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Terminology and Assumptions

Terminology

y = x0β +u,

E [ujx] = 0.

u is called the error term , disturbance or unobservable .

y x
Dependent variable Independent Variable
Explained variable Explanatory variable
Response variable Control (Stimulus) variable
Predicted variable Predictor variable
Regressand Regressor
LHS variable RHS variable
Endogenous variable Exogenous variable
� Covariate
� Conditioning variable

Table 1: Terminology for Linear Regression
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Terminology and Assumptions

Assumptions

We maintain the following assumptions in this chapter.

Assumption OLS.0 (random sampling): (yi ,x i ), i = 1, � � � ,n, are independent and
identically distributed (i.i.d.).

Assumption OLS.1 (full rank): rank(X) = k .

Assumption OLS.2 (first moment): E [y jx] = x0β .

Assumption OLS.3 (second moment): E [u2] < ∞.
Assumption OLS.3 0 (homoskedasticity): E [u2jx] = σ2.
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Terminology and Assumptions

Discussion

Assumption OLS.2 is equivalent to y = x0β +u (linear in parameters) plus
E [ujx] = 0 (zero conditional mean).

To study the finite-sample properties of the LSE, such as the unbiasedness, we
always assume Assumption OLS.2, i.e., the model is linear regression.1

Assumption OLS.30 is stronger than Assumption OLS.3.

The linear regression model under Assumption OLS.30 is called the
homoskedastic linear regression model ,

y = x0β +u,

E [ujx] = 0,

E [u2jx] = σ
2.

If E [u2jx] = σ2(x) depends on x we say u is heteroskedastic .

1For large-sample properties such as consistency, we require only weaker assumptions.
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Goodness of Fit

Residual and SER

Express
yi = byi + bui , (1)

where byi = x0i
bβ is the predicted value , and bui = yi �byi is the residual .2

Often, the error variance σ2 = E [u2] is also a parameter of interest. It measures
the variation in the "unexplained" part of the regression.

Its method of moments (MoM) estimator is the sample average of the squared
residuals,

bσ2 =
1
n

n

∑
i=1

bu2
i =

1
n
bu0bu.

An alternative estimator uses the formula

s2 =
1

n�k

n

∑
i=1

bu2
i =

1
n�k

bu0bu.
This estimator adjusts the degree of freedom (df) of bu.

2bui is different from ui . The later is unobservable while the former is a by-product of OLS estimation.
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Goodness of Fit

Coefficient of Determination

If X includes a column of ones, 10bu = ∑n
i=1 bui = 0, so y = by .

Subtracting y from both sides of (1), we haveeyi � yi �y = byi �y + bui � eby i + bui

Since eby0bu = by0bu�y �10bu = bβ �X0bu��y �10bu = 0,

SST �
ey2

= ey0ey = eby2
+2eby0bu+bu2

=
eby2

+
bu2 � SSE +SSR, (2)

where SST, SSE and SSR mean the total sum of squares, the explained sum of
squares, and the residual sum of squares (or the sum of squared residuals),
respectively.
Dividing SST on both sides of (2),3 we have

1=
SSE
SST

+
SSR
SST

.

The R-squared of the regression, sometimes called the coefficient of
determination , is defined as

R2 =
SSE
SST

= 1� SSR
SST

= 1�
bσ2

bσ2
y

.

3When can we conduct this operation, i.e., SST 6= 0?
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Goodness of Fit

More on R2

R2 is defined only if x includes a constant.
It is usually interpreted as the fraction of the sample variation in y that is explained
by (nonconstant) x.
When there is no constant term in x i , we need to define so-called uncentered R2,
denoted as R2

u ,

R2
u =

by0by
y0y

.

R2 can also be treated as an estimator of

ρ
2 = 1�σ

2/σ
2
y .

It is often useful in algebraic manipulation of some statistics.
An alternative estimator of ρ2 proposed by Henri Theil (1924-2000) called
adjusted R-squared or "R-bar-squared" is

R
2
= 1� s2

eσ2
y

= 1� (1�R2)
n�1
n�k

� R2,

where eσ2
y = ey0ey/(n�1).

