An Introduction to Asymptotic Theory

Ping Yu

School of Economics and Finance The University of Hong Kong

重

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

Five Weapons in Asymptotic Theory

E

K ロメ K 御 メ K 唐 メ K 唐 メー

Five Weapons

- The weak law of large numbers (WLLN, or LLN)
- The central limit theorem (CLT)
- The continuous mapping theorem (CMT)
- Slutsky's theorem
- **The Delta method**

Notations:

- In nonlinear (in parameter) models, the capital letters such as X denote random variables or random vectors and the corresponding lower case letters such as x denote the potential values they may take.

- Generic notation for a parameter in nonlinear environments (e.g., nonlinear models or nonlinear constraints) is θ , while in linear environments is β .

イロト イ母 トイラ トイラトー

The WI LN

Definition

A random vector Z_n **converges in probability** to Z as $n \to \infty$, denoted as $Z_n \stackrel{p}{\longrightarrow} Z$, if for any $\delta > 0$,

$$
\lim_{n\to\infty}P(||Z_n-Z||>\delta)=0.
$$

- Although the limit Z can be random, it is usually constant. [intuition]
- The probability limit of Z_n is often denoted as plim (Z_n) . If $Z_n \stackrel{p}{\longrightarrow} 0$, we denote $Z_n = o_p(1)$.
- When an estimator converges in probability to the true value as the sample size diverges, we say that the estimator is **consistent**.
- Consistency is an important preliminary step in establishing other important asymptotic approximations.

Theorem (WLLN)

Suppose X_1, \dots, X_n, \dots are i.i.d. random vectors, and $E[||X||] < \infty$; then as $n \to \infty$,

$$
\overline{X}_n \equiv \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{p} E[X].
$$

The CLT

Definition

A random k vector Z_n converges in distribution to Z as $n \to \infty$, denoted as $Z_n \stackrel{d}{\longrightarrow} Z$, if

$$
\lim_{n\to\infty}F_n(z)=F(z),
$$

at all z where $F(\cdot)$ is continuous, where F_n is the cdf of Z_n and F is the cdf of Z.

- Usually, Z is normally distributed, so all $z \in \mathbb{R}^k$ are continuity points of F.
- If Z_n converges in distribution to Z, then Z_n is **stochastically bounded** and we denote $Z_n = O_n(1)$.
- Rigorously, $Z_n = O_p(1)$ if $\forall \varepsilon > 0$, $\exists M_\varepsilon < \infty$ such that $P(||Z_n|| > M_\varepsilon) < \varepsilon$ for any n. If $Z_n = o_n(1)$, then $Z_n = O_n(1)$.
- We can show that $o_p(1) + o_p(1) = o_p(1)$, $o_p(1) + O_p(1) = O_p(1)$, $O_p(1) + O_p(1) = O_p(1)$, $o_p(1) o_p(1) = o_p(1)$, $o_p(1) O_p(1) = o_p(1)$, and $Q_p(1)Q_p(1) = Q_p(1)$.

Theorem (CLT)

suppose X_1, \dots, X_n, \dots are i.i.d. random k vectors, $E[X] = \mu$, and Var $(X) = \Sigma$; then $\sqrt{n}(\overline{X}_n-\mu) \stackrel{d}{\longrightarrow} N(\mathbf{0},\Sigma).$

Comparison Betwen the WLLN and CLT

- **The CLT tells more than the WLLN.**
- $\sqrt{n}(\overline{X}_n-\mu) \stackrel{d}{\longrightarrow} N(\mathbf{0},\Sigma)$ implies $\overline{X}_n \stackrel{p}{\longrightarrow} \mu$, so the CLT is stronger than the WLLN.
- $\overline{X}_n \stackrel{p}{\longrightarrow} \mu$ means $\overline{X}_n \mu = o_p(1)$, but does not provide any information about $\sqrt{n}(\overline{X}_n-\mu)$. The CLT tells that $\sqrt{n}(\overline{X}_n-\mu)=O_p(1)$ or $\overline{X}_n-\mu=O_p(n^{-1/2})$.
- **But the WLLN does not require the second moment finite; that is, a stronger result** is not free.

The CMT

Theorem (CMT)

Suppose X_1, \dots, X_n, \dots are random k vectors, and g is a continuous function on the support of X (to \mathbb{R}^l) a.s. P_X ; then

$$
X_n \xrightarrow{p} X \implies g(X_n) \xrightarrow{p} g(X);
$$

$$
X_n \xrightarrow{d} X \implies g(X_n) \xrightarrow{d} g(X).
$$

- \bullet The CMT allows the function q to be discontinuous but the probability of being at a discontinuity point is zero.
- For example, the function $g(u) = u^{-1}$ is discontinuous at $u = 0$, but if $X_n \xrightarrow{d} X \sim N(0, 1)$ then $P(X = 0) = 0$ so $X_n^{-1} \xrightarrow{d} X^{-1}$.

