +

1
n

n

∑
i=1

x ix
0
i

��bβ �β

�0
x i

�2

.

From (4), E
hx ix0iu

2
i

i< ∞, so by the WLLN, n�1 ∑n
i=1x ix 0iu

2
i

p�!Ω. We need only to

prove the remaining two terms are op(1).
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Covariance Matrix Estimators

Proof.

The second term satisfies2
n

n

∑
i=1

x ix
0
i

�bβ �β

�0
x iui

 � 2
n

n

∑
i=1

x ix
0
i

�bβ �β

�0
x iui


� 2

n

n

∑
i=1

x ix
0
i

�����bβ �β

�0
x i

���� jui j

�
 

2
n

n

∑
i=1
kx ik3 jui j

!bβ �β

 ,

where the first inequality is from the triangle inequality,a and the second and third
inequalities are from the Schwarz matrix inequality.

aTriangle inequality: For any m�n matrices X and Y, kX+Yk � kXk+ kYk .
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Covariance Matrix Estimators

Proof.

[Proof continue] By Hölder’s inequality,a

E
h
kx ik3 jui j

i
� E

h
kx ik4

i3/4
E
h
jui j4

i1/4
< ∞,

so by the WLLN, n�1 ∑n
i=1 kx ik3 jui j

p�! E
h
kx ik3 jui j

i
< ∞. Given that bβ �β = op(1),

the second term is op(1)Op(1) = op(1).
The third term satisfies1

n

n

∑
i=1

x ix
0
i

��bβ �β

�0
x i

�2
 � 1

n

n

∑
i=1

x ix
0
i

��bβ �β

�0
x i

�2

� 1
n

n

∑
i=1
kx ik4

bβ �β

2
= op(1),

where the steps follow from similar arguments as in the second term.

aHölder’s inequality: If p > 1 and q > 1 and 1
p +

1
q = 1, then for any random m�n matrices X and Y,

E [kX0Yk] � E
�
kXkp�1/p E

�
kYkq�1/q .
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Functions of Parameters

Functions of Parameters
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Functions of Parameters

Functions of Parameters

Let θ = r(β ) denote the parameter of interest, where r: Rk !Rq .
Assumption RLS.1 0: r(�) is continuously differentiable at the true value β and
R= ∂

∂β
r(β )0 has rank q.

Theorem

Under the assumptions of Theorem 3 and Assumption RLS.10,

p
n
�bθ �θ

�
d�! N (0,Vθ ) ,

where bθ = r
�bβ�, and Vθ = R0VR.

Proof.

By the CMT, bθ is consistent for θ . By the Delta method, if r(�) is differentiable at the
true value β ,

p
n
�bθ �θ

�
=
p

n
�

r
�bβ�� r (β )

�
d�! R0N (0,V) = N (0,Vθ )

where Vθ = R0VR> 0 if R has full rank q.
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Functions of Parameters

Estimation of Vθ

A natural estimator of Vθ is bVθ = bR0bVbR, (6)

where bR= ∂ r
�bβ�0/∂β . If r(�) is a C(1) function, then by the CMT, bVθ

p�! Vθ

(why?).

If r(β ) is linear:
r(β ) = R0β

for some k �q matrix R. In this case, ∂

∂β
r(β )0 = R and bR= R, so bVθ = R0bVR.

For example, if R is a "selector matrix"

R=
�

Iq�q
0(k�q)�q

�
,

so that if β = (β 01,β
0
2)
0, then θ = R0β = β 1 and

bVθ = (I,0) bV� I
0

�
= bV11,

the upper-left block of bV.
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The t Test

The t Test
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The t Test

The Studentized Statistic

When q = 1 (so r (β ) is real-valued), the standard error1 for bθ is the square root of

n�1 bVθ , that is, s
�bθ�= n�1/2

pbR0bVbR.
The studentized statistic

tn (θ ) =
bθ �θ

s
�bθ� .

Since
p

n
�bθ �θ

�
d�! N(0,Vθ ) and

p
ns
�bθ� p�!

p
Vθ , by Slutsky’s theorem, we

have

Theorem

Under the assumptions of Theorem 5, tn (θ )
d�! N(0,1).

