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R
Overview

@ Whenever we discuss projection, there must be an underlying Hilbert space since
we must define "orthogonality".

@ We explain projection in two Hilbert spaces (L2 and R") and integrate many
estimators in one framework.

@ Projection in the L2 space: linear projection and regression (linear regression is a
special case)

@ Projection in R": Ordinary Least Squares (OLS) and Generalized Least Squares
(GLS)

@ One main topic of this course is the (ordinary) least squares estimator (LSE).

@ Although the LSE has many interpretations, e.g., as a MLE or a MoM estimator,
the most intuitive interpretation is that it is a projection estimator.
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Hilbert Space and Projection Theorem

Hilbert Space and Projection Theorem
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Hilbert Space

Definition (Hilbert Space)

A complete inner product space is called a Hilbert space .2 An inner product is a
bilinear operator (-,-) : H x H — R, where H is a real vector space, satisfying for any
X,¥y,z€eHand a € R,

() (x+y,2) = (X,2)+(y,2);

(i) (ax,z) = a(x,z);

(i) (x,z)={(z,x);

(iv) (x,x) > 0 with equal if and only if x = 0.
We denote this Hilbert space as (H, (-,-)).

2A metric space (H,d) is complete if every Cauchy sequence in H converges in H, where d is a metric on
H. A sequence {x,} in a metric space is called a Cauchy sequence if for any € > 0, there is a positive integer
N such that for all natural numbers m,n > N, d (Xm,Xn) < €.
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Angle and Orthogonality

@ An important inequality in the inner product space is the Cauchy—Schwarz
inequality:

[y < Il [l ]
where ||-|| = +/(:,-) is the norm induced by (-, ).
@ Due to this inequality, we can define

1

xy)
X1 Ny I

@ We assume the value of the angle is chosen to be in the interval [0, 7].

angle(x,y) = arccos

[Figure Here]

@ If (x,y) =0, angle(x,y) = Z; we call x is orthogonal toy and denoteitasx Ly.
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Hilbert Space and Projection Theorem

- ()
angle(z, y) = arccos ”z”_ﬁy”

Figure: Angle in Two-dimensional Euclidean Space
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Projection and Projector

@ The ingredients of a projection are {y,M, (H, {-,-})}, where M is a subspace of H.

@ Note that the same H endowed with different inner products are different Hilbert
spaces, so the Hilbert space is denoted as (H, (-,-)) rather than H.

@ Our objective is to find some I'I(y) € M such that
I1(y) = argmin ly ~h]?. (1)
eM

@ II(-): H — M is called a projector , and I'I(y) is called a projection ofy.

Ping Yu (HKU) Projection 7142



_HibertSpaceand Projection Theorem |
Direct Sum, Orthogonal Space and Orthogonal Projector

Definition
Let M, and M, be two disjoint subspaces of H so that M; "M, = {0}. The space
V :{h S H|h = h1+h2,h1 S Ml,hz S Mz}

is called the direct sum of M; and M, and it is denoted by V = M; & M,.

Definition
Let M be a subspace of H. The space
ML = {heH|(h,M)=0}

is called the orthogonal space or orthogonal complement of M, where (h,M) =0
means h is orthogonal to every element in M.

Definition
Suppose H = M; @ M,. Let h € H so that h = hy + h, for unique h; € M;, i =1,2. Then

P is a projector onto My along M, if Ph = h4 for all h. In other words, PM; = M; and
PM, =0. When M, = Mli, we call P as an orthogonal projector
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Hilbert Space and Projection Theorem

Projector

Orthogonal Projector

M

N\

Figure: Projector and Orthogonal Projector

@ Whatis M,?

[Back to Lemma 9]
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Hilbert Projection Theorem

Theorem (Hilbert Projection Theorem)

If M is a closed subspace of a Hilbert space H, then for each y € H, there exists a
unique point x € M for which |y —x|| is minimized over M. Moreover, x is the closest
elementin M toy ifand only if (y —x,M) =0.

@ The first part of the theorem states the existence and uniqueness of the projector.

@ The second part of the theorem states something related to the first order
conditions (FOCs) of (1) or, simply, orthogonal conditions.