R
2

adjusts the degrees of freedom in the numerator and denominator of R2.
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Goodness of Fit

Degree of Freedom

Why called "degree of freedom"?

Roughly speaking, the degree of freedom is the dimension of the space where a
vector can stay, or how "freely" a vector can move.

For example, bu, as a n-dimensional vector, can only stay in a subspace with
dimension n�k .

Why? This is because X0bu = 0, so k constraints are imposed on bu, and bu cannot
move completely freely and loses k degree of freedom.

Similarly, the degree of freedom of ey is n�1. Figure 1 illustrates why the degree of
freedom of ey is n�1 when n = 2.

Table 2 summarizes the degrees of freedom for the three terms in (2).

Variation Notation df

SSE eby0eby k �1
SSR bu0bu n�k
SST ey0ey n�1

Table 2: Degrees of Freedom for Three Variations
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Goodness of Fit

0

0

Figure: Although dim(ey) = 2, df(ey) = 1, where ey = (ey1,ey2)
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Bias and Variance

Unbiasedness of the LSE

Assumption OLS.2 implies that

y = x0β +u,E [ujx] = 0.

Then

E [ujX] =

0BB@
...

E [ui jX]
...

1CCA=
0BB@

...
E [ui jx i ]

...

1CCA= 0,

where the second equality is from the assumption of independent sampling
(Assumption OLS.0).

Now, bβ = �X0X��1 X0y =
�
X0X

��1 X0 (Xβ +u) = β+
�
X0X

��1 X0u,

so
E
hbβ �β jX

i
= E

h�
X0X

��1 X0ujX
i
=
�
X0X

��1 X0E [ujX] = 0,

i.e., bβ is unbiased.
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Bias and Variance

Variance of the LSE

Var
�bβ jX� = Var

��
X0X

��1 X0ujX
�

=
�
X0X

��1 X0Var (ujX)X
�
X0X

��1

�
�
X0X

��1 X0DX
�
X0X

��1
.

Note that

Var (ui jX) = Var (ui jx i ) = E
h
u2

i jx i

i
�E [ui jx i ]

2 = E
h
u2

i jx i

i
� σ

2
i ,

and

Cov(ui ,uj jX) = E
�
uiuj jX

�
�E [ui jX]E

�
uj jX

�
= E

�
uiuj jx i ,x j

�
�E [ui jx i ]E

�
uj jx j

�
= E [ui jx i ]E

�
uj jx j

�
�E [ui jx i ]E

�
uj jx j

�
= 0,

so D is a diagonal matrix:

D= diag
�

σ
2
1, � � � ,σ

2
n

�
.
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Bias and Variance

continue...

It is useful to note that

X0DX=
n

∑
i=1

x ix
0
i σ

2
i .

In the homoskedastic case, σ2
i = σ2 and D= σ2In, so X0DX= σ2X0X, and

Var
�bβ jX�= σ

2 �X0X��1
.

You are asked to show that

Var
�bβ j jX

�
=

n

∑
i=1

wij σ
2
i /SSRj , j = 1, � � � ,k ,

where wij > 0, ∑n
i=1 wij = 1, and SSRj is the SSR in the regression of xj on all

other regressors.
So under homoskedasticity,

Var
�bβ j jX

�
= σ

2/SSRj = σ
2/
h
SSTj (1�R2

j )
i
, j = 1, � � � ,k ,

(why?), where SSTj is the SST of xj , and R2
j is the R-squared from the simple

regression of xj on the remaining regressors (which includes an intercept).
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Bias and Variance

Bias of bσ2

Recall that bu =Mu, where we abbreviate MX as M, so by the properties of
projection matrices and the trace operator, we have

bσ2 =
1
n
bu0bu = 1

n
u0MMu =

1
n

u0Mu =
1
n

tr
�
u0Mu

�
=

1
n

tr
�
Muu 0

�
.