イロメ イ母メ イヨメ イヨメーヨ

Slutsky's Theorem

- \bullet In the CMT, X_n converges to X jointly in various modes of convergence.
- For the convergence in probability $(\frac{p}{q})$, marginal convergence implies joint convergence, so there is no problem if we substitute joint convergence by marginal convergence.
- But for the convergence in distribution $\begin{pmatrix} d \\ \longrightarrow \end{pmatrix}$, $X_n \stackrel{d}{\longrightarrow} X$, $Y_n \stackrel{d}{\longrightarrow} Y$ does not imply $\left(X_n \right)$ Yn $\Big) \stackrel{d}{\longrightarrow} \Big(\begin{array}{c} X \\ Y \end{array}$ Y .
- Nevertheless, there is a special case where this result holds, which is Slutsky's theorem.

Theorem (Slutsky's Theorem)

If $X_n \stackrel{d}{\longrightarrow} X$, $Y_n \stackrel{d}{\longrightarrow} c \Big(\Longleftrightarrow Y_n \stackrel{p}{\longrightarrow} c\Big)$, where c is a constant, then $\Big(\begin{array}{c} X_n \ X_n \end{array} \Big)$ Yn $\Big) \stackrel{d}{\longrightarrow} \Big(\begin{array}{c} X \\ C \end{array}$ c . This implies $X_n + Y_n \xrightarrow{d} X + c$, $Y_n X_n \xrightarrow{d} cX$, $Y_n^{-1} X_n \xrightarrow{d} c^{-1} X$ when $c \neq 0$. Here X_n, Y_n, X , c can be understood as vectors or matrices as long as the operations are compatible.

イロン イ団ン イヨン イヨン 一番

Applications of the CMT and Slutsky's Theorem

Example

Suppose $X_n \xrightarrow{d} N(\mathbf{0}, \Sigma)$, and $Y_n \xrightarrow{p} \Sigma$; then $Y_n^{-1/2} X_n \xrightarrow{d} \Sigma^{-1/2} N(\mathbf{0}, \Sigma) = N(\mathbf{0}, \mathbf{I})$, where **I** is the identity matrix. (why?)

Example

Suppose $X_n \xrightarrow{d} N(\mathbf{0}, \Sigma)$, and $Y_n \xrightarrow{p} \Sigma$; then $X'_n Y_n^{-1} X_n \xrightarrow{d} \chi_k^2$, where k is the dimension of X_n . (why?)

Another important application of Slutsky's theorem is the Delta method.

K ロメ K 個 メ K 重 メ K 重 メ 一重

The Delta Method

Theorem

Suppose
$$
\sqrt{n}(Z_n - \mathbf{c}) \xrightarrow{d} Z \sim N(\mathbf{0}, \Sigma)
$$
, $\mathbf{c} \in \mathbb{R}^k$, and $g(z) : \mathbb{R}^k \to \mathbb{R}$. If $\frac{dg(z)}{dz'}$ is continuous at *c*, then $\sqrt{n}(g(Z_n) - g(\mathbf{c})) \xrightarrow{d} \frac{dg(\mathbf{c})}{dz'}Z$.

Proof.

$$
\sqrt{n}\left(g(Z_n)-g(\boldsymbol{c})\right)=\sqrt{n}\frac{dg(\overline{\boldsymbol{c}})}{dz'}\left(Z_n-\boldsymbol{c}\right),
$$

where $\bar{\mathbf{c}}$ is between Z_n and \mathbf{c} . $\sqrt{n}(Z_n - \mathbf{c}) \stackrel{d}{\longrightarrow} Z$ implies that $Z_n \stackrel{p}{\longrightarrow} \mathbf{c}$, so by the CMT, $\frac{dg(\overline{\mathbf{c}})}{dz'}$ $\frac{p}{dz'}$ $\frac{dg(c)}{dz'}$. By Slutsky's theorem, $\sqrt{n}(g(Z_n)-g(c))$ has the asymptotic distribution $\frac{dg(c)}{dz'}Z$.

• The Delta method implies that asymptotically, the randomness in a transformation of Z_n is completely controlled by that in Z_n .

Asymptotics for the MoM Estimator

重

イロメ イ団メ イモメ イモメー

The MoM Estimator

Recall that the MoM estimator is defined as the solution to

$$
\frac{1}{n}\sum_{i=1}^n m(X_i|\theta) = \mathbf{0}.
$$

- We can prove the MoM estimator is consistent and asymptotically normal (CAN) under some regularity conditions.
- Specifically, the asymptotic distribution of the MoM estimator is

$$
\sqrt{n}\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}_0\right)\stackrel{d}{\longrightarrow}N\left(\boldsymbol{0},\boldsymbol{M}^{-1}\Omega\boldsymbol{M}^{'-1}\right),
$$

where $\mathbf{M} = \frac{dE[m(X|\theta_0)]}{d\theta'}$ and $\Omega = E[m(X|\theta_0)m(X|\theta_0)']$.

