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Five Weapons in Asymptotic Theory

Five Weapons

The weak law of large numbers (WLLN, or LLN)

The central limit theorem (CLT)

The continuous mapping theorem (CMT)

Slutsky’s theorem

The Delta method

Notations :
- In nonlinear (in parameter) models, the capital letters such as X denote random
variables or random vectors and the corresponding lower case letters such as x
denote the potential values they may take.
- Generic notation for a parameter in nonlinear environments (e.g., nonlinear
models or nonlinear constraints) is θ , while in linear environments is β .
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The WLLN

Definition

A random vector Zn converges in probability to Z as n! ∞, denoted as Zn
p�! Z , if

for any δ > 0,
lim

n!∞
P(kZn�Zk> δ ) = 0.

Although the limit Z can be random, it is usually constant. [intuition]

The probability limit of Zn is often denoted as plim(Zn). If Zn
p�! 0, we denote

Zn = op(1).
When an estimator converges in probability to the true value as the sample size
diverges, we say that the estimator is consistent .
Consistency is an important preliminary step in establishing other important
asymptotic approximations.

Theorem (WLLN)

Suppose X1, � � � ,Xn, � � � are i.i.d. random vectors, and E [kXk] < ∞; then as n! ∞,

Xn �
1
n

n

∑
i=1

Xi
p�! E [X ] .
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The CLT

Definition

A random k vector Zn converges in distribution to Z as n! ∞, denoted as Zn
d�! Z , if

lim
n!∞

Fn(z) = F (z),

at all z where F (�) is continuous, where Fn is the cdf of Zn and F is the cdf of Z .

Usually, Z is normally distributed, so all z 2Rk are continuity points of F .
If Zn converges in distribution to Z , then Zn is stochastically bounded and we
denote Zn = Op(1).
Rigorously, Zn =Op(1) if 8ε > 0, 9Mε < ∞ such that P(kZnk>Mε )< ε for any n. If
Zn = op(1), then Zn = Op(1).
We can show that op(1)+op(1) = op(1), op(1)+Op(1) = Op(1),
Op(1)+Op(1) = Op(1), op(1)op(1) = op(1), op(1)Op(1) = op(1), and
Op(1)Op(1) = Op(1).

Theorem (CLT)

suppose X1, � � � ,Xn, � � � are i.i.d. random k vectors, E [X ] = µ, and Var (X ) = Σ; then
p

n
�
Xn�µ

� d�! N(0,Σ).
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Comparison Betwen the WLLN and CLT

The CLT tells more than the WLLN.
p

n
�
Xn�µ

� d�! N(0,Σ) implies Xn
p�! µ, so the CLT is stronger than the WLLN.

Xn
p�! µ means Xn�µ = op(1), but does not provide any information aboutp

n
�
Xn�µ

�
. The CLT tells that

p
n
�
Xn�µ

�
= Op(1) or Xn�µ = Op(n�1/2).

But the WLLN does not require the second moment finite; that is, a stronger result
is not free.
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The CMT

Theorem (CMT)

Suppose X1, � � � ,Xn, � � � are random k vectors, and g is a continuous function on the
support of X (to Rl ) a.s. PX ; then

Xn
p�! X =) g(Xn)

p�! g(X );

Xn
d�! X =) g(Xn)

d�! g(X ).

The CMT allows the function g to be discontinuous but the probability of being at a
discontinuity point is zero.

For example, the function g(u) = u�1 is discontinuous at u = 0, but if

Xn
d�! X � N(0,1) then P(X = 0) = 0 so X�1

n
d�! X�1.
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Slutsky’s Theorem

In the CMT, Xn converges to X jointly in various modes of convergence.

For the convergence in probability (
p�!), marginal convergence implies joint

convergence, so there is no problem if we substitute joint convergence by marginal
convergence.

But for the convergence in distribution ( d�!), Xn
d�! X , Yn

d�! Y does not imply�
Xn
Yn

�
d�!
�

X
Y

�
.

Nevertheless, there is a special case where this result holds, which is Slutsky’s
theorem.

