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Five Weapons
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The weak law of large numbers (WLLN, or LLN)
The central limit theorem (CLT)

The continuous mapping theorem (CMT)
Slutsky’s theorem

The Delta method

Notations :

- In nonlinear (in parameter) models, the capital letters such as X denote random
variables or random vectors and the corresponding lower case letters such as x
denote the potential values they may take.

- Generic notation for a parameter in nonlinear environments (e.g., nonlinear
models or nonlinear constraints) is 6, while in linear environments is 3.
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The WLLN

Definition

A random vector Z, converges in probability to Z as n — oo, denoted as Z, P, Z,if
for any 6 > 0,
nIimmP(HZn -Z||>é6)=0.

@ Although the limit Z can be random, it is usually constant. [intuition]

@ The probability limit of Z, is often denoted as plim(Zy). If Z, -2, 0, we denote
Zn=0p(1).

@ When an estimator converges in probability to the true value as the sample size
diverges, we say that the estimator is consistent .

@ Consistency is an important preliminary step in establishing other important
asymptotic approximations.

Theorem (WLLN)

Suppose Xp,- -+, Xn, -+ are i.i.d. random vectors, and E [||X]|] < c; then as n — o,

p

Xn = X; — E [X].

=R
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The CLT

Definition

A random k vector Z, converges in distribution to Z as n — o, denoted as Z, 4, Z,if
r]Iim Fn(z) =F(z2),

at all z where F (-) is continuous, where Fy, is the cdf of Z, and F is the cdf of Z.

@ Usually, Z is normally distributed, so all z € R¥ are continuity points of F.

@ If Z, converges in distribution to Z, then Z, is stochastically bounded and we
denote Z, = Op(1).

@ Rigorously, Zn = Op(1) if Ve > 0, IM < o such that P(||Zy|| > M¢) < € for any n. If
Zn = Op(l), then Zn = Op(l)

@ We can show that op (1) +0p(1) =0p(1), 0p(1) +Op(1) = Op(1),
Op(1)+0p(1) =Op(1), 0p(1)0p(1) = 0p(1), 0p(1)Op(1) = 0p(1), and
Op(1)Op(1) =Op(1).

Theorem (CLT)
suppose Xy, -+, Xn,--- are i.i.d. random k vectors, E [X] = u, and Var (X) = X; then

a d
Vi (Xn—p) <5 N(0,2).




Comparison Betwen the WLLN and CLT

@ The CLT tells more than the WLLN.
® /n(Xn—p) 4N (0,%) implies X, P, 1, so the CLT is stronger than the WLLN.
@ X, LN U means X, —pu = 0p (1), but does not provide any information about

VN (Xn— ). The CLT tells that v/n (X — p) = Op(1) or Xpn — = Op(n~1/2).

@ But the WLLN does not require the second moment finite; that is, a stronger result
is not free.
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The CMT

Theorem (CMT)

Suppose Xq,---,Xn,--- are random k vectors, and g is a continuous function on the
support of X (to R') a.s. Py then

Xn X = g(Xn) 2 g(X);

Xo X = g(Xn) -5 g(X).

v

@ The CMT allows the function g to be discontinuous but the probability of being at a
discontinuity point is zero.

@ For example, the function g(u) = u~1 is discontinuous at u = 0, but if
Xn % X ~N(0,1) then P(X = 0) =0 s0 X+ -%5 X 1.
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Slutsky’s Theorem

@ In the CMT, X, converges to X jointly in various modes of convergence.

@ For the convergence in probability (L), marginal convergence implies joint
convergence, so there is no problem if we substitute joint convergence by marginal
convergence.

@ But for the convergence in distribution (i), Xn 4d, X, Yn 9. ¥ does not imply
Xn L X
Yn Y )’
@ Nevertheless, there is a special case where this result holds, which is Slutsky’s
theorem.

Theorem (Slutsky’s Theorem)

IanLX,YnLc<<=>Yn L>(:),wherecisaconstant, then ( )én )i»( >é )
n

This implies Xn + Yn —2 X +¢, YaXn —2 cX, Y71y % c~1X when ¢ # 0. Here
Xn, Yn, X, ¢ can be understood as vectors or matrices as long as the operations are
compatible.
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Applications of the CMT and Slutsky’s Theorem

Example

Suppose X, -5 N(0,%), and Yo -2 ; then Y,; /2, -2 £-1/2N(0,2) = N(0, 1),
where | is the identity matrix. (why?)

Example

Suppose Xn -2 N (0,%), and Yn -2 %; then XY X LN %2, where k is the
dimension of Xp. (why?)

@ Another important application of Slutsky’s theorem is the Delta method.
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The Delta Method

Theorem

Suppose v (Zn—¢) -2+ Z ~N(0,%), ¢ € R, and g(z) : RK — R. If dg;)
continuous at ¢, then v/n(g(Zn) —g(c)) — d dg;)Z.

Proof.

