An Introduction to Asymptotic Theory

Ping Yu

School of Economics and Finance The University of Hong Kong

æ

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Five Weapons in Asymptotic Theory

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Five Weapons

- The weak law of large numbers (WLLN, or LLN)
- The central limit theorem (CLT)
- The continuous mapping theorem (CMT)
- Slutsky's theorem
- The Delta method

Notations:

- In nonlinear (in parameter) models, the capital letters such as X denote random variables or random vectors and the corresponding lower case letters such as x denote the potential values they may take.

- Generic notation for a parameter in nonlinear environments (e.g., nonlinear models or nonlinear constraints) is θ , while in linear environments is β .

・ロット (母) ・ ヨ) ・ ヨ)

The WLLN

Definition

A random vector Z_n converges in probability to Z as $n \to \infty$, denoted as $Z_n \xrightarrow{p} Z$, if for any $\delta > 0$,

$$\lim_{n\to\infty} P(\|Z_n-Z\|>\delta)=0.$$

- Although the limit Z can be random, it is usually constant. [intuition]
- The probability limit of Z_n is often denoted as $plim(Z_n)$. If $Z_n \xrightarrow{p} 0$, we denote $Z_n = o_p(1)$.
- When an estimator converges in probability to the true value as the sample size diverges, we say that the estimator is **consistent**.
- Consistency is an important preliminary step in establishing other important asymptotic approximations.

Theorem (WLLN)

Suppose X_1, \dots, X_n, \dots are i.i.d. random vectors, and $E[||X||] < \infty$; then as $n \to \infty$,

$$\overline{X}_n \equiv \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{p} E[X].$$

The CLT

Definition

A random k vector Z_n converges in distribution to Z as $n \to \infty$, denoted as $Z_n \xrightarrow{d} Z$, if

$$\lim_{n\to\infty}F_n(z)=F(z),$$

at all *z* where $F(\cdot)$ is continuous, where F_n is the cdf of Z_n and F is the cdf of *Z*.

- Usually, *Z* is normally distributed, so all $z \in \mathbb{R}^k$ are continuity points of *F*.
- If Z_n converges in distribution to Z, then Z_n is **stochastically bounded** and we denote $Z_n = O_p(1)$.
- Rigorously, $Z_n = O_p(1)$ if $\forall \varepsilon > 0$, $\exists M_{\varepsilon} < \infty$ such that $P(||Z_n|| > M_{\varepsilon}) < \varepsilon$ for any *n*. If $Z_n = o_p(1)$, then $Z_n = O_p(1)$.
- We can show that $o_p(1) + o_p(1) = o_p(1)$, $o_p(1) + O_p(1) = O_p(1)$, $O_p(1) + O_p(1) = O_p(1)$, $o_p(1)o_p(1) = o_p(1)$, $o_p(1)O_p(1) = o_p(1)$, and $O_p(1)O_p(1) = O_p(1)$.

Theorem (CLT)

suppose X_1, \dots, X_n, \dots are *i.i.d.* random k vectors, $E[X] = \mu$, and $Var(X) = \Sigma$; then $\sqrt{n}(\overline{X}_n - \mu) \stackrel{d}{\longrightarrow} N(\mathbf{0}, \Sigma)$.

Comparison Betwen the WLLN and CLT

- The CLT tells more than the WLLN.
- $\sqrt{n}(\overline{X}_n \mu) \xrightarrow{d} N(\mathbf{0}, \Sigma)$ implies $\overline{X}_n \xrightarrow{p} \mu$, so the CLT is stronger than the WLLN.
- $\overline{X}_n \xrightarrow{\rho} \mu$ means $\overline{X}_n \mu = o_p(1)$, but does not provide any information about $\sqrt{n}(\overline{X}_n \mu)$. The CLT tells that $\sqrt{n}(\overline{X}_n \mu) = O_p(1)$ or $\overline{X}_n \mu = O_p(n^{-1/2})$.
- But the WLLN does not require the second moment finite; that is, a stronger result is not free.

The CMT

Theorem (CMT)

Suppose X_1, \dots, X_n, \dots are random k vectors, and g is a continuous function on the support of X (to \mathbb{R}^l) a.s. P_X ; then

$$\begin{array}{rcl} X_n \xrightarrow{p} X & \Longrightarrow & g(X_n) \xrightarrow{p} g(X); \\ X_n \xrightarrow{d} X & \Longrightarrow & g(X_n) \xrightarrow{d} g(X). \end{array}$$

- The CMT allows the function *g* to be discontinuous but the probability of being at a discontinuity point is zero.
- For example, the function $g(u) = u^{-1}$ is discontinuous at u = 0, but if $X_n \xrightarrow{d} X \sim N(0, 1)$ then P(X = 0) = 0 so $X_n^{-1} \xrightarrow{d} X^{-1}$.