@ From the theorem, given any closed subspace M of H, H =M @M=,

@ Also, the closest element in M to y is determined by M itself, not the vectors
generating M since there may be some redundancy in these vectors.
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Hilbert Space and Projection Theorem

y—I(y)

T(y)

Figure: Projection
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Sequential Projection

Theorem (Law of Iterated Projections or LIP)

If M; and M, are closed subspaces of a Hilbert space H, and M; C M5, then
Ty (y) =11 (T2 (y)), where IT;(-), j = 1,2, is the orthogonal projector of y onto M.

Proof.
Write y =TI, (y) + 115 (y). Then
Iy (y) =TIy (T, (y) + T3 (y)) = T (I (y)) + Ty (T3 (y)) =TIy (TTx (y)),

where the last equality is because <1‘[2L (y) ,x> =0 for any x € My and M1 C My. O

v

@ We first project y onto a larger space M5, and then project the projection of y (in
the first step) onto a smaller space M.

@ The theorem shows that such a sequential procedure is equivalent to projecting y
onto M, directly.

@ We will see some applications of this theorem below.
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Projection in the 12 Space

Projection in the L2 Space
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Linear Projection

@ Arandom variable x € L2(P) if E[x?] < e,

@ L?(P) endowed with some inner product is a Hilbert space.

@ ycl?(P), Xq, -, % €L2(P), M =span (xq,---,X¢) = span(x),} H = L?(P) with
(-,-) defined as (x,y) = E [xy].

I(y) = argminE [(y —h)*|

oyl ; _y/R)\2
=X argﬁrrel]llng[(y xﬁ)]

&)

is called the best linear predictor (BLP) of y given X, or the linear projection of y
onto Xx.

span(x) = {z € L2(P)|z =x'a;,@ € R¥}.
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continue...

@ Since this is a concave programming problem, FOCs are sufficient?:
—2E [x(y =Xx'Bg)] =0=E[xu]=0 (3)
where u =y —TII(y) is the error, and B = arg ﬁminkE [(y —x’ﬁ)z] .
€R

@ TI(y) always exists and is unique, but B, needn’t be unique unless xy,---,xy are
linearly independent, that is, there is no nonzero vector a € RK such that a’x = 0
almost surely (a.s.).

@ Why? If Ya#0,ax#0,thenE [(a’x)z] >0and a'E [xx’]a> 0, thus E [xx'] > 0.
So from (3),
Bo = (E [x']) T Efxy] (why?) )
and IT(y) = X (E [xx']) "L E [xy].
@ In the literature, B with a subscript 0 usually represents the true value of .

29 (ax)= £ (xa)=a
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Projection in the 12 Space

Regression

@ The setup is the same as in linear projection except that M = L?(P, o(x)), where

L2(P,o(x)) is the space spanned by any function of x (not only the linear function
of x) as long as it is in L?(P).

T1(y) = argmin€ |(y —h)?| 5)
@ Note that
E[(y-n?]
—E[(y—Ely X +Elyx] —h)’]
E (v ~ElyX)?| +2E[(y ~E[y[x)) (Elylx] ~h)] +E [(Ely}x] - h)?]
“E [(v-Ely)?| +E [ElyX]-h)?] 2 E (v ~ElyIx])*| =E[u?],

so II(y) = E [y|x], which is called the population regression function  (PRF),
where the error u satisfies E [u[x] = 0 (why?).

@ We can use variation to characterize the FOCs:
O:argLnEiEE [(y (TI(y) +€h(x)))?

—2Emuxy—aa>+m<»nuo: ©)

= E[h(x)u] =0, ¥ h(x) € L2(P,c(x))

Hv I
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Relationship Between the Two Projections

@ II,(y) is the BLP of I, (y) given x, i.e., the BLPs of y and I'l;(y) given x are the
same.

@ This is a straightforward application of the law of iterated projections.
@ Explicitly, define

Bo= argﬁrg]ingE [(E ly|x] 7X/13)2] :arggnéi[?k/ [(E lyIx] 7x/ﬁ)2} dF (x).

@ The FOCs for this minimization problem are
E[-2x(E[y|x] =X'B,)] =0
=EDX']B, =E [>§E [yIx]] =E [xy]
= Bo = (E[xx]) " E[xy] = Bo
@ In other words, S, is a (weighted) least squares approximation to the true model.

