Projection

Ping Yu

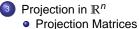
School of Economics and Finance The University of Hong Kong

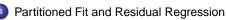
æ

◆□▶ ◆御▶ ◆臣▶ ◆臣▶

Hilbert Space and Projection Theorem

2 Projection in the L^2 Space





Projection along a Subspace

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Whenever we discuss projection, there must be an underlying Hilbert space since we must define "orthogonality".
- We explain projection in two Hilbert spaces (*L*² and **R**^{*n*}) and integrate many estimators in one framework.
- Projection in the *L*² space: linear projection and regression (linear regression is a special case)
- Projection in ℝⁿ: Ordinary Least Squares (OLS) and Generalized Least Squares (GLS)
- One main topic of this course is the (ordinary) least squares estimator (LSE).
- Although the LSE has many interpretations, e.g., as a MLE or a MoM estimator, the most intuitive interpretation is that it is a projection estimator.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Hilbert Space and Projection Theorem

æ

・ロン ・回 と ・ ヨン・

Hilbert Space

Definition (Hilbert Space)

A complete inner product space is called a **Hilbert space**.^{*a*} An inner product is a bilinear operator $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{R}$, where *H* is a real vector space, satisfying for any *x*, *y*, *z* \in *H* and $\alpha \in \mathbb{R}$,

(i)
$$\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$$
;
(ii) $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$;

(II)
$$\langle \alpha x, z \rangle = \alpha \langle x, z \rangle;$$

(iii)
$$\langle x, z \rangle = \langle z, x \rangle;$$

(iv) $\langle x, x \rangle \ge 0$ with equal if and only if x = 0.

We denote this Hilbert space as $(H, \langle \cdot, \cdot \rangle)$.

・ロン ・四 と ・ 回 と ・ 回 と

^aA metric space (H, d) is **complete** if every Cauchy sequence in *H* converges in *H*, where *d* is a metric on *H*. A sequence $\{x_n\}$ in a metric space is called a **Cauchy sequence** if for any $\varepsilon > 0$, there is a positive integer *N* such that for all natural numbers *m*, *n* > *N*, $d(x_m, x_n) < \varepsilon$.

Angle and Orthogonality

• An important inequality in the inner product space is the Cauchy–Schwarz inequality:

$$|\langle \pmb{x},\pmb{y}
angle|\leq \|\pmb{x}\|\cdot\|\pmb{y}\|$$
 ,

where $\|\cdot\|\equiv \sqrt{\langle\cdot,\cdot\rangle}$ is the norm induced by $\langle\cdot,\cdot\rangle.$

• Due to this inequality, we can define

angle
$$(x, y) = \arccos \frac{\langle x, y \rangle}{\|x\| \cdot \|y\|}$$

• We assume the value of the angle is chosen to be in the interval $[0, \pi]$.

[Figure Here]

• If $\langle x, y \rangle = 0$, angle $(x, y) = \frac{\pi}{2}$; we call x is **orthogonal** to y and denote it as $x \perp y$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

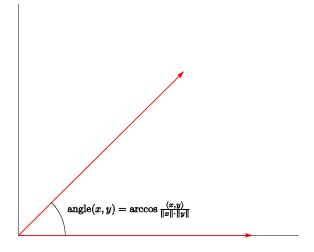


Figure: Angle in Two-dimensional Euclidean Space

Ping Yu	(HKU)	

<ロ> <同> <同> < 同> < 同> < 三> < 三> 三

Projection and Projector

- The ingredients of a projection are $\{y, M, (H, \langle \cdot, \cdot \rangle)\}$, where *M* is a subspace of *H*.
- Note that the same *H* endowed with different inner products are different Hilbert spaces, so the Hilbert space is denoted as (*H*, ⟨·, ·⟩) rather than *H*.
- Our objective is to find some $\Pi(\mathbf{y}) \in \mathbf{M}$ such that

$$\Pi(\mathbf{y}) = \arg\min_{\mathbf{h}\in M} \|\mathbf{y} - \mathbf{h}\|^2.$$
(1)

• $\Pi(\cdot)$: $H \to M$ is called a **projector**, and $\Pi(y)$ is called a **projection** of y.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Direct Sum, Orthogonal Space and Orthogonal Projector

Definition

Let M_1 and M_2 be two disjoint subspaces of H so that $M_1 \cap M_2 = \{0\}$. The space

$$V = \{h \in H | h = h_1 + h_2, h_1 \in M_1, h_2 \in M_2\}$$

is called the **direct sum** of M_1 and M_2 and it is denoted by $V = M_1 \oplus M_2$.