• The asymptotic variance takes a sandwich form and can be estimated by its sample analog.

Derivation of the Asymptotic Distribution of the MoM Estimator

$$
\begin{aligned}\n\mathbf{O} &= \frac{1}{n} \sum_{i=1}^{n} m(X_i | \widehat{\boldsymbol{\theta}}) = \mathbf{O} \\
&\implies \frac{1}{n} \sum_{i=1}^{n} m(X_i | \boldsymbol{\theta}_0) + \frac{1}{n} \sum_{i=1}^{n} \frac{dm(X_i | \overline{\boldsymbol{\theta}})}{d\boldsymbol{\theta}'} \left(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0 \right) = \mathbf{O} \\
&\implies \sqrt{n} \left(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0 \right) = - \left(\frac{1}{n} \sum_{i=1}^{n} \frac{dm(X_i | \overline{\boldsymbol{\theta}})}{d\boldsymbol{\theta}'} \right)^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} m(X_i | \boldsymbol{\theta}_0) \\
&\frac{d}{2} &= \mathbf{M}^{-1} N(\mathbf{0}, \Omega)\n\end{aligned}
$$

 $\sqrt{n}\left(\widehat{\theta}-\theta_0\right) \approx \frac{1}{\sqrt{n}}$ $\sum_{i=1}^{n} -M^{-1}m(X_i|\theta_0)$, so $-M^{-1}m(X_i|\theta_0)$ is called the **influence function**.

We use $\frac{dE[m(X|\theta_0)]}{d\theta'}$ instead of $E\Big[\frac{dm(X|\theta_0)}{d\theta'}\Big]$ because $E[m(X|\theta)]$ is more smooth than $m(X|\theta)$ and can be applied to such situations as quantile estimation where $m(X|\theta)$ is not differentiable at θ_0 . In this course, we will not meet such cases.

KO KROKKEKKEK E 1990

Intuition for the Asymptotic Distribution of the MoM Estimator

- Suppose $E[X] = g(\theta_0)$ with $g \in C^{(1)}$ in a neighborhood of θ_0 ; then $\theta_0 = g^{-1} (E[X]) \equiv h(E[X])$. (what are m, **M** and Ω here?)
- **•** The MoM estimator of θ is to set $\overline{X} = q(\theta)$, so $\widehat{\theta} = h(\overline{X})$.
- By the WLLN, $\overline{X} \stackrel{p}{\longrightarrow} E[X]$; then by the CMT, $\widehat{\theta} \stackrel{p}{\longrightarrow} h(E[X]) = \theta_0$ since $h(\cdot)$ is continuous.
- Now, $\sqrt{n}(\widehat{\theta}-\theta_0)=\sqrt{n}(h(\overline{X})-h(E[X]))=\sqrt{n}h'\left(\overline{X}^*\right)(\overline{X}-E[X])=$ $h^{\prime}\left(\overline{X}^{*}\right)\sqrt{n}\left(\overline{X}-E\left[X\right]\right)$, where the second equality is from the mean value theorem (MVT).
- Because \overline{X}^* is between \overline{X} and $E[X]$ and $\overline{X} \xrightarrow{p} E[X], \overline{X}^* \xrightarrow{p} E[X].$
- By the CMT, $h'\left(\overline{X}^*\right) \stackrel{p}{\longrightarrow} h'\left(E\left[X\right]\right)$. By the CLT, $\sqrt{n}\left(\overline{X}-E\left[X\right]\right) \stackrel{d}{\longrightarrow} N(0,\textit{Var}(X))$. Then by Slutsky's theorem,

$$
\sqrt{n} \left(\widehat{\theta} - \theta_0\right) \xrightarrow{d} h' \left(E[X]\right) N(0, \text{Var}(X))
$$

= $N\left(0, h' \left(E[X]\right)^2 \text{Var}(X)\right) \xrightarrow{?} N\left(0, \frac{\text{Var}(X)}{g'(\theta_0)^2}\right)$

.

K ロ X x 何 X x ミ X x ミ x ミ → の Q Q Q

continue...

