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Overview

Whenever we discuss projection, there must be an underlying Hilbert space since
we must define "orthogonality".

We explain projection in two Hilbert spaces (L2 and Rn) and integrate many
estimators in one framework.

Projection in the L2 space: linear projection and regression (linear regression is a
special case)

Projection in Rn: Ordinary Least Squares (OLS) and Generalized Least Squares
(GLS)

One main topic of this course is the (ordinary) least squares estimator (LSE).

Although the LSE has many interpretations, e.g., as a MLE or a MoM estimator,
the most intuitive interpretation is that it is a projection estimator.
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Hilbert Space and Projection Theorem

Hilbert Space and Projection Theorem
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Hilbert Space and Projection Theorem

Hilbert Space

Definition (Hilbert Space)

A complete inner product space is called a Hilbert space .a An inner product is a
bilinear operator h�, �i : H�H !R, where H is a real vector space, satisfying for any
x ,y ,z 2 H and α 2R,

(i) hx + y ,zi= hx ,zi+ hy ,zi ;
(ii) hαx ,zi= α hx ,zi ;
(iii) hx ,zi= hz,xi ;
(iv) hx ,xi � 0 with equal if and only if x = 0.

We denote this Hilbert space as (H,h�, �i).
aA metric space (H,d) is complete if every Cauchy sequence in H converges in H, where d is a metric on

H. A sequence fxng in a metric space is called a Cauchy sequence if for any ε > 0, there is a positive integer
N such that for all natural numbers m,n > N, d(xm,xn) < ε.
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Hilbert Space and Projection Theorem

Angle and Orthogonality

An important inequality in the inner product space is the Cauchy–Schwarz
inequality:

jhx ,yij � kxk � kyk ,

where k�k �
p
h�, �i is the norm induced by h�, �i.

Due to this inequality, we can define

angle(x ,y) = arccos
hx ,yi
kxk � kyk .

We assume the value of the angle is chosen to be in the interval [0,π ].

[Figure Here]

If hx ,yi= 0, angle(x ,y) = π

2 ; we call x is orthogonal to y and denote it as x ? y .
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Hilbert Space and Projection Theorem

Figure: Angle in Two-dimensional Euclidean Space
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Hilbert Space and Projection Theorem

Projection and Projector

The ingredients of a projection are fy ,M, (H,h�, �i)g, where M is a subspace of H.

Note that the same H endowed with different inner products are different Hilbert
spaces, so the Hilbert space is denoted as (H,h�, �i) rather than H.

Our objective is to find some Π(y) 2M such that

Π(y) = arg min
h2M

ky �hk2 . (1)

Π(�): H !M is called a projector , and Π(y) is called a projection of y .
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Hilbert Space and Projection Theorem

Direct Sum, Orthogonal Space and Orthogonal Projector

Definition

Let M1 and M2 be two disjoint subspaces of H so that M1\M2 = f0g. The space

V = fh 2 Hjh = h1+h2,h1 2M1,h2 2M2g

is called the direct sum of M1 and M2 and it is denoted by V =M1�M2.

Definition

Let M be a subspace of H. The space

M? � fh 2 Hj hh,Mi= 0g

is called the orthogonal space or orthogonal complement of M, where hh,Mi= 0
means h is orthogonal to every element in M.

Definition

Suppose H =M1�M2. Let h 2 H so that h = h1+h2 for unique hi 2Mi , i = 1,2. Then
P is a projector onto M1 along M2 if Ph = h1 for all h. In other words, PM1 =M1 and
PM2 = 0. When M2 =M?

1 , we call P as an orthogonal projector .
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Hilbert Space and Projection Theorem

Figure: Projector and Orthogonal Projector

What is M2?

[Back to Lemma 9]
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Hilbert Space and Projection Theorem

Hilbert Projection Theorem

Theorem (Hilbert Projection Theorem)

If M is a closed subspace of a Hilbert space H, then for each y 2 H, there exists a
unique point x 2M for which ky �xk is minimized over M. Moreover, x is the closest
element in M to y if and only if hy �x ,Mi= 0.

The first part of the theorem states the existence and uniqueness of the projector.

The second part of the theorem states something related to the first order
conditions (FOCs) of (1) or, simply, orthogonal conditions.

From the theorem, given any closed subspace M of H, H =M�M?.

Also, the closest element in M to y is determined by M itself, not the vectors
generating M since there may be some redundancy in these vectors.
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Hilbert Space and Projection Theorem

Figure: Projection
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Hilbert Space and Projection Theorem

Sequential Projection

Theorem (Law of Iterated Projections or LIP)

If M1 and M2 are closed subspaces of a Hilbert space H, and M1 �M2, then
Π1(y) =Π1(Π2 (y)), where Πj (�), j = 1,2, is the orthogonal projector of y onto Mj .