Thus the asymptotic distribution of the t-ratio tn (θ ) is the standard normal.

Since the standard normal distribution does not depend on the parameters, we
say that tn (θ ) is asymptotically pivotal .

1A standard error for an estimator is an estimate of the standard deviation of that estimator
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The t Test

The t Test

The most common one-dimensional hypotheses are the null

H0 : θ = θ0, (7)

against the alternative
H1 : θ 6= θ0, (8)

where θ0 is some pre-specified value.

The standard test for H0 against H1 is based on the absolute value of the
t-statistic,

tn = tn (θ0) =
bθ �θ0

s
�bθ� .

Under H0, tn
d�! Z � N(0,1), so jtnj

d�! jZ j by the CMT.

G(u) = P(jZ j � u) = Φ(u)� (1�Φ(u)) = 2Φ(u)�1�Φ(u) is called the
asymptotic null distribution .
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The t Test

Asymptotic Size and Asymptotic Critical Value

The asymptotic size of the test is defined as the asymptotic probability of a Type I
error:

lim
n!∞

P(jtnj> cjH0 true) = P(jZ j> c) = 1�Φ(c).

The asymptotic size of the test is a simple function of the asymptotic null
distribution G and the critical value c.

c is called the asymptotic critical value because it has been selected from the
asymptotic null distribution.

Let zα/2 be the upper α/2 quantile of the standard normal distribution. That is, if
Z � N(0,1), then P(Z > zα/2) = α/2 and P(jZ j> zα/2) = α. For example,
z.025 = 1.96 and z.05 = 1.645.

A test of asymptotic significance α rejects H0 if jtnj> zα/2. Otherwise the test
does not reject, or "accepts" H0.
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The t Test

One-Sided Alternative

The alternative hypothesis (8) is called a “two-sided” alternative.

One-sided alternatives:
H1: θ > θ0 (9)

or
H1: θ < θ0. (10)

Tests of (7) against (9) or (10) are based on the signed t-statistic tn.

The hypothesis (7) is rejected in favor of (9) if tn > c (why?) where c satisfies
α = 1�Φ(c).

The critical values are smaller than for two-sided tests (why?). Specifically, the
asymptotic 5% critical value is c = 1.645. Thus, we reject (7) in favor of (9) if
tn > 1.645.

Should we use the two-sided critical value 1.96 or the one-sided critical value
1.645? The answer is that we should use one-sided tests and critical values only
when the parameter space is known to satisfy a one-sided restriction such as
θ � θ0. Since linear regression coefficients typically do not have a priori sign
restrictions, we conclude that two-sided tests are generally appropriate.
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p-Value

p-Value
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p-Value

p-Value

The rejection/acceptance dichotomy is associated with the Neyman-Pearson
approach to hypothesis testing; p-value is associated with R.A. Fisher.
Define the tail probability, or asymptotic p-value function

p(t) = P (jZ j> t) = 1�G(t) = 2 (1�Φ(t)) ,

where G(�) is the cdf of jZ j.
Then the asymptotic p-value of the statistic jtnj is

pn = p(jtnj).

So the p-value is the probability of obtaining a test statistic result at least as
extreme as the one that was actually observed or the smallest significance level at
which the null would be rejected, assuming that the null is true.
Since the distribution function G is monotonically increasing, the p-value is a
monotonically decreasing function of tn and is an equivalent test statistic. [Figure
1]
Caveat : the p-value pn should not be interpreted as the probability that either
hypothesis is true. For example, pn is NOT the probability “that the null hypothesis
is false.” Rather, pn is a measure of the strength of information against the null
hypothesis.
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p-Value

Figure: Obtaining the p-Value in a Two-Sided t-Test: jtnj= 1.85
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p-Value

continue...

An equivalent statement of a Neyman-Pearson test is to reject at the α level if and
only if pn < α.

In this sense, p-values and hypothesis tests are equivalent since pn < α if and
only if jtnj> zα/2.

The p-value is more general, however, in that the reader is allowed to pick the level
of significance α, in contrast to Neyman-Pearson rejection/acceptance reporting
where the researcher picks the level.