Slutsky's Theorem

- In the CMT, X_n converges to X jointly in various modes of convergence.
- For the convergence in probability (^p→), marginal convergence implies joint convergence, so there is no problem if we substitute joint convergence by marginal convergence.
- But for the convergence in distribution $(\stackrel{d}{\longrightarrow})$, $X_n \stackrel{d}{\longrightarrow} X$, $Y_n \stackrel{d}{\longrightarrow} Y$ does not imply $\begin{pmatrix} X_n \\ Y_n \end{pmatrix} \stackrel{d}{\longrightarrow} \begin{pmatrix} X \\ Y \end{pmatrix}$.
- Nevertheless, there is a special case where this result holds, which is Slutsky's theorem.

Theorem (Slutsky's Theorem)

If $X_n \xrightarrow{d} X$, $Y_n \xrightarrow{d} c \left(\iff Y_n \xrightarrow{p} c \right)$, where c is a constant, then $\begin{pmatrix} X_n \\ Y_n \end{pmatrix} \xrightarrow{d} \begin{pmatrix} X \\ c \end{pmatrix}$. This implies $X_n + Y_n \xrightarrow{d} X + c$, $Y_n X_n \xrightarrow{d} c X$, $Y_n^{-1} X_n \xrightarrow{d} c^{-1} X$ when $c \neq 0$. Here X_n, Y_n, X, c can be understood as vectors or matrices as long as the operations are compatible.

Applications of the CMT and Slutsky's Theorem

Example

Suppose $X_n \xrightarrow{d} N(\mathbf{0}, \Sigma)$, and $Y_n \xrightarrow{p} \Sigma$; then $Y_n^{-1/2} X_n \xrightarrow{d} \Sigma^{-1/2} N(0, \Sigma) = N(0, \mathbf{I})$, where **I** is the identity matrix. (why?)

Example

Suppose $X_n \xrightarrow{d} N(\mathbf{0}, \Sigma)$, and $Y_n \xrightarrow{p} \Sigma$; then $X'_n Y_n^{-1} X_n \xrightarrow{d} \chi_k^2$, where *k* is the dimension of X_n . (why?)

Another important application of Slutsky's theorem is the Delta method.

The Delta Method

Theorem

Suppose
$$\sqrt{n}(Z_n - \mathbf{c}) \xrightarrow{d} Z \sim N(\mathbf{0}, \Sigma)$$
, $\mathbf{c} \in \mathbb{R}^k$, and $g(z) : \mathbb{R}^k \to \mathbb{R}$. If $\frac{dg(z)}{dz'}$ is continuous at c , then $\sqrt{n}(g(Z_n) - g(\mathbf{c})) \xrightarrow{d} \frac{dg(\mathbf{c})}{dz'} Z$.

Proof.

$$\sqrt{n}(g(Z_n)-g(\mathbf{c}))=\sqrt{n}rac{dg(\overline{\mathbf{c}})}{dz'}(Z_n-\mathbf{c}),$$

where $\overline{\mathbf{c}}$ is between Z_n and \mathbf{c} . $\sqrt{n}(Z_n - \mathbf{c}) \stackrel{d}{\longrightarrow} Z$ implies that $Z_n \stackrel{p}{\longrightarrow} \mathbf{c}$, so by the CMT, $\frac{dg(\overline{\mathbf{c}})}{dz'} \stackrel{p}{\longrightarrow} \frac{dg(\mathbf{c})}{dz'}$. By Slutsky's theorem, $\sqrt{n}(g(Z_n) - g(\mathbf{c}))$ has the asymptotic distribution $\frac{dg(\mathbf{c})}{dz'}Z$.

• The Delta method implies that asymptotically, the randomness in a transformation of Z_n is completely controlled by that in Z_n .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Asymptotics for the MoM Estimator

æ

・ロン ・回 と ・ ヨン・

The MoM Estimator

Recall that the MoM estimator is defined as the solution to

$$\frac{1}{n}\sum_{i=1}^n m(X_i|\theta) = \mathbf{0}.$$

- We can prove the MoM estimator is consistent and asymptotically normal (CAN) under some regularity conditions.
- Specifically, the asymptotic distribution of the MoM estimator is

$$\sqrt{n}\left(\widehat{\theta}-\theta_{0}\right) \stackrel{d}{\longrightarrow} N\left(\mathbf{0},\mathbf{M}^{-1}\Omega\mathbf{M}^{'-1}\right),$$

where $\mathbf{M} = \frac{dE[m(X|\theta_0)]}{d\theta'}$ and $\Omega = E[m(X|\theta_0)m(X|\theta_0)']$.