Definition

Let *M* be a subspace of *H*. The space

$$M^{\perp} \equiv \{h \in H | \langle h, M \rangle = 0\}$$

is called the **orthogonal space** or **orthogonal complement** of *M*, where $\langle h, M \rangle = 0$ means *h* is orthogonal to every element in *M*.

Definition

Suppose $H = M_1 \oplus M_2$. Let $h \in H$ so that $h = h_1 + h_2$ for unique $h_i \in M_i$, i = 1, 2. Then P is a **projector** onto M_1 along M_2 if $Ph = h_1$ for all h. In other words, $PM_1 = M_1$ and $PM_2 = 0$. When $M_2 = M_1^{\perp}$, we call P as an **orthogonal projector**.

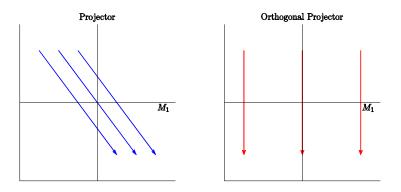


Figure: Projector and Orthogonal Projector

• What is *M*₂?

[Back to Lemma 9]

<ロ> <同> <同> < 回> < 回> < 回> = 三回

Hilbert Projection Theorem

Theorem (Hilbert Projection Theorem)

If *M* is a **closed** subspace of a Hilbert space *H*, then for each $y \in H$, there exists a **unique** point $x \in M$ for which ||y - x|| is minimized over *M*. Moreover, *x* is the closest element in *M* to *y* **if and only if** $\langle y - x, M \rangle = 0$.

- The first part of the theorem states the existence and uniqueness of the projector.
- The second part of the theorem states something related to the first order conditions (FOCs) of (1) or, simply, orthogonal conditions.
- From the theorem, given any closed subspace *M* of *H*, $H = M \oplus M^{\perp}$.
- Also, the closest element in *M* to *y* is determined by *M* itself, not the vectors generating *M* since there may be some redundancy in these vectors.

・ロ・・ (日・・ 日・・ 日・・

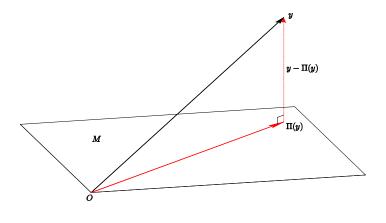


Figure: Projection

	(HKU)

11/42

Sequential Projection

Theorem (Law of Iterated Projections or LIP)

If M_1 and M_2 are closed subspaces of a Hilbert space H, and $M_1 \subset M_2$, then $\Pi_1(y) = \Pi_1(\Pi_2(y))$, where $\Pi_j(\cdot)$, j = 1, 2, is the orthogonal projector of y onto M_j .

Proof.

Write $y = \Pi_2(y) + \Pi_2^{\perp}(y)$. Then

 $\Pi_{1}(y) = \Pi_{1}(\Pi_{2}(y) + \Pi_{2}^{\perp}(y)) = \Pi_{1}(\Pi_{2}(y)) + \Pi_{1}(\Pi_{2}^{\perp}(y)) = \Pi_{1}(\Pi_{2}(y)),$

where the last equality is because $\langle \Pi_2^{\perp}(y), x \rangle = 0$ for any $x \in M_2$ and $M_1 \subset M_2$.

- We first project *y* onto a larger space *M*₂, and then project the projection of *y* (in the first step) onto a smaller space *M*₁.
- The theorem shows that such a sequential procedure is equivalent to projecting y onto M_1 directly.
- We will see some applications of this theorem below.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Projection in the L^2 Space

æ

・ロン ・回 と ・ ヨン・

Linear Projection

- A random variable $x \in L^2(P)$ if $E[x^2] < \infty$.
- $L^2(P)$ endowed with some inner product is a Hilbert space.
- $y \in L^2(P)$, $x_1, \dots, x_k \in L^2(P)$, $M = span(x_1, \dots, x_k) \equiv span(\mathbf{x})$, $H = L^2(P)$ with $\langle \cdot, \cdot \rangle$ defined as $\langle x, y \rangle = E[xy]$.

$$\begin{aligned} \Pi(\mathbf{y}) &= \arg\min_{h \in \mathcal{M}} E\left[(\mathbf{y} - h)^2 \right] \\ &= \mathbf{x}' \cdot \arg\min_{\beta \in \mathbb{R}^k} E\left[(\mathbf{y} - \mathbf{x}'\beta)^2 \right] \end{aligned} \tag{2}$$

is called the **best linear predictor** (BLP) of y given **x**, or the linear projection of y onto **x**.