Proof.

Write y =Π2 (y)+Π?
2 (y). Then

Π1(y) =Π1(Π2 (y)+Π?
2 (y)) =Π1(Π2 (y))+Π1(Π

?
2 (y)) =Π1(Π2 (y)),

where the last equality is because


Π?

2 (y) ,x
�
= 0 for any x 2M2 and M1 �M2.

We first project y onto a larger space M2, and then project the projection of y (in
the first step) onto a smaller space M1.

The theorem shows that such a sequential procedure is equivalent to projecting y
onto M1 directly.

We will see some applications of this theorem below.
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Projection in the L2 Space

Projection in the L2 Space
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Projection in the L2 Space

Linear Projection

A random variable x 2 L2(P) if E [x2] < ∞.

L2(P) endowed with some inner product is a Hilbert space.

y 2 L2(P) , x1, � � � ,xk 2 L2(P), M = span (x1, � � � ,xk )� span(x),1 H = L2(P) with
h�, �i defined as hx ,yi= E [xy ].

Π(y) = arg min
h2M

E
h
(y �h)2

i
= x0 �arg min

β2Rk
E
h
(y �x0β )2

i (2)

is called the best linear predictor (BLP) of y given x, or the linear projection of y
onto x.

1span(x) =
�

z 2 L2(P)jz = x0α,α 2Rk
	
.
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Projection in the L2 Space

continue...

Since this is a concave programming problem, FOCs are sufficient2:

�2E
�
x
�
y �x0β 0

��
= 0) E [xu] = 0 (3)

where u = y �Π(y) is the error, and β 0 = arg min
β2Rk

E
h
(y �x0β )2

i
.

Π(y) always exists and is unique, but β 0 needn’t be unique unless x1, � � � ,xk are
linearly independent, that is, there is no nonzero vector a 2Rk such that a0x = 0
almost surely (a.s.).

Why? If 8 a 6= 0, a0x 6= 0, then E
h
(a0x)2

i
> 0 and a0E [xx 0]a> 0, thus E [xx 0] > 0.

So from (3),
β 0 =

�
E
�
xx 0
���1 E [xy ] (why?) (4)

and Π(y) = x0 (E [xx 0])�1 E [xy ].

In the literature, β with a subscript 0 usually represents the true value of β .

2 ∂

∂x (a
0x) = ∂

∂x (x
0a) = a
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Projection in the L2 Space

Regression

The setup is the same as in linear projection except that M = L2(P,σ(x)), where
L2(P,σ(x)) is the space spanned by any function of x (not only the linear function
of x) as long as it is in L2(P).

Π(y) = arg min
h2M

E
h
(y �h)2

i
(5)

Note that

E
h
(y �h)2

i
= E

h
(y �E [y jx]+E [y jx]�h)2

i
= E

h
(y �E [y jx])2

i
+2E [(y �E [y jx]) (E [y jx]�h)]+E

h
(E [y jx]�h)2

i
?
= E

h
(y �E [y jx])2

i
+E

h
(E [y jx]�h)2

i
� E

h
(y �E [y jx])2

i
� E [u2],

so Π(y) = E [y jx], which is called the population regression function (PRF),
where the error u satisfies E [ujx] = 0 (why?).
We can use variation to characterize the FOCs:

0= argmin
ε2R

E
h
(y � (Π(y)+ εh(x)))2

i
�2 E [h(x) (y � (Π(y)+ εh(x)))]j

ε=0 = 0
) E [h(x)u] = 0, 8 h(x) 2 L2(P,σ(x))

(6)
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Projection in the L2 Space

Relationship Between the Two Projections

Π1(y) is the BLP of Π2(y) given x, i.e., the BLPs of y and Π1(y) given x are the
same.

This is a straightforward application of the law of iterated projections.

Explicitly, define

β o = arg min
β2Rk

E
h�

E [y jx]�x0β
�2i

= arg min
β2Rk

Z h�
E [y jx]�x0β

�2idF (x).

The FOCs for this minimization problem are

E [�2x (E [y jx]�x0β o)] = 0
) E [xx 0]β o = E [xE [y jx]] = E [xy ]
) β o = (E [xx 0])�1 E [xy ] = β 0

In other words, β 0 is a (weighted) least squares approximation to the true model.

If E [y jx] is not linear in x, β o depends crucially on the weighting function F (x) or
the distribution of x.