• The asymptotic variance takes a *sandwich* form and can be estimated by its sample analog.

Derivation of the Asymptotic Distribution of the MoM Estimator

•
$$\frac{1}{n}\sum_{i=1}^{n}m(X_{i}|\widehat{\theta}) = \mathbf{0}$$

$$\implies \frac{1}{n}\sum_{i=1}^{n}m(X_{i}|\theta_{0}) + \frac{1}{n}\sum_{i=1}^{n}\frac{dm(X_{i}|\overline{\theta})}{d\theta}\left(\widehat{\theta} - \theta_{0}\right) = \mathbf{0}$$

$$\implies \sqrt{n}\left(\widehat{\theta} - \theta_{0}\right) = -\left(\frac{1}{n}\sum_{i=1}^{n}\frac{dm(X_{i}|\overline{\theta})}{d\theta'}\right)^{-1}\frac{1}{\sqrt{n}}\sum_{i=1}^{n}m(X_{i}|\theta_{0})$$

$$= \frac{d}{2} - \mathbf{M}^{-1}N(\mathbf{0},\Omega)$$

• $\sqrt{n} \left(\widehat{\theta} - \theta_0 \right) \approx \frac{1}{\sqrt{n}} \sum_{i=1}^n -\mathbf{M}^{-1} m(X_i | \theta_0)$, so $-\mathbf{M}^{-1} m(X_i | \theta_0)$ is called the influence function

function.

• We use $\frac{dE[m(X|\theta_0)]}{d\theta'}$ instead of $E\left[\frac{dm(X|\theta_0)}{d\theta'}\right]$ because $E[m(X|\theta)]$ is more smooth than $m(X|\theta)$ and can be applied to such situations as quantile estimation where $m(X|\theta)$ is not differentiable at θ_0 . In this course, we will not meet such cases.

Intuition for the Asymptotic Distribution of the MoM Estimator

- Suppose $E[X] = g(\theta_0)$ with $g \in C^{(1)}$ in a neighborhood of θ_0 ; then $\theta_0 = g^{-1}(E[X]) \equiv h(E[X])$. (what are *m*, **M** and Ω here?)
- The MoM estimator of θ is to set $\overline{X} = g(\theta)$, so $\hat{\theta} = h(\overline{X})$.
- By the WLLN, $\overline{X} \xrightarrow{p} E[X]$; then by the CMT, $\widehat{\theta} \xrightarrow{p} h(E[X]) = \theta_0$ since $h(\cdot)$ is continuous.
- Now, $\sqrt{n}\left(\widehat{\theta} \theta_0\right) = \sqrt{n}\left(h(\overline{X}) h(E[X])\right) = \sqrt{n}h'\left(\overline{X}^*\right)\left(\overline{X} E[X]\right) = h'\left(\overline{X}^*\right)\sqrt{n}\left(\overline{X} E[X]\right)$, where the second equality is from the mean value theorem (MVT).
- Because \overline{X}^* is between \overline{X} and E[X] and $\overline{X} \xrightarrow{p} E[X], \overline{X}^* \xrightarrow{p} E[X]$.
- By the CMT, $h'(\overline{X}^*) \xrightarrow{p} h'(E[X])$. By the CLT, $\sqrt{n}(\overline{X} E[X]) \xrightarrow{d} N(0, Var(X))$. Then by Slutsky's theorem,

$$\begin{split} & \sqrt{n} \left(\widehat{\theta} - \theta_0 \right) \stackrel{d}{\longrightarrow} h' \left(E[X] \right) N(0, \operatorname{Var}(X)) \\ = & N \left(0, h' \left(E[X] \right)^2 \operatorname{Var}(X) \right) \stackrel{?}{=} N \left(0, \frac{\operatorname{Var}(X)}{g'(\theta_0)^2} \right) \end{split}$$

continue...