Then

E
h bσ2

���Xi= 1
n

tr
�
E
�
Muu 0jX

��
=

1
n

tr
�
ME

�
uu 0jX

��
=

1
n

tr (MD) .

In the homoskedastic case, D= σ2In, so

E
h bσ2

���Xi= 1
n

tr
�

Mσ
2
�
= σ

2
�

n�k
n

�
.

Thus bσ2 underestimates σ2.

Alternatively, s2 = 1
n�k

bu0bu is unbiased for σ2. This is the justification for the

common preference of s2 over bσ2 in empirical practice.

However, this estimator is only unbiased in the special case of the homoskedastic
linear regression model. It is not unbiased in the absence of homoskedasticity or
in the projection model.
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The Gauss-Markov Theorem

The Gauss-Markov Theorem

The LSE has some optimality properties among a restricted class of estimators in
a restricted class of models.

The model is restricted to be the homoskedastic linear regression model, and the
class of estimators are restricted to be linear unbiased. Here, "linear" means the
estimator is a linear function of y.

In other words, the estimator, say, eβ , can be written as

eβ = A0y = A0(Xβ +u) = A0Xβ +A0u,

where A is any n�k matrix of X.

Unbiasedness implies that E [eβ jX] = E [A0yjX] = A0Xβ = β or A0X= Ik .

In this case, eβ = β +A0u, so under homoskedasticity,

Var
�eβ jX�= A0Var (ujX)A = A0Aσ

2.

The Gauss-Markov Theorem states that the best choice of A0 is (X0X)�1X0 in the
sense that this choice of A achieves the smallest variance.
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The Gauss-Markov Theorem

continue...

Theorem

In the homoskedastic linear regression model, the best (minimum-variance) linear
unbiased estimator (BLUE) is the LSE.

Proof.

Given that the variance of the LSE is (X0X)�1σ2 and that of eβ is A0Aσ2. It is sufficient
to show that A0A� (X0X)�1 � 0. Set C= A�X(X0X)�1. Note that X0C= 0. Then we
calculate that

A0A� (X0X)�1 =
�

C+X(X0X)�1
�0�

C+X(X0X)�1
�
� (X0X)�1

= C0C+C0X(X0X)�1+(X0X)�1X0C+(X0X)�1X0X(X0X)�1� (X0X)�1

= C0C� 0.
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The Gauss-Markov Theorem

Limitation and Extension of the Gauss-Markov Theorem

The scope of the Gauss-Markov Theorem is quite limited given that it requires the
class of estimators to be linear unbiased and the model to be homoskedastic.

This leaves open the possibility that a nonlinear or biased estimator could have
lower mean squared error (MSE) than the LSE in a heteroskedastic model.

MSE: for simplicity, suppose dim(β ) = 1; then

MSE
�eβ�= E

��eβ �β

�2
�

?
= Var

�eβ�+Bias
�eβ�2

.

To exclude such possibilities, we need asymptotic (or large-sample) arguments.

Chamberlain (1987) shows that in the model y = x0β +u, if the only available
information is E [xu] = 0 or (E [ujx] = 0 and E [u2jx] = σ2), then among all
estimators, the LSE achieves the lowest asymptotic MSE.
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Multicollinearity
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Multicollinearity

Multicollinearity

If rank(X0X)< k , then bβ is not uniquely defined. This is called strict (or exact )
multicollinearity .

This happens when the columns of X are linearly dependent, i.e., there is some
α 6= 0 such that Xα = 0.

Most commonly, this arises when sets of regressors are included which are
identically related. For example, if X includes a column of ones and both dummies
for male and female.

When this happens, the applied researcher quickly discovers the error as the
statistical software will be unable to construct (X0X)�1. Since the error is
discovered quickly, this is rarely a problem for applied econometric practice.

The more relevant issue is near multicollinearity , which is often called
"multicollinearity" for brevity. This is the situation when the X0X matrix is near
singular, or when the columns of X are close to be linearly dependent.

This definition is not precise, because we have not said what it means for a matrix
to be "near singular". This is one difficulty with the definition and interpretation of
multicollinearity.
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Multicollinearity

continue...