The weighting function ensures that frequently drawn x i will yield small
approximation errors at the cost of larger approximation errors for less frequently
drawn x i .
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Projection in the L2 Space

Figure: Linear Approximation of Conditional Expectation (I)
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Projection in the L2 Space

Figure: Linear Approximation of Conditional Expectation (II)
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Projection in the L2 Space

Linear Regression

Linear regression is a special case of regression with E [y jx] = x0β .

Regression and linear projection are implied by the definition of projection, but
linear regression is a "model" where some structure (or restriction) is imposed.

In the following figure, when we project y onto a larger space M2 = L2(P,σ(x)),
Π(y) falls into a smaller space M1 = span (x) by coincidence, so there must be a
restriction on the joint distribution of (y ,x) (what kind of restriction?).

In summary, the linear regression model is

y = x0β +u,

E [ujx] = 0.

E [ujx] = 0 is necessary for a causal interpretation of β .
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Projection in the L2 Space

Figure: Linear Regression
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Projection in Rn

Projection in Rn
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Projection in Rn

The LSE

The projection in the L2 space is treated as the population version.

The projection in Rn is treated as the sample counterpart of the population
version.

The LSE is defined as

bβ = arg min
β2Rk

SSR(β ) = arg min
β2Rk

n

∑
i=1

�
yi �x0i β

�2
= arg min

β2Rk
En

h�
y �x0β

�2i
,

where En[�] is the expectation under the empirical distribution of the data, and

SSR(β )�
n

∑
i=1

�
yi �x0i β

�2
=

n

∑
i=1

y2
i �2β

0
n

∑
i=1

x iyi +β
0

n

∑
i=1

x ix
0
i β

is the sum of squared residuals as a function of β .
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Projection in Rn

Figure: Objective Functions of OLS Estimation: k = 1,2
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Projection in Rn

Normal Equations

SSR(β ) is a quadratic function of β , so the FOCs are also sufficient to determine
the LSE.

Matrix calculus3 gives the FOCs for bβ :

0 =
∂

∂β
SSR(bβ ) = �2

n

∑
i=1

x iyi +2
n

∑
i=1

x ix
0
i
bβ

= �2X0y+2X0Xbβ ,
which is equivalent to the normal equations

X0Xbβ = X0y.

So bβ = (X0X)�1X0y.

3 ∂

∂x (a
0x) = ∂

∂x (x
0a) = a, and ∂

∂x (x
0Ax ) = (A+A0)x.
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Projection in Rn

Notations

Matrices are represented using uppercase bold. In matrix notation the sample
(data , or dataset ) is (y,X), where y is an n�1 vector with i th entry yi and X is a
matrix with i th row x0i , i.e.,

y
(n�1)

=

0B@ y1
...

yn

1CA and X
(n�k)

=

0B@ x01
...

x0n

1CA ,
The first column of X is assumed to be ones if without further specification, i.e., the
first column of X is

1= (1, � � � ,1)0 .
The bold zero, 0, denotes a vector or matrix of zeros.
Reexpress X as

X=
�

X1 � � � Xk
�
,

where different from x i , Xj , j = 1, � � � ,k , represents the j th column of X and is all
the observations for j th variable.
The linear regression model upon stacking all n observations is then

y = Xβ +u,

where u is an n�1 column vector with i th entry ui .
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Projection in Rn

LSE as a Projection

The above derivation of bβ expresses the LSE using rows of the data matrices y
and X. The following expresses the LSE using columns of y and X.

y 2Rn , X1, � � � ,Xk 2Rn are linearly independent,
M = span (X1, � � � ,Xk )� span(X),4 H =Rn with the Euclidean inner product.5

Π(y) = arg min
h2M

ky�hk2

= X �arg min
β2Rk

ky�Xβk2

= X �arg min
β2Rk

n
∑

i=1

�
yi �x0i β

�2
,

(7)

where ∑n
i=1

�
yi �x0i β

�2 is exactly the objective function of OLS.

4span(X) =
�

z 2Rnjz= Xα,α 2Rk
	

is called the column space or range space of X.
5Recall that for x = (x1, � � � ,xn), and z= (z1, � � � ,zn), the Euclidean inner product of x and z is

hx,zi= ∑n
i=1 xi zi , so kxk2 = hx,xi= ∑n

i=1 x2
i .
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Projection in Rn

continue...

As Π(y) = Xbβ , we can solve out bβ by premultiplying both sides by X, that is,

X0Π(y) = X0Xbβ ) bβ = (X0X)�1X0Π(y),

where (X0X)�1 exists because X is full rank.