@ If E[y|x] is not linear in x, B, depends crucially on the weighting function F (x) or
the distribution of x.

@ The weighting function ensures that frequently drawn x; will yield small
approximation errors at the cost of larger approximation errors for less frequently
drawn X;.
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Projection in the 12 Space

Figure: Linear Approximation of Conditional Expectation (I)
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Projection in the 12 Space

Figure: Linear Approximation of Conditional Expectation (l1)
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. PojctonintheL® Space |
Linear Regression

@ Linear regression is a special case of regression with E[y|x] = x’S.

@ Regression and linear projection are implied by the definition of projection, but
linear regression is a "model" where some structure (or restriction) is imposed.

@ In the following figure, when we project y onto a larger space M, = L?(P, (X)),
I1(y) falls into a smaller space M; = span (x) by coincidence, so there must be a
restriction on the joint distribution of (y,x) (what kind of restriction?).

@ In summary, the linear regression model is

y = XB+u,
Efux] = 0.

@ E[u|x] =0is necessary for a causal interpretation of 3.
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Projection in the 12 Space

Figure: Linear Regression
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Projection in R"

Projection in R"
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The LSE

@ The projection in the L2 space is treated as the population version.

@ The projection in IR" is treated as the sample counterpart of the population
version.

@ The LSE is defined as

n

_ . 1a\2 _ . I\ 2
B—argﬁrQiQSSR(ﬁ) arg min 3 (vi = xip)” = arg min E [(y=xB)?].

where Ep[-] is the expectation under the empirical distribution of the data, and

SSR(B)= Y (vi—x{B)* =Y y?—2p’ zx.y.+ﬁ zxxﬁ

M=

is the sum of squared residuals as a function of 3.

Ping Yu (HKU) Projection

23/42



Projection in R"

SSR

Figure: Objective Functions of OLS Estimation: k = 1,2
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Normal Equations

@ SSR(p) is a quadratic function of 8, so the FOCs are also sufficient to determine
the LSE.

@ Matrix calculus® gives the FOCs for B:

p) . n n =
0 = %SSR(ﬁ) =-2% xiyi +2 ) xixiB
i=1 i=1
= —2X'y +2X'XB,

which is equivalent to the normal equations
X'XB = X'y.

@ So N
B = (X'X)"IX'y.

32 (a@x) = £ (x'a)=a, and & (X'Ax) = (A+A")x.

X
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Notations

(-]

Matrices are represented using uppercase bold. In matrix notation the sample
(data, or dataset) is (y, X), where y is an n x 1 vector with ith entry y; and X is a
matrix with ith row x{, i.e.,

/
Y1 X1

y = : and X = : ,
(nx1) ) (nxk) y
Yn Xn
The first column of X is assumed to be ones if without further specification, i.e., the
first column of X is
1=(1,---,1)".
The bold zero, 0, denotes a vector or matrix of zeros.
Reexpress X as
X=( X1 - X¢ ),
where different from x;, X, j =1,---,k, represents the jth column of X and is all
the observations for jth variable.
The linear regression model upon stacking all n observations is then

y=XB+u,
where u is an n x 1 column vector with ith entry u;.
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LSE as a Projection

@ The above derivation ofﬁ expresses the LSE using rows of the data matrices y
and X. The following expresses the LSE using columns of y and X.

@ yeR", Xq,---, Xk € R" are linearly independent,
M = span (Xq,---, Xk ) = span(X),* H = R" with the Euclidean inner product.®
I1(y) = argmin|ly —h||?
(y) =argmin|ly —h| 2
= X-arg min [y — X
gﬁe]Rk Iy Bl )
n
= X-arg min C—x! 2,
g min 3 (vi—xiB)

where 5", (vi —x/B)” is exactly the objective function of OLS.

4span(X) = {z € R"|z = Xa, & € R} is called the column space or range space of X.
5Recall that for x = (Xq,---,Xn), and z = (z4,---,zn), the Euclidean inner product of x and z is
(x,2) =371 %21, 50 [x[|* = (x,x) = 371 X2
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continue...