The p-value function has simply made a unit-free transformation of the test

statistic. That is, under H0, pn
d�! U [0,1], regardless of the complication of the

distribution of the original test statistic.

Why? The asymptotic distribution of jtnj is G(x) = 1�p(x). Thus

P (1�pn � u) = P (1�p(jtnj)� u) = P (G(jtnj)� u)

= P
�
jtnj �G�1(u)

�
!G(G�1(u)) = u,

establishing that 1�pn
d�! U [0,1], from which it follows that pn

d�! U [0,1].
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Confidence Interval

Confidence Interval
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Confidence Interval

Confidence Interval

A confidence interval (CI) Cn is an interval estimate of θ 2R which is assumed to
be fixed.

It is a function of the data and hence is random. So it is not correct to say that "θ
will fall in Cn with high probability", rather, Cn is designed to cover θ with high
probability. Either θ 2 Cn or θ /2 Cn. The coverage probability is P(θ 2 Cn).

We typically cannot calculate the exact coverage probability P(θ 2 Cn).

However we often can calculate the asymptotic coverage probability
limn!∞ P(θ 2 Cn).

We say that Cn has asymptotic (1�α) coverage for θ if P(θ 2 Cn)! 1�α as
n! ∞.
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Confidence Interval

Test Statistic Inversion

test statistic inversion method: collecting parameter values which are not rejected
by a statistical test.

The t-test rejects H0: θ = θ0 if jtn (θ0)j> zα/2. A CI is then constructed using the
values for which this test does not reject [Figure 2]:

Cn =
�

θ j jtn (θ )j � zα/2
	
=

8<:θ

�������zα/2 �
bθ �θ

s
�bθ� � zα/2

9=;
=

hbθ �zα/2s
�bθ� ,bθ + zα/2s

�bθ�i .
The most common professional choice for 1�α is 95%, or α = .05. This

corresponds to selecting the CI
hbθ �1.96s

�bθ�i� hbθ �2s
�bθ�i.

The interval has been constructed so that as n! ∞,

P (θ 2 Cn) = P (jtn (θ )j � zα/2)! P (jZ j � zα/2) = 1�α,

so Cn is indeed an asymptotic (1�α) CI.
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Confidence Interval

Figure: Test Statistic Inversion: acceptance region for bθ at θ is
h
θ �zα/2s

�bθ� ,θ + zα/2s
�bθ�i
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The Wald Test

The Wald Test
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The Wald Test

The Wald Test

When θ = r(β ) is a q�1 vector, it is desired to test the joint restrictions
simultaneously. In this case the t-statistic approach does not work.
We have the null and alternative

H0 : θ = θ0 vs H1 : θ 6= θ0.

The Wald statistic for H0 against H1 is

Wn = n
�bθ �θ0

�0 bV�1
θ

�bθ �θ0

�
.

We have known that
p

n
�bθ �θ0

�
d�! N (0,Vθ ), and bVθ

p�! Vθ under H0. So

Wn
d�! χ2

q under the null (why?).

When q = 1, Wn = t2
n (check). Correspondingly, the asymptotic distribution

χ2
1 = N(0,1)2.

An asymptotic Wald test rejects H0 in favor of H1 if Wn exceeds χ2
q,α , the upper-α

quantile of the χ2
q distribution. For example, χ2

1,.05 = 3.84= z2
.025.

The asymptotic p-value for Wn is pn = p(Wn), where p(x) = P(χ2
q � x) is the tail

probability function of the χ2
q distribution. As before, the test rejects at the α level if

pn < α, and pn is asymptotically U [0,1] under H0.
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The Wald Test Confidence Region

Confidence Region

As CIs, we can construct confidence regions for multiple parameters, e.g.,
θ = r (β ) 2Rq .

By the test statistic inversion method, an asymptotic (1�α) confidence region for
θ is

Cn =
n

θ jWn(θ ) � χ
2
q (α)

o
,

where Wn(θ ) = n
�bθ �θ

�0 bV�1
θ

�bθ �θ

�
. Since bVθ > 0, Cn is an ellipsoid in the θ

plane.