- The larger $g'(\theta_0)$ is, the smaller the asymptotic variance of $\hat{\theta}$ is.
- Consider a more specific example. Suppose the density of X is $\frac{2}{\theta} x \exp\left\{-\frac{x^2}{\theta}\right\}$, $\theta > 0, x > 0$, that is, X follows the Weibull $(2, \theta)$ distribution.
- We can show $E[X] = g(\theta) = \frac{\sqrt{\pi}}{2} \theta^{1/2}$, and $Var(X) = \theta \left(1 \frac{\pi}{4}\right)$.

• So
$$\sqrt{n}\left(\widehat{\theta}-\theta\right) \xrightarrow{d} N\left(0, \frac{\theta\left(1-\frac{\pi}{4}\right)}{\left(\frac{\sqrt{\pi}}{2}\frac{1}{2}\theta^{-1/2}\right)^2}\right) = N\left(0, 16\theta^2\left(\frac{1}{\pi}-\frac{1}{4}\right)\right).$$

- Figure 1 shows E[X] and the asymptotic variance of $\sqrt{n}(\hat{\theta} \theta)$ as a function of θ .
- Intuitively, the larger the derivative of E[X] with respect to θ , the easier to identify θ from \overline{X} , so the smaller the asymptotic variance.

Figure: E[X] and Asymptotic Variance as a Function of θ

<ロ> <同> <同> < 同> < 同> < 三> < 三> 三

An Example

Suppose the moment conditions are

$$E\left[\begin{array}{c} X-\mu\\ (X-\mu)^2-\sigma^2 \end{array}\right]=0.$$

• Then the sample analog is

$$\frac{1}{n} \left(\begin{array}{c} \sum\limits_{i=1}^{n} X_i - n\mu \\ \sum\limits_{i=1}^{n} (X_i - \mu)^2 - n\sigma^2 \end{array} \right) = 0,$$

so the solution is

$$\widehat{\mu} = \overline{X} \widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 = \overline{X^2} - \overline{X}^2.$$

æ

continue...

- Consistency: $\hat{\mu} = \overline{X} \xrightarrow{p} \mu$, $\hat{\sigma}^2 = \overline{X^2} \overline{X}^2 \xrightarrow{p} (\mu^2 + \sigma^2) \mu^2 = \sigma^2$.
- Asymptotic Normality: $\mathbf{M} = E \begin{bmatrix} \begin{pmatrix} -1 & 0 \\ -2(X-\mu) & -1 \end{bmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$,

$$\Omega = E \left[\begin{pmatrix} (X-\mu)^2 & (X-\mu)^3 - \sigma^2 (X-\mu) \\ (X-\mu)^3 - \sigma^2 (X-\mu) & (X-\mu)^4 - 2\sigma^2 (X-\mu)^2 + \sigma^4 \end{pmatrix} \right]$$

=
$$\begin{pmatrix} \sigma^2 & E \left[(X-\mu)^3 \right] \\ E \left[(X-\mu)^3 \right] & E \left[(X-\mu)^4 \right] - \sigma^4 \end{pmatrix},$$

so

$$\sqrt{n} \left(\begin{array}{c} \widehat{\mu} - \mu \\ \widehat{\sigma}^2 - \sigma^2 \end{array} \right) \stackrel{d}{\longrightarrow} N\left(\mathbf{0}, \Omega \right).$$

• If $X \sim N(\mu, \sigma^2)$, then what is Ω ?

◆□▶ ◆□▶ ◆臣▶ ★臣▶ 臣 のへの

Another Example: Empirical Distribution Function

- Suppose we want to estimate $\theta = F(x)$ for a *fixed* x, where $F(\cdot)$ is the cdf of a random variable X.
- An intuitive estimator is the ratio of samples below x, $n^{-1}\sum_{i=1}^{n} 1(X_i \le x)$, which is called the **empirical distribution function** (EDF), while it is a MoM estimator.
- Why? note that the moment condition for this problem is

$$E[1(X \leq x) - F(x)] = 0.$$

Its sample analog is

$$\frac{1}{n}\sum_{i=1}^{n}(1(X_{i}\leq x)-F(x))=0,$$

SO

$$\widehat{F}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(X_i \leq \mathbf{x}).$$

• By the WLLN, it is consistent. By the CLT,

$$\sqrt{n}\left(\widehat{F}(x) - F(x)\right) \xrightarrow{d} N(0, F(x)(1 - F(x))).$$
 (why?)

• An interesting phenomenon is that the asymptotic variance reaches its maximum at the median of the distribution of *X*.

Ping Yu (HKU)

Asymptotic Theory

Figure: Empirical Distribution Functions: 10 samples from N(0, 1) with sample size n = 50

E

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・