@ AsIl(y)= Xﬁ, we can solve out E by premultiplying both sides by X, that is,
XTI(y) = X'XB = B = (XX)'XTI(y),
where (X'X)~! exists because X is full rank.
@ On the other hand, orthogonal conditions for this optimization problem are
XU=0,
where U =y —TII(y).

@ Since these orthogonal conditions are equivalent to normal equations (or the
FOCs), B (X'X)~IXly.

@ These two B's are the same since (X'X)~1Xy — (X'X)~"1X'TI(y) = (X'X)~1X'G = 0.

@ Finally,
IT(y) = X(X'X)"*X'y = Pxy,

where Py is called the projection matrix .

Ping Yu (HKU) Projection 28142



Multicollinearity

@ In the above calculation, we first project y on span(X) and then find B by solving
T(y) = XB.

@ The two steps involve very different operations: optimization versus solving linear
equations.

@ Furthermore, although II(y) is unique, E may not be. When rank(X) <k or X is
rank deficient, there are more than one (actually, infinite) 8 such that Xg = T1(y).

@ This is called multicollinearity and will be discussed in more details in the next
chapter.

@ In the following discussion, we always assume rank(X) =k or X is full-column
rank; otherwise, some columns of X can be deleted to make it so.
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Projection in R"

Generalized Least Squares

@ All are the same as in the last example except (x, z),y = X'"Wz, where the weight
matrix W is positive definite and denoted as W > 0.

@ The projection
I(y) = X-arg min [ly —XB|& - 8)
BERK

@ FOCs are
(X, u),, = 0 (orthogonal conditions)

where u =y — XE, that is,
(X X)w B = (X, y)w = B = (X'WX)~IX'Wy.

@ Thus
I1(y) = X(X'WX) " *X'Wy = Py wxy

where the notation Py | \wx Will be explained later.
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Projection Matrices
Projection Matrices

@ Since I1(y) = Pyy is the orthogonal projection onto span(X), Py is the orthogonal
projector onto span(X).

@ Similarly, U =y —TI(y) = (In — Px)y = Myy is the orthogonal projection onto
span+(X), so My is the orthogonal projector onto span-(X), where I, is the n x n
identity matrix.

@ Since

PxX = X(XX)"IxX'x=X,
MyxX = (In—Px)X=0;

we say Py preserves span(X), My annihilates span(X), and My is called the
annihilator .

@ This implies another way to express U:
U = Myy =My (XB +u) = Myu.

@ Also, itis easy to check MyPx = 0, so My and Py are orthogonal.
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continue...

/

e Py is symmetric: P}, = <x(x’x)-1x'> = X(X'X)~1X’ = Py.
@ Py is idempotent®(intuition?): PZ = (x(x'x)—lx’) (x(x’x)—lx') = Px.
@ Py is positive semidefinite: for any o € R", a’Pyo = (X'a)’ (X'X) "X > 0,
@ "Positive semidefinite” cannot be strengthen to "positive definite".
@ Why? For an idempotent matrix, the rank equals the trace’.

tr(Py) = tr(X(X'X)"1X') = tr(X'X)"IX'X) = tr(l) =k < n,

and
tr(My) =tr(Iln —Px) =tr(ln) —tr(Px) =n—k <n.

@ For a general "nonorthogonal” projector P, it is still uniqgue and idempotent, but
need not be symmetric (let alone positive semidefiniteness).

@ For example, Py ywx in the GLS estimation is not symmetric.

8A square matrix A is idempotent if A2 = AA = A.
"Trace of a square matrix is the sum of its diagonal elements. tr(A +B) =tr(A)+tr(B) and tr(AB) =tr(BA).
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Partitioned Fit and Residual Regression

Partitioned Fit and Residual Regression
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Partitioned Fit

@ Itis of interest to understand the meaning of part of E say, El in the partition of

(%)
with rank(X) = k.

B= (Ell,ﬁlz)’, where we partition

@ We will show that El is the "net" effect of X; on y when the effect of X, is removed
from the system. This result is called the Frisch-Waugh-Lovell (FWL) theorem due
to Frisch and Waugh (1933) and Lovell (1963).

@ The FWL theorem is an excellent implication of the projection property of least
squares.

@ To simplify notation, Pj = Py, Mj = My, TIj(y) = Xjﬁj,j =1,2.