Assume q = 2 and θ = (β 1,β 2)
0; then Cn is an ellipse in the (β 1,β 2) plane as

shown in Figure 3.

C0n �CI(β 1)�CI(β 2) does not work! that is, P((β 1,β 2) 2 C0n) 6= 1�α in general.
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The Wald Test Confidence Region

0

Figure: Confidence Region for (β 1,β 2)

Ping Yu (HKU) Large-Sample 40 / 63



Problems with Tests of Nonlinear Hypotheses

Problems with Tests of Nonlinear Hypotheses
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Problems with Tests of Nonlinear Hypotheses

Problems with Tests of Nonlinear Hypotheses

Take the model
yi = β +ui ,ui � N(0,σ2)

and consider the hypothesis
H0: β = 1.

Let bβ and bσ2 be the sample mean and variance of yi . The standard Wald test for
H0 is

Wn = n

�bβ �1
�2

bσ2 .

Note that H0 is equivalent to the hypothesis

H0(s): β
s = 1,

for any positive integer s.
Letting r (β ) = β

s, and noting R = sβ
s�1, we find that the standard Wald test for

H0(s) is

Wn(s) = n

�bβ s
�1
�2

bσ2s2bβ 2s�2 .

While the hypothesis β
s = 1 is unaffected by the choice of s, the statistic Wn(s)

varies with s.
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Problems with Tests of Nonlinear Hypotheses
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Figure: Wald Statistic as a function of s: n/bσ2 = 10

In each case there are values of s for which the test statistic is significant relative
to asymptotic critical values, while there are other values of s for which the test
statistic is insignificant.
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Problems with Tests of Nonlinear Hypotheses

Finite-Sample Distribution

The first-order asymptotic theory is not useful to help pick s, as Wn(s)
d�! χ2

1
under H0 for any s, while Monte Carlo simulation can be quite useful as a tool to
study and compare the exact distributions of statistical procedures in finite
samples.

The method uses random simulation to create artificial datasets, to which we
apply the statistical tools of interest. This produces random draws from the
statistic’s sampling distribution. Through repetition, features of this distribution can
be calculated.

Let’s focus on the Type I error of the test using the asymptotic 5% critical value
3.84 - the probability of a false rejection, P(Wn(s)> 3.84jβ = 1).

This probability depends only on s, n, and σ2 in this simple model.

Table 1 reports the simulation estimate of the Type I error probability from 50,000
random samples.

The probabilities in Table 1 are calculated as the percentage of the 50,000
simulated Wald statistics Wn(s) which are larger than 3.84. The null hypothesis
β

s = 1 is true, so these probabilities are Type I error.

Ping Yu (HKU) Large-Sample 44 / 63



Problems with Tests of Nonlinear Hypotheses

σ = 1 σ = 3
s n = 20 n = 100 n = 500 n = 20 n = 100 n = 500
1 .06 .05 .05 .07 .05 .05
2 .08 .06 .05 .15 .08 .06
3 .10 .06 .05 .21 .12 .07
4 .13 .07 .06 .25 .15 .08
5 .15 .08 .06 .28 .18 .10
6 .17 .09 .06 .30 .20 .11
7 .19 .10 .06 .31 .22 .13
8 .20 .12 .07 .33 .24 .14
9 .22 .13 .07 .34 .25 .15
10 .23 .14 .08 .35 .26 .16

Table 1: Type I Error Probability of Asymptotic 5% Wn(s) Test
Note: Rejection frequencies from 50,000 simulated random samples
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Problems with Tests of Nonlinear Hypotheses

Results from Table 1

The ideal Type I error probability is 5%(.05) with deviations indicating distortion.

Type I error rates between 3% and 8% are considered reasonable. Error rates
above 10% are considered excessive. Rates above 20% are unacceptable.

When comparing statistical procedures, we compare the rates row by row, looking
for tests for which rejection rates are close to 5% and rarely fall outside of the
3%�8% range.

For this particular example the only test which meets this criterion is the
conventional Wn =Wn(1) test. Any other choice of s leads to a test with
unacceptable Type I error probabilities; as s increases test performance
deteriorates.