Theorem (Slutsky’s Theorem)

If Xn
d�! X, Yn

d�! c
�
() Yn

p�! c
�

, where c is a constant, then
�

Xn
Yn

�
d�!
�

X
c

�
.

This implies Xn+Yn
d�! X + c, YnXn

d�! cX, Y�1
n Xn

d�! c�1X when c 6= 0. Here
Xn,Yn,X ,c can be understood as vectors or matrices as long as the operations are
compatible.
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Applications of the CMT and Slutsky’s Theorem

Example

Suppose Xn
d�! N(0,Σ), and Yn

p�! Σ; then Y�1/2
n Xn

d�! Σ�1/2N(0,Σ) = N(0, I),
where I is the identity matrix. (why?)

Example

Suppose Xn
d�! N(0,Σ), and Yn

p�! Σ; then X 0nY�1
n Xn

d�! χ2
k , where k is the

dimension of Xn. (why?)

Another important application of Slutsky’s theorem is the Delta method.
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The Delta Method

Theorem

Suppose
p

n (Zn�c) d�! Z � N(0,Σ), c 2Rk , and g(z) : Rk !R. If dg(z)
dz 0 is

continuous at c, then
p

n (g(Zn)�g(c)) d�! dg(c)
dz 0 Z.

Proof.

p
n (g(Zn)�g(c)) =

p
n

dg(c)
dz 0

(Zn�c) ,

where c is between Zn and c.
p

n (Zn�c) d�! Z implies that Zn
p�! c, so by the CMT,

dg(c)
dz 0

p�! dg(c)
dz 0 . By Slutsky’s theorem,

p
n (g(Zn)�g(c)) has the asymptotic

distribution dg(c)
dz 0 Z .

The Delta method implies that asymptotically, the randomness in a transformation
of Zn is completely controlled by that in Zn.
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Asymptotics for the MoM Estimator

The MoM Estimator

Recall that the MoM estimator is defined as the solution to

1
n

n

∑
i=1

m(Xi jθ ) = 0.

We can prove the MoM estimator is consistent and asymptotically normal (CAN)
under some regularity conditions.

Specifically, the asymptotic distribution of the MoM estimator is

p
n
�bθ �θ0

�
d�! N

�
0,M�1ΩM

0�1
�
,

where M=
dE [m(X jθ 0)]

dθ
0 and Ω = E [m(X jθ0)m(X jθ0)

0].

The asymptotic variance takes a sandwich form and can be estimated by its
sample analog.
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Asymptotics for the MoM Estimator

Derivation of the Asymptotic Distribution of the MoM Estimator

1
n

n
∑

i=1
m(Xi jbθ ) = 0

=) 1
n

n
∑

i=1
m(Xi jθ0)+

1
n

n
∑

i=1

dm(Xi jθ )
dθ

0

�bθ �θ0

�
= 0

=)
p

n
�bθ �θ0

�
= �

�
1
n

n
∑

i=1

dm(Xi jθ )
dθ

0

��1
1p
n

n
∑

i=1
m(Xi jθ0)

d�!
?
�M�1N (0,Ω)

p
n
�bθ �θ0

�
� 1p

n

n
∑

i=1
�M�1m(Xi jθ0), so �M�1m(Xi jθ0) is called the influence

function .

We use dE [m(X jθ 0)]
dθ

0 instead of E
h

dm(X jθ 0)
dθ

0

i
because E [m(X jθ )] is more smooth

than m(X jθ ) and can be applied to such situations as quantile estimation where
m(X jθ ) is not differentiable at θ0. In this course, we will not meet such cases.
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Intuition for the Asymptotic Distribution of the MoM Estimator

Suppose E [X ] = g(θ0) with g 2 C(1) in a neighborhood of θ0; then
θ0 = g�1 (E [X ]) � h(E [X ]). (what are m,M and Ω here?)

The MoM estimator of θ is to set X = g(θ ), so bθ = h(X ).

By the WLLN, X
p�! E [X ]; then by the CMT, bθ p�! h(E [X ]) = θ0 since h(�) is

continuous.