On the other hand, orthogonal conditions for this optimization problem are

X0bu = 0,

where bu = y�Π(y).

Since these orthogonal conditions are equivalent to normal equations (or the
FOCs), bβ = (X0X)�1X0y.

These two bβ ’s are the same since (X0X)�1X0y� (X0X)�1X0Π(y) = (X0X)�1X0bu = 0.

Finally,
Π(y) = X(X0X)�1X0y = PXy,

where PX is called the projection matrix .

Ping Yu (HKU) Projection 28 / 42



Projection in Rn

Multicollinearity

In the above calculation, we first project y on span(X) and then find bβ by solving
Π(y) = Xbβ .

The two steps involve very different operations: optimization versus solving linear
equations.

Furthermore, although Π(y) is unique, bβ may not be. When rank(X)< k or X is
rank deficient, there are more than one (actually, infinite) bβ such that Xbβ =Π(y).

This is called multicollinearity and will be discussed in more details in the next
chapter.

In the following discussion, we always assume rank(X) = k or X is full-column
rank ; otherwise, some columns of X can be deleted to make it so.
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Projection in Rn

Generalized Least Squares

All are the same as in the last example except hx,ziW = x0Wz, where the weight
matrix W is positive definite and denoted as W> 0.

The projection
Π(y) = X �arg min

β2Rk
ky�Xβk2

W . (8)

FOCs are 

X,eu�W = 0 (orthogonal conditions)

where eu = y�Xeβ , that is,

hX,XiW eβ = hX,yiW ) eβ = (X0WX)�1X0Wy.

Thus
Π(y) = X(X0WX)�1X0Wy = PX?WXy

where the notation PX?WX will be explained later.
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Projection in Rn Projection Matrices

Projection Matrices

Since Π(y) = PXy is the orthogonal projection onto span(X), PX is the orthogonal
projector onto span(X).

Similarly, bu = y�Π(y) = (In�PX)y �MXy is the orthogonal projection onto
span?(X), so MX is the orthogonal projector onto span?(X), where In is the n�n
identity matrix.

Since

PXX = X(X0X)�1X0X= X,

MXX = (In�PX)X= 0;

we say PX preserves span(X), MX annihilates span(X), and MX is called the
annihilator .

This implies another way to express bu:

bu =MXy =MX(Xβ +u) =MXu.

Also, it is easy to check MXPX = 0, so MX and PX are orthogonal.
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Projection in Rn Projection Matrices

continue...

PX is symmetric: P0X =
�

X(X0X)�1X0
�0
= X(X0X)�1X0 = PX.

PX is idempotent6(intuition?): P2
X =

�
X(X0X)�1X0

��
X(X0X)�1X0

�
= PX.

PX is positive semidefinite: for any α 2Rn, α 0PXα = (X0α)0 (X0X)�1X0α � 0,

"Positive semidefinite" cannot be strengthen to "positive definite".

Why? For an idempotent matrix, the rank equals the trace7.

tr(PX) = tr(X(X0X)�1X0) = tr((X0X)�1X0X) = tr(Ik ) = k < n,

and
tr(MX) = tr(In�PX) = tr(In)� tr(PX) = n�k < n.

For a general "nonorthogonal" projector P, it is still unique and idempotent, but
need not be symmetric (let alone positive semidefiniteness).

For example, PX?WX in the GLS estimation is not symmetric.

6A square matrix A is idempotent if A2 = AA = A.
7Trace of a square matrix is the sum of its diagonal elements. tr(A+B) =tr(A)+tr(B) and tr(AB ) =tr(BA ).
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Partitioned Fit and Residual Regression

Partitioned Fit and Residual Regression
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Partitioned Fit and Residual Regression

Partitioned Fit

It is of interest to understand the meaning of part of bβ , say, bβ 1 in the partition ofbβ = (bβ 01, bβ 02)0, where we partition

Xβ =

"
X1

...X2

#�
β 1
β 2

�
with rank(X) = k .

We will show that bβ 1 is the "net" effect of X1 on y when the effect of X2 is removed
from the system. This result is called the Frisch-Waugh-Lovell (FWL) theorem due
to Frisch and Waugh (1933) and Lovell (1963).

The FWL theorem is an excellent implication of the projection property of least
squares.

To simplify notation, Pj � PXj
, Mj �MXj

, Πj (y) = Xj
bβ j , j = 1,2.
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Partitioned Fit and Residual Regression

The FWL Theorem

Theorembβ 1 could be obtained when the residuals from a regression of y on X2 alone are
regressed on the set of residuals obtained when each column of X1 is regressed on
X2. In mathematical notations,

bβ 1 =
�
X01?2X1?2

��1 X01?2y?2 =
�
X01M2X1

��1 X01M2y.

where X1?2 = (I�P2)X1 =M2X1, y?2 = (I�P2)y =M2y.