- The larger $g'(\theta_0)$ is, the smaller the asymptotic variance of θ is.
- Consider a more specific example. Suppose the density of X is $\frac{2}{\theta}x\exp\left\{-\frac{x^2}{\theta}\right\}$ θ $\big\}$, $\theta > 0$, $x > 0$, that is, X follows the Weibull $(2, \theta)$ distribution.
- We can show $E[X] = g(\theta) = \frac{\sqrt{\pi}}{2} \theta^{1/2}$, and $\text{Var}(X) = \theta \left(1 \frac{\pi}{4}\right)$.

$$
\bullet \ \text{So} \ \sqrt{n}\left(\widehat{\theta}-\theta\right) \stackrel{d}{\longrightarrow} N\left(0, \frac{\theta\left(1-\frac{\pi}{4}\right)}{\left(\frac{\sqrt{\pi}}{2}\frac{1}{2}\theta^{-1/2}\right)^2}\right) = N\left(0, 16\theta^2\left(\frac{1}{\pi}-\frac{1}{4}\right)\right).
$$

- Figure [1](#page-15-0) shows $E[X]$ and the asymptotic variance of $\sqrt{n} \Big(\widehat{\theta} \theta \Big)$ as a function of θ.
- Intuitively, the larger the derivative of $E[X]$ with respect to θ , the easier to identify θ from \overline{X} , so the smaller the asymptotic variance.

4 ロ X 4 団 X 4 ミ X 4 ミ X ミ X 9 Q Q

Figure: $E[X]$ and Asymptotic Variance as a Function of θ

◆ロト→個ト→老ト→老ト→老

An Example

• Suppose the moment conditions are

$$
E\left[\begin{array}{c}X-\mu\\(X-\mu)^2-\sigma^2\end{array}\right]=0.
$$

• Then the sample analog is

$$
\frac{1}{n}\left(\begin{array}{c}\sum_{i=1}^n X_i - n\mu\\ \sum_{i=1}^n (X_i - \mu)^2 - n\sigma^2\end{array}\right) = 0,
$$

• so the solution is

$$
\widehat{\mu} = \overline{X}
$$

$$
\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 = \overline{X^2} - \overline{X}^2.
$$

重

イロメ イ団メ イモメ イモメー

continue...

- Consistency: $\widehat{\mu} = \overline{X} \xrightarrow{\rho} \mu$, $\widehat{\sigma}^2 = \overline{X^2} \overline{X}^2 \xrightarrow{\rho} \left(\mu^2 + \sigma^2\right) \mu^2 = \sigma^2$.
- Asymptotic Normality: **M** = $E\begin{bmatrix} 1 & -1 & 0 \\ 0 & 2(N-1) & N \end{bmatrix}$ $-2(X - \mu)$ -1 $\begin{bmatrix} 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \ 0 & 1 \end{bmatrix}$ $0 -1$,

$$
\Omega = E\left[\begin{pmatrix} (X-\mu)^2 & (X-\mu)^3 - \sigma^2 (X-\mu) \\ (X-\mu)^3 - \sigma^2 (X-\mu) & (X-\mu)^4 - 2\sigma^2 (X-\mu)^2 + \sigma^4 \end{pmatrix} \right]
$$

=
$$
\begin{pmatrix} \sigma^2 & E[(X-\mu)^3] \\ E[(X-\mu)^3] & E[(X-\mu)^4] - \sigma^4 \end{pmatrix},
$$

so

$$
\sqrt{n}\bigg(\begin{array}{c}\widehat{\mu}-\mu\\ \widehat{\sigma}^2-\sigma^2\end{array}\bigg)\stackrel{d}{\longrightarrow} N(\mathbf{0},\Omega)\,.
$$

If $X \sim N\Big(\mu, \sigma^2\Big)$, then what is Ω ?

Another Example: Empirical Distribution Function

- Suppose we want to estimate $\theta = F(x)$ for a fixed x, where $F(\cdot)$ is the cdf of a random variable X.
- An intuitive estimator is the ratio of samples below x, $n^{-1} \sum_{i=1}^{n} 1(X_i \le x)$, which is called the **empirical distribution function** (EDF), while it is a MoM estimator.
- Why? note that the moment condition for this problem is

$$
E[1(X \leq x) - F(x)] = 0.
$$

• Its sample analog is

$$
\frac{1}{n}\sum_{i=1}^n (1(X_i \le x) - F(x)) = 0,
$$

so

$$
\widehat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} 1(X_i \leq x).
$$

● By the WLLN, it is consistent. By the CLT,

$$
\sqrt{n}\Big(\widehat{F}(x)-F(x)\Big)\stackrel{d}{\longrightarrow} N(0,F(x)\left(1-F(x)\right))\text{ .}(\text{why?})
$$

An interesting phenomenon is that the asymptotic variance reaches its maximum at the median of the distribution of X. KO KARA KE KA EKARA

Ping Yu (HKU) [Asymptotic Theory](#page-0-0) 19/20 and 19/20

Figure: Empirical Distribution Functions: 10 samples from $N(0,1)$ with sample size $n = 50$

K ロ ト K 何 ト

ヨメ メヨメ

 \sim