One implication of near singularity of matrices is that the numerical reliability of the
calculations is reduced.

A more relevant implication of near multicollinearity is that individual coefficient
estimates will be imprecise.

We can see this most simply in a homoskedastic linear regression model with two
regressors

yi = x1i β 1+ x2i β 2+ui ,

and
1
n

X0X=
�

1 ρ

ρ 1

�
.

In this case,

Var
�bβ jX�= σ2

n

�
1 ρ

ρ 1

��1

=
σ2

n(1�ρ2)

�
1 �ρ

�ρ 1

�
.

The correlation indexes collinearity, since as ρ approaches 1 the matrix becomes
singular.

σ2/n(1�ρ2)! ∞ as ρ ! 1. Thus the more "collinear" are the regressors, the
worse the precision of the individual coefficient estimates.
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Multicollinearity

continue...

In the general model
yi = x1i β 1+ x02i β 2+ui ,

recall that

Var
�bβ 1jX

�
=

σ2

SST1(1�R2
1)
. (3)

Because the R-squared measures goodness of fit, a value of R2
1 close to one

indicated that x2 explains much of the variation in x1 in the sample. This means
that x1 and x2 are highly correlated. When R2

1 approaches 1, the variance of bβ 1
explodes.

1/(1�R2
1) is often termed as the variance inflation factor (VIF). Usually, a VIF

larger than 10 should arise our attention.

Intuition : β 1 means the effect on y as x1 changes one unit, holding x2 fixed.
When x1 and x2 are highly correlated, you cannot change x1 while holding x2
fixed, so β 1 cannot be estimated precisely.

Multicollinearity is a small-sample problem. As larger and larger data sets are
available nowadays, i.e., n >> k , it is seldom a problem in current econometric
practice.
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Hypothesis Testing: An Introduction

Basic Concepts

null hypothesis, alternative hypothesis

point hypothesis, one-sided hypothesis, two-sided hypothesis
- We consider only the point null hypothesis in this course.

simple hypothesis, composite hypothesis

acceptance region and rejection or critical region

test statistic, critical value

type I error and type II error

size and power

significance level, statistically (in)significant
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Hypothesis Testing: An Introduction

Summary

One hypothesis testing includes the following steps.

1 specify the null and alternative.
2 construct the test statistic.
3 derive the distribution of the test statistic under the null.
4 determine the decision rule (acceptance and rejection regions) by specifying a

level of significance.
5 study the power of the test.

Step 2, 3 and 5 are key since step 1 and 4 are usually trivial.

Of course, in some cases, how to specify the null and the alternative is also subtle,
and in some cases, the critical value is not easy to determine if the asymptotic
distribution is complicated.

Ping Yu (HKU) Finite-Sample September 2014 27 / 29



LSE as a MLE

LSE as a MLE

Ping Yu (HKU) Finite-Sample September 2014 28 / 29



LSE as a MLE

LSE as a MLE

Another motivation for the LSE can be obtained from the normal regression
model :
Assumption OLS.4 (normality): ujx � N(0,σ2) or ujX� N(0, Inσ2).
That is, the error ui is independent of x i and has the distribution N(0,σ2), which
obviously implies E [ujx] = 0 and E [u2jx] = σ2.
The average log likelihood is

ln
�

β ,σ2
�

=
1
n

n

∑
i=1

ln

 
1p

2πσ2
exp

 
�
(yi �x0i β )

2

2σ2

!!

= �1
2

log (2π)� 1
2

log
�

σ
2
�
� 1

n

n

∑
i=1

(yi �x0i β )
2

2σ2 ,

so bβ MLE =
bβ LSE .

It is not hard to show that bβ �β jX=(X0X)�1 X0ujX� N
�

0,σ2 (X0X)�1
�

.

But recall the trade-off between efficiency and robustness, which can be applied
here.
Anyway, this is part of the classical theory in least squares estimation.
We will neglect this section and proceed to the asymptotic theory of the LSE which
is more robust and does not require the normality assumption.
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