Impact of variation in sample size n: in each case, the Type I error probability
improves towards 5% as the sample size n increases. There is, however, no magic
choice of n for which all tests perform uniformly well.
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Problems with Tests of Nonlinear Hypotheses

A More Complicated Example

Take the model
yi = β 0+ x1i β 1+ x2i β 2+ui ,E [x iui ] = 0 (11)

and the hypothesis

H0: θ � β 1
β 2
= θ0.

bβ = �bβ 0,
bβ 1,
bβ 2

�0
, bVbβ = bV/n, and bθ = bβ 1/bβ 2.

A t-statistic for H0 is

t1n =
bβ 1/bβ 2�θ0

s(bθ ) .

where s(bθ ) = �bR01bVbβ bR1

�1/2
with bR1 =

�
0, 1bβ 2

,�
bβ 1bβ 2

2

�0
.

An equivalent null hypothesis is

H0: β 1�θ0β 2 = 0.
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Problems with Tests of Nonlinear Hypotheses

continue...

A t-statistic based on this formulation of the hypothesis is

t2n =
bβ 1�θ0

bβ 2�
R02
bVbβ R2

�1/2
,

where R2 = (0,1,�θ0)
0.

Monte Carlo Simulation: let x1i and x2i be mutually independent N(0,1) variables,
ui be an independent N(0,σ2) draw with σ = 3, and normalize β 0 = 1 and β 1 = 1.
This leaves β 2 as a free parameter, along with sample size n.

Ideally, the entries in Table 2 should be 0.05. However, the rejection rates for the
t1n statistic diverge greatly from this value, especially for small values of β 2.

The left tail probabilities P(t1n <�1.645) greatly exceed 5%, while the right tail
probabilities P(t1n > 1.645) are close to zero in most cases.

In contrast, the rejection rates for the linear t2n statistic are invariant to the value of
β 2, and are close to the ideal 5% rate for both sample sizes.

The implication of Table 2 is that the two t-ratios have dramatically different
sampling behaviors.
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Problems with Tests of Nonlinear Hypotheses

n = 100 n = 500
P(tn <�1.645) P(tn > 1.645) P(tn > 1.645) P(tn > 1.645)

β 2 t1n t2n t1n t2n t1n t2n t1n t2n
.10 .47 .06 .00 .06 .28 .05 .00 .05
.25 .26 .06 .00 .06 .15 .05 .00 .05
.50 .15 .06 .00 .06 .10 .05 .00 .05
.75 .12 .06 .00 .06 .09 .05 .00 .05
1.00 .10 .06 .00 .06 .07 .05 .02 .05

Table 2: Type I Error Probability of Asymptotic 5% t-tests
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Problems with Tests of Nonlinear Hypotheses

Solutions

The common message from both examples is that Wald statistics are sensitive to
the algebraic formulation of the null hypothesis.

Solution I : If the hypothesis can be expressed as a linear restriction on the model
parameters, this formulation should be used. If no linear formulation is feasible,
then the "most linear" formulation should be selected, and alternatives to
asymptotic critical values should be considered.

Solution II : Consider alternative tests to the Wald statistic, such as the minimum
distance statistic.
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Test Consistency
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Test Consistency

Test Consistency

Definition

A test of H0: θ 2Θ0 is consistent against fixed alternatives if for all θ 2Θ1,
P (Reject H0jθ )! 1 as n! ∞.

Suppose that yi is i.i.d. N(µ,1). Consider the t-statistic tn(µ) =
p

n (y �µ), and
tests of H0: µ = 0 against H1: µ > 0. We reject H0 if tn = tn(0)> c.
Note that

tn = tn (µ)+
p

nµ

and tn(µ)� Z has an exact N(0,1) distribution. This is because tn (µ) is centered
at the true mean µ, while the test statistic tn(0) is centered at the (false)
hypothesized mean of 0.
The power of the test is

P (tn > cjθ ) = P
�
Z +

p
nµ > c

�
= 1�Φ

�
c�

p
nµ
�
.