¹span(
$$\mathbf{x}$$
) = { $z \in L^2(P) | z = \mathbf{x}' \alpha, \alpha \in \mathbb{R}^k$ }.

continue...

• Since this is a concave programming problem, FOCs are sufficient²:

$$-2E\left[\mathbf{x}\left(\mathbf{y}-\mathbf{x}'\boldsymbol{\beta}_{0}\right)\right]=\mathbf{0}\Rightarrow E\left[\mathbf{x}\boldsymbol{u}\right]=\mathbf{0}$$
(3)

where $u = y - \Pi(y)$ is the error, and $\beta_0 = \arg \min_{\beta \in \mathbb{R}^k} E\left[(y - \mathbf{x}'\beta)^2 \right]$.

- $\Pi(y)$ always exists and is unique, but β_0 needn't be unique unless x_1, \dots, x_k are linearly independent, that is, there is no nonzero vector $\mathbf{a} \in \mathbb{R}^k$ such that $\mathbf{a}'\mathbf{x} = 0$ almost surely (a.s.).
- Why? If $\forall \mathbf{a} \neq 0$, $\mathbf{a}'\mathbf{x} \neq 0$, then $E\left[(\mathbf{a}'\mathbf{x})^2\right] > 0$ and $\mathbf{a}'E[\mathbf{x}\mathbf{x}']\mathbf{a} > 0$, thus $E[\mathbf{x}\mathbf{x}'] > 0$. So from (3),

$$\beta_0 = \left(E\left[\mathbf{x}\mathbf{x}' \right] \right)^{-1} E\left[\mathbf{x}\mathbf{y} \right] \text{ (why?)}$$
(4)

and $\Pi(\mathbf{y}) = \mathbf{x}' (\mathbf{E}[\mathbf{x}\mathbf{x}'])^{-1} \mathbf{E}[\mathbf{x}\mathbf{y}].$

• In the literature, β with a subscript 0 usually represents the true value of β .

 $\frac{2}{\partial \mathbf{x}} \left(\mathbf{a}' \mathbf{x} \right) = \frac{\partial}{\partial \mathbf{x}} \left(\mathbf{x}' \mathbf{a} \right) = \mathbf{a}$ Ping Yu (HKU)

15/42

Regression

• The setup is the same as in linear projection except that $M = L^2(P, \sigma(\mathbf{x}))$, where $L^2(P, \sigma(\mathbf{x}))$ is the space spanned by any function of \mathbf{x} (not only the linear function of \mathbf{x}) as long as it is in $L^2(P)$.

$$\Pi(\mathbf{y}) = \arg\min_{\mathbf{h}\in M} E\left[(\mathbf{y} - \mathbf{h})^2 \right]$$
(5)

Note that

$$E\left[(y-h)^{2}\right]$$

= $E\left[(y-E[y|\mathbf{x}] + E[y|\mathbf{x}] - h)^{2}\right]$
= $E\left[(y-E[y|\mathbf{x}])^{2}\right] + 2E\left[(y-E[y|\mathbf{x}])(E[y|\mathbf{x}] - h)\right] + E\left[(E[y|\mathbf{x}] - h)^{2}\right]$
 $\stackrel{?}{=} E\left[(y-E[y|\mathbf{x}])^{2}\right] + E\left[(E[y|\mathbf{x}] - h)^{2}\right] \ge E\left[(y-E[y|\mathbf{x}])^{2}\right] \equiv E[u^{2}],$

so $\Pi(y) = E[y|\mathbf{x}]$, which is called the **population regression function** (PRF), where the error *u* satisfies $E[u|\mathbf{x}] = 0$ (why?).