VA(e(zn) -g(e) = Vi 7, —¢),

where € is between Z, and ¢. vn(Z, —c) N Z implies that Z, P, ¢, so by the CMT,

dgif) P, dg( ). By Slutsky’s theorem, VN (9(Zn) —g(c)) has the asymptotic

distribution dg; )7,

O

@ The Delta method implies that asymptotically, the randomness in a transformation
of Z, is completely controlled by that in Z.

v
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Asymptotics for the MoM Estimator
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The MoM Estimator

@ Recall that the MoM estimator is defined as the solution to

1
n m(X;{|0) = 0.

IM>

@ We can prove the MoM estimator is consistent and asymptotically normal (CAN)
under some regularity conditions.

@ Specifically, the asymptotic distribution of the MoM estimator is
ﬁ(@— 90) 4N (o, M*lnM’*l) ,
where M = W and Q= E [m(X|8g)m(X|6g)'].

@ The asymptotic variance takes a sandwich form and can be estimated by its
sample analog.
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Asymptotics for the MoM Estimator

Derivation of the Asymptotic Distribution of the MoM Estimator

~ n
o n (9 - 90) ~ % s —M~m(X;|80), so —M~Im(X;|6y) is called the influence
is1

function .
@ We use % instead of E [%9‘,90)} because E [m(X]6)] is more smooth

than m(X|6) and can be applied to such situations as quantile estimation where
m(X|0) is not differentiable at 64. In this course, we will not meet such cases.
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Intuition for the Asymptotic Distribution of the MoM Estimator

@ Suppose E [X] = g(8) with g € C(1) in a neighborhood of 6; then
80 =9 1 (E[X]) =h(E[X]). (what are m,M and Q here?)

@ The MoM estimator of 6 is to set X = g(6), so 6 = h(X).

@ Bythe WLLN, X - E [X]; then by the CMT, 8 L h(E [X]) = 8¢ since h(-) is
continuous.

® Now, 1 (860 ) = VA (h(X)~h(E [X])) = vAh' (X7) (X ~E [X]) =
h’/ (Y*) vn (X —E [X]), where the second equality is from the mean value
theorem (MVT).

@ Because X is between X and E [X] and X - E [X], X" - E [X].
e By the CMT, i’ (Y) L, (E[X]). By the CLT, v/in (X —E [X]) -4 N(0, Var (X)).
Then by Slutsky’s theorem,
ﬁ(@— 60) % 1 (E [X])N(0,Var (X))

— N (o,h’(E [X])Zvar(x)) LN (0%)
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Asymptotics for the MoM Estimator
continue...

The larger g’(0g) is, the smaller the asymptotic variance of 0 is.

(]

Consider a more specific example. Suppose the density of X is %x exp {—%},
6 >0, x>0, thatis, X follows the Weibull (2, 0) distribution.

We can show E [X] =g(6) = @9”2, and Var (X) =6 (1-Z).
Sovn(8-6) N (0’9(12))2> ~N (01602 (1-1)).

1p9-1/2
(@Ee

(]

(]

Figure 1 shows E [X] and the asymptotic variance of v/n (§ - 9) as a function of
0.

Intuitively, the larger the derivative of E [X] with respect to 6, the easier to identify
6 from X, so the smaller the asymptotic variance.
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Asymptotics for the MoM Estimator

E[X] Asymptotic Variance

AVar

9(6)

Figure: E [X] and Asymptotic Variance as a Function of 6
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_Asymptotics forthe MoM Estimator |
An Example

@ Suppose the moment conditions are

X —
E| x ﬂl)z‘i g2 | =0
@ Then the sample analog is
n
1 iglxi —nu %
"5 -w2one? |
i=1
@ so the solution is
a = X
52 - iii (% —X)2 = X2 X2,
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Asymptotics for the MoM Estimator
continue...

@ Consistency: fi =X > u, 62 =X -x P, (”2 ‘H’Z) —p?=o2
@ Asymptotic Normality: M = E [( _2(;(1_,1) _01 )] = ( _01 _01 )

(X—u)®—0?(X—p)
(X —u)* =202 (X —p)? + o
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@ IfX ~N (u, 02), then what is )?
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Another Example: Empirical Distribution Function

@ Suppose we want to estimate 6 = F (x) for a fixed x, where F (-) is the cdf of a
random variable X.

@ An intuitive estimator is the ratio of samples below x, n~1 >, 1(X <x), which is
called the empirical distribution function (EDF), while it is a MoM estimator.

@ Why? note that the moment condition for this problem is
E[1(X <x)—-F(x)]=0.

@ Its sample analog is
S0

@ By the WLLN, it is consistent. By the CLT,
Vi (FOO)=F(x) 5N (0,F (x) (1-F (x))) (why?)

@ An interesting phenomenon is that the asymptotic variance reaches its maximum
at the median of the distribution of X.
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Asymptotics for the MoM Estimator
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Figure: Empirical Distribution Functions: 10 samples from N (0, 1) with sample size n = 50
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