This function is monotonically increasing in µ and n, and decreasing in c.
For any c and µ 6= 0, the power increases to 1 as n! ∞. This means that for
µ 2 H1, the test will reject H0 with probability approaching 1 as the sample size
gets large.

Ping Yu (HKU) Large-Sample 52 / 63



Test Consistency

continue...

For tests of the form “Reject H0 if Tn > c”, a sufficient condition for test
consistency is that Tn ! ∞ with probability one for all θ 2Θ1. In general, the t-test
and Wald test are consistent against fixed alternatives.
For example, in testing H0: θ = θ0,

tn =
bθ �θ0

s
�bθ� =

bθ �θ

s
�bθ� +

p
n (θ �θ0)qbVθ

� Term I+Term II (12)

since s
�bθ�=qbVθ /n.

Term I d�! N(0,1). Term II = 0 if θ = θ0, and
p�!+∞ if θ > θ0, and

p�!�∞ if
θ < θ0. Thus both the two-sided t-test and one-sided t-test are consistent.
For another example, The Wald statistic for H0: θ = r(β ) = θ0 against H1: θ 6= θ0
is

Wn = n
�bθ �θ0

�0 bV�1
θ

�bθ �θ0

�
.

Under H1, bθ p�! θ 6= θ0. Thus�bθ �θ0

�0 bV�1
θ

�bθ �θ0

�
p�! (θ �θ0)

0V�1
θ
(θ �θ0)> 0. Hence under H1,

Wn
p�! ∞. This implies that Wald tests are consistent.
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Asymptotic Local Power
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Asymptotic Local Power

Local Alternatives

Consistency is a good property for a test, but does not give a useful approximation
to the power of a test.

To approximate the power function we use local alternatives . This is similar to
our analysis of restriction estimation under misspecification.

The technique is to index the parameter by sample size so that the asymptotic
distribution of the statistic is continuous in a localizing parameter.

In the t-test, we consider parameter vectors β n which are indexed by sample size
n and satisfy the real-valued relationship

θn = r (β n) = θ0+n�1/2h, (13)

where the scalar h is called a localizing parameter , and the sequence of local
alternatives θn is called a Pitman drift or a Pitman sequence .

We index β n and θn by sample size to indicate their dependence on n. The way to
think of (13) is that the true value of the parameters are β n and θn. The parameter
θn is close to the hypothesized value θ0, with deviation n�1/2h.
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Asymptotic Local Power

How to Understand Local Alternatives?

The specification (13) states that for any fixed h, θn approaches θ0 as n gets
large. Thus θn is “close” or “local” to θ0.

For a fixed alternative, the power will converge to 1 as n! ∞. To offset the effect
of increasing n, we make the alternative harder to distinguish from H0 as n gets
larger. The rate n�1/2 is the correct balance between these two forces.

The concept of a localizing sequence (13) might seem odd at first as in the actual
world the sample size cannot mechanically affect the value of the parameter.

Thus (13) should not be interpreted literally. Instead, it should be interpreted as a
technical device which allows the asymptotic distribution of the test statistic to be
continuous in the alternative hypothesis.
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Asymptotic Local Power

Local Power Function

Similarly as in (12),

tn =
bθ �θ0

s
�bθ� =

bθ �θn

s
�bθ� +

p
n (θn�θ0)qbVθ

d�! Z + δ

under the local alternative, where Z � N(0,1) and δ = h/
p

Vθ .

In testing the one-sided alternative H1: θ > θ0, a t-test rejects H0 for tn > zα . The
asymptotic local power of this test is the limit of the rejection probability under
the local alternative,

lim
n!∞

P (Reject H0jθ = θn)

= lim
n!∞

P (tn > zα jθ = θn)

= P (Z + δ > zα ) = 1�Φ(zα �δ ) = Φ(δ �zα )� πα (δ ) .

We call πα (δ ) the local power function .
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Asymptotic Local Power
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Figure: Asymptotic Local Power Function of One-Sided t-Test with Different Asymptotic Sizes
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Asymptotic Local Power

How to Read the Local Power Function?

We do not consider δ < 0 since θn should be greater than θ0. δ = 0 corresponds
to the null hypothesis so πα (0) = α.