XB = [X1: X,
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The FWL Theorem

Theorem

Bl could be obtained when the residuals from a regression of y on X, alone are
regressed on the set of residuals obtained when each column of X, is regressed on
X5. In mathematical notations,

By = (X1L2x1L2)71X&L2yL2 = (X'1M2X1)71X/1M2Y-

where X5 = (1-P2)X1 =MyXy,y 12 = (I-P2)y = Mpy.

@ This theorem states that Bl can be calculated by the OLS regression of y = Moy
on X; = MyX;. This technique is called residual regression

Corollary

Ty (y) = XaPy = X1 (X4 12X1) " Xq 15y = P12y = Pro(T1(y)). J
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Partitioned Fit and Residual Regression

Mi(y) TI(y)

span*(Xy)

o X; IL(®y)

Figure: The FWL Theorem
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Partitioned Fit and Residual Regression
P12

-1
Po= X1 (Xp(1=P2)Xy) “Xi(I-P2).
~~ ——
trailing term leading term

@ | —P, in the leading term annihilates span(X5,) so that P15 (IT,(y)) = 0. The
leading term sends II(y) toward spant(X5).

@ But the trailing X; ensures that the final result will lie in span(Xy).

@ The rest of the expression for Py, ensures that X, is preserved under the
transformation: P15X; = X;.

@ Why P,y = P15 (T1(y))? We can treat the projector P15, as a sequential projector:
first project y onto span(X) to get I'l(y), and then project I'1(y) to span(X;) along
span(X;) to get I1; (y).

° El is calculated from IT; (y) by

By = (X1X1) X{ T (y).

Ping Yu (HKU) Projection 37142



Partitioned Fit and Residual Regression

Figure: Projection by P4,
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Proof | of the FWL Theorem (brute-force)

@ Calculate El explicitly in the residual regression and check whether it is equal to
the LSE of ;.

@ Residual regression includes the following three steps.

Step 1: Projecting y on X, we have the residuals
Gy =y —X2(X5Xz) "1Xhy = Mpy.
Step 2: Projecting X1 on X,, we have the residuals
Uy, = X3 — X2 (X5X2) "IX5Xq = MoXy.
Step 3: Projecting Uy on le, we get the residual regression estimator of 8

~

SN )
B = (U0x) Uy = (XiMXa) ™ (XiMoy)
_ -1 1
= XX = XX (XXa) XaXa | [Xhy = X Xo (XpXo) Xy ]

- X’zy}

W Xy Xy Xp (XpXo)
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Partitioned Fit and Residual Regression
continue...

@ On the other hand,

-1
XZX]- X2X2 X2y
_ ( Wt WX X (X5 X)L ) ( X;ly )
* * X2y '
and
Br = W IX)y —W X, Xo(X5X) "Xy

= WXy =X X (XX2) Xy = By

@ The partitioned inverse formula:

-1 -1 A-1 -1
( A Auz > = /16\11 A-1 1 _A%lAlgA%Z 1 ©)
A1 Az —AAAL AL HALANATARAS,

where ;&11 = All —A12A£2:|'A21.
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Proof Il of the FWL Theorem

@ To show ﬁl = (X’mxm)*lx/myu, we need only show that
XiMay = (XyM2X1) By
o Multiplying y = X181 + X2, + U by X; M, on both sides, we have
XiMay = X MpX1 By + X MaXo B, + X Mall = X M Xy B,

where the last equality is from M,X; = 0, and X} M,U = X} U = 0 (why the first
equality hold? U = Mu and MyM = M).
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Projection along & Subspace
P, as a Projector along a Subspace

Lemma

Define Py 7 as the projector onto span(X) along span-(Z), where X and Z are n x k
matrices and Z’X is nonsingular. Then Py 7 is idempotent, and

Pxiz =X(Z'X)"1Z".

For orthogonal projectors, Px = Py x.

To see the difference between Py and Py 7, we check Figure 2 again.

In the left panel, X = (1,0)’ and Z = (1,1)’; in the right panel, X = (1,0)’. (why?)
It is easy to check that

10 1 1
Px:(o O)andPXLZ:(O 0)

So an orthogonal projector must be symmetric, while an projector need not be.

® P1o=Px 1%,
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