This theorem states that bβ 1 can be calculated by the OLS regression of ey =M2y
on eX1 =M2X1. This technique is called residual regression .

Corollary

Π1(y)� X1
bβ 1 = X1

�
X01?2X1

��1 X01?2y � P12y = P12(Π(y)).
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Partitioned Fit and Residual Regression

Figure: The FWL Theorem
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Partitioned Fit and Residual Regression

P12

P12 = X1|{z}
trailing term

�
X01(I�P2)X1

��1 X01(I�P2)| {z }
leading term

.

I�P2 in the leading term annihilates span(X2) so that P12(Π2(y)) = 0. The
leading term sends Π(y) toward span?(X2).

But the trailing X1 ensures that the final result will lie in span(X1).

The rest of the expression for P12 ensures that X1 is preserved under the
transformation: P12X1 = X1.

Why P12y = P12(Π(y))? We can treat the projector P12 as a sequential projector:
first project y onto span(X) to get Π(y), and then project Π(y) to span(X1) along
span(X2) to get Π1(y).bβ 1 is calculated from Π1(y) by

bβ 1 = (X
0
1X1)

�1X01Π1(y).
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Partitioned Fit and Residual Regression

Figure: Projection by P12
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Partitioned Fit and Residual Regression

Proof I of the FWL Theorem (brute-force)

Calculate bβ 1 explicitly in the residual regression and check whether it is equal to
the LSE of β 1.

Residual regression includes the following three steps.

Step 1: Projecting y on X2, we have the residuals

buy = y�X2(X
0
2X2)

�1X02y =M2y.

Step 2: Projecting X1 on X2, we have the residuals

bUx1 = X1�X2(X
0
2X2)

�1X02X1 =M2X1.

Step 3: Projecting buy on bUx1 , we get the residual regression estimator of β 1

eβ 1 =
�bU0x1

bUx1

��1 bU0x1
buy =

�
X01M2X1

��1 �X01M2y
�

=
h
X01X1�X01X2(X

0
2X2)

�1X02X1

i�1 h
X01y�X01X2

�
X02X2

��1 X02y
i

� W�1
h
X01y�X01X2

�
X02X2

��1 X02y
i
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Partitioned Fit and Residual Regression

continue...

On the other hand,

bβ =

�
X01X1 X01X2
X02X1 X02X2

��1� X01y
X02y

�
=

�
W�1 �W�1X01X2(X02X2)

�1

� �

��
X01y
X02y

�
,

and bβ 1 = W�1X01y�W�1X01X2(X
0
2X2)

�1X02y

= W�1
h
X01y�X01X2

�
X02X2

��1 X02y
i
= eβ 1.

The partitioned inverse formula:�
A11 A12
A21 A22

��1

=

 eA�1
11 �eA�1

11 A12A�1
22

�A�1
22 A21

eA�1
11 A�1

22 +A�1
22 A21

eA�1
11 A12A�1

22

!
(9)

where eA11 = A11�A12A�1
22 A21.
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Partitioned Fit and Residual Regression

Proof II of the FWL Theorem

To show bβ 1 =
�
X01?2X1?2

��1 X01?2y?2, we need only show that

X01M2y =
�
X01M2X1

� bβ 1.

Multiplying y = X1
bβ 1+X2

bβ 2+ bu by X01M2 on both sides, we have

X01M2y = X01M2X1
bβ 1+X01M2X2

bβ 2+X01M2bu = X01M2X1
bβ 1,

where the last equality is from M2X2 = 0, and X01M2bu = X01bu = 0 (why the first
equality hold? bu =Mu and M2M=M).
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Partitioned Fit and Residual Regression Projection along a Subspace

P12 as a Projector along a Subspace

Lemma

Define PX?Z as the projector onto span(X) along span?(Z), where X and Z are n�k
matrices and Z0X is nonsingular. Then PX?Z is idempotent, and

PX?Z = X(Z0X)�1Z0.

For orthogonal projectors, PX = PX?X.

To see the difference between PX and PX?Z, we check Figure 2 again.

In the left panel, X= (1,0)0 and Z= (1,1)0; in the right panel, X= (1,0)0. (why?)

It is easy to check that

PX =

�
1 0
0 0

�
and PX?Z =

�
1 1
0 0

�
.

So an orthogonal projector must be symmetric, while an projector need not be.

P12 = PX1?X1?2
.
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