Now,
p

n
�bθ �θ0

�
=
p

n
�
h(X )�h(E [X ])

�
=
p

nh0
�

X
���

X �E [X ]
�
=

h0
�

X
��p

n
�
X �E [X ]

�
, where the second equality is from the mean value

theorem (MVT).

Because X
�

is between X and E [X ] and X
p�! E [X ], X

� p�! E [X ].

By the CMT, h0
�

X
�� p�! h0 (E [X ]). By the CLT,

p
n
�
X �E [X ]

� d�! N(0,Var (X )).

Then by Slutsky’s theorem,

p
n
�bθ �θ0

�
d�! h0 (E [X ])N(0,Var (X ))

= N
�

0,h0 (E [X ])2 Var (X )
�

?
= N

�
0,

Var (X )
g0(θ0)2

�
.
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Asymptotics for the MoM Estimator

continue...

The larger g0(θ0) is, the smaller the asymptotic variance of bθ is.

Consider a more specific example. Suppose the density of X is 2
θ

x exp
n
� x2

θ

o
,

θ > 0, x > 0, that is, X follows the Weibull (2,θ ) distribution.

We can show E [X ] = g(θ ) =
p

π

2 θ
1/2, and Var (X ) = θ

�
1� π

4

�
.

So
p

n
�bθ �θ

�
d�! N

 
0,

θ(1� π

4 )�p
π

2
1
2 θ

�1/2
�2

!
= N

�
0,16θ

2
�

1
π
� 1

4

��
.

Figure 1 shows E [X ] and the asymptotic variance of
p

n
�bθ �θ

�
as a function of

θ .

Intuitively, the larger the derivative of E [X ] with respect to θ , the easier to identify
θ from X , so the smaller the asymptotic variance.
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0
0

0
0

Figure: E [X ] and Asymptotic Variance as a Function of θ
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Asymptotics for the MoM Estimator

An Example

Suppose the moment conditions are

E
�

X �µ

(X �µ)2�σ2

�
= 0.

Then the sample analog is

1
n

0BB@
n
∑

i=1
Xi �nµ

n
∑

i=1
(Xi �µ)2�nσ2

1CCA= 0,

so the solution is

bµ = X

bσ2 =
1
n

n

∑
i=1

�
Xi �X

�2
= X2�X

2
.
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Asymptotics for the MoM Estimator

continue...

Consistency: bµ = X
p�! µ, bσ2 = X2�X

2 p�!
�

µ2+σ2
�
�µ2 = σ2.

Asymptotic Normality: M= E
��

�1 0
�2 (X �µ) �1

��
=

�
�1 0
0 �1

�
,

Ω = E

" 
(X �µ)2 (X �µ)3�σ2 (X �µ)

(X �µ)3�σ2 (X �µ) (X �µ)4�2σ2 (X �µ)2+σ4

!#

=

0@ σ2 E
h
(X �µ)3

i
E
h
(X �µ)3

i
E
h
(X �µ)4

i
�σ4

1A ,
so

p
n
� bµ�µbσ2�σ2

�
d�! N (0,Ω) .

If X � N
�

µ,σ2
�

, then what is Ω?

Ping Yu (HKU) Asymptotic Theory 18 / 20



Asymptotics for the MoM Estimator

Another Example: Empirical Distribution Function

Suppose we want to estimate θ = F (x) for a fixed x , where F (�) is the cdf of a
random variable X .
An intuitive estimator is the ratio of samples below x , n�1 ∑n

i=1 1(Xi � x), which is
called the empirical distribution function (EDF), while it is a MoM estimator.
Why? note that the moment condition for this problem is

E [1(X � x)�F (x)] = 0.

Its sample analog is
1
n

n

∑
i=1
(1(Xi � x)�F (x)) = 0,

so bF (x) = 1
n

n

∑
i=1

1(Xi � x).

By the WLLN, it is consistent. By the CLT,

p
n
�bF (x)�F (x)

�
d�! N (0,F (x) (1�F (x))) .(why?)

An interesting phenomenon is that the asymptotic variance reaches its maximum
at the median of the distribution of X .
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Figure: Empirical Distribution Functions: 10 samples from N(0,1) with sample size n = 50
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