The power functions are monotonically increasing in both δ and α.

The monotonicity with respect to α is due to the inherent trade-off between size
and power.

The coefficient δ can be interpreted as the parameter deviation measured as a

multiple of the standard error s
�bθ�.

Why? s
�bθ�= n�1/2

qbVθ � n�1/2
p

Vθ , so

δ =
hp
Vθ

� n�1/2h

s
�bθ� =

θn�θ0

s
�bθ�

Thus in the figure, we can interpret the power function at δ = 1 (e.g., 26% for a 5%
size test) as the power when the parameter θn is one standard error above the
hypothesized value.
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Asymptotic Local Power

Read Vertically or Horizontally?

In the figure there is a vertical dotted line at δ = 1, showing that the asymptotic
local power πα (1) equals 39% for α = 0.10, equals 26% for α = 0.05 and equals
9% for α = 0.01. This is the difference in power across tests of differing sizes,
holding fixed the parameter in the alternative.

In the figure there is also a horizontal dotted line at 50% power. 50% power is a
useful benchmark, as it is the point where the test has equal odds of rejection and
acceptance. The dotted line crosses the three power curves at δ = 1.29
(α = 0.10), δ = 1.65 (α = 0.05), and δ = 2.33 (α = 0.01). This means that the
parameter θ must be at least 1.65 standard errors above the hypothesized value
for the one-sided test to have 50% (approximate) power. The ratio of these values
(e.g., 1.65/1.29= 1.28 for the asymptotic 5% versus 10% tests) measures the
relative parameter magnitude needed to achieve the same power. (Thus, for a 5%
size test to achieve 50% power, the parameter must be 28% larger than for a 10%
size test.)

The square of this ratio (e.g., (1.65/1.29)2 = 1.64) can be interpreted as the
increase in sample size needed to achieve the same power under fixed
parameters. That is, to achieve 50% power, a 5% size test needs 64% more
observations than a 10% size test.

Why? δ = h/
p

Vθ =
p

n (θn�θ0)/
p

Vθ . Holding θ and Vθ fixed, δ
2 � n.
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Asymptotic Local Power

Local Power in the Wald Test

Local parametrization:
θn = r(β n) = θ0+n�1/2h, (14)

where h is a q�1 vector.

Under (14),

p
n
�bθ �θ0

�
=
p

n
�bθ �θn

�
+h d�! Zh � N(h,Vθ ).

Applied to the Wald statistic,

Wn = n
�bθ �θ0

�0 bV�1
θ

�bθ �θ0

�
d�! Z0hV�1

θ
Zh � χ

2
q(λ ).

where χ2
q(λ ) is a non-central chi-square distribution with q degrees of freedom

and non-central parameter λ = h0V�1
θ

h.

Under the null, h = 0, and the χ2
q(λ ) distribution then degenerates to the usual χ2

q

distribution. In the case of q = 1, jZ + δ j2 � χ2
1(λ ) with λ = δ

2.

The asymptotic local power of the Wald test at the level α is

P
�

χ
2
q(λ )> χ

2
q,α

�
� πq,α (λ ) .
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Asymptotic Local Power
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Figure: Asymptotic Local Power Function of the Wald Test
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Asymptotic Local Power

Read the Local Power Function

The power functions are monotonically increasing in λ and asymptote to one.

The figure also shows the power loss for fixed non-centrality parameter λ as the
dimensionality of the test increases.

The power curves shift to the right as q increases, resulting in a decrease in
power. This is illustrated by the dotted line at 50% power.

The dotted line crosses the three power curves at λ = 3.85 (q = 1), λ = 4.96
(q = 2), and λ = 5.77 (q = 3). The ratio of these λ values correspond to the
relative sample sizes needed to obtain the same power (why?). Thus increasing
the dimension of the test from q = 1 to q = 2 requires a 28% increase in sample
size, or an increase from q = 1 to q = 3 requires a 50% increase in sample size, to
obtain a test with 50% power.

Intuition: when testing more restrictions, we need more deviation from the null (or
equivalently, more data points) to achieve the same power.
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