• We can use variation to characterize the FOCs:

$$0 = \arg\min_{\varepsilon \in \mathbb{R}} E\left[(y - (\Pi(y) + \varepsilon h(\mathbf{x})))^2 \right]$$

-2 $E[h(\mathbf{x}) (y - (\Pi(y) + \varepsilon h(\mathbf{x})))]|_{\varepsilon=0} = 0$ (6)
 $\Rightarrow E[h(\mathbf{x})u] = 0, \forall h(\mathbf{x}) \in L^2(P, \sigma(\mathbf{x}))$

Relationship Between the Two Projections

- $\Pi_1(y)$ is the BLP of $\Pi_2(y)$ given **x**, i.e., the BLPs of y and $\Pi_1(y)$ given **x** are the same.
- This is a straightforward application of the law of iterated projections.
- Explicitly, define

$$\beta_{o} = \arg\min_{\beta \in \mathbb{R}^{k}} E\left[\left(E[y|\mathbf{x}] - \mathbf{x}'\beta\right)^{2}\right] = \arg\min_{\beta \in \mathbb{R}^{k}} \int \left[\left(E[y|\mathbf{x}] - \mathbf{x}'\beta\right)^{2}\right] dF(\mathbf{x}).$$

• The FOCs for this minimization problem are

$$E[-2\mathbf{x}(E[\mathbf{y}|\mathbf{x}] - \mathbf{x}'\beta_o)] = \mathbf{0}$$

$$\Rightarrow E[\mathbf{x}\mathbf{x}']\beta_o = E[\mathbf{x}E[\mathbf{y}|\mathbf{x}]] = E[\mathbf{x}\mathbf{y}]$$

$$\Rightarrow \beta_o = (E[\mathbf{x}\mathbf{x}'])^{-1}E[\mathbf{x}\mathbf{y}] = \beta_0$$

- In other words, β_0 is a (weighted) least squares approximation to the true model.
- If $E[y|\mathbf{x}]$ is not linear in \mathbf{x} , β_o depends crucially on the weighting function $F(\mathbf{x})$ or the distribution of \mathbf{x} .
- The weighting function ensures that frequently drawn \mathbf{x}_i will yield small approximation errors at the cost of larger approximation errors for less frequently drawn \mathbf{x}_i .

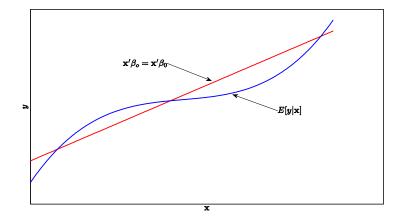


Figure: Linear Approximation of Conditional Expectation (I)

Pinc	i Yu 🗉	(HKU)

<ロ> <同> <同> < 回> < 回> < 回> = 三回

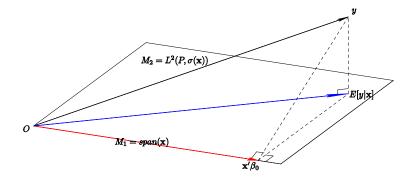


Figure: Linear Approximation of Conditional Expectation (II)

Ping Yu	(HKU)

æ

・ロ・・ (日・・ 日・・ 日・・

- Linear regression is a special case of regression with $E[y|\mathbf{x}] = \mathbf{x}'\beta$.
- Regression and linear projection are implied by the definition of projection, but linear regression is a "model" where some structure (or restriction) is imposed.
- In the following figure, when we project *y* onto a larger space $M_2 = L^2(P, \sigma(\mathbf{x}))$, $\Pi(y)$ falls into a smaller space $M_1 = span(\mathbf{x})$ by coincidence, so there must be a restriction on the joint distribution of (y, \mathbf{x}) (what kind of restriction?).
- In summary, the linear regression model is

$$y = \mathbf{x}'\boldsymbol{\beta} + u,$$
$$\boldsymbol{E}[u|\mathbf{x}] = 0.$$

• $E[u|\mathbf{x}] = 0$ is necessary for a causal interpretation of β .

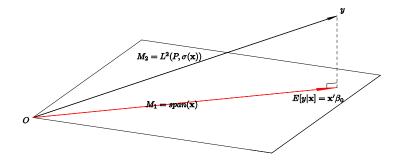


Figure: Linear Regression

Ping Yu (HKU)	KU)
---------------	-----

<ロ> <同> <同> < 同> < 同> < 三> < 三> 三

Projection in \mathbb{R}^n

æ

ヘロア 人間 アメヨア 人間 アー

The LSE

- The projection in the L^2 space is treated as the population version.
- The projection in \mathbb{R}^n is treated as the sample counterpart of the population version.
- The LSE is defined as

$$\widehat{\beta} = \arg\min_{\beta \in \mathbb{R}^k} SSR(\beta) = \arg\min_{\beta \in \mathbb{R}^k} \sum_{i=1}^n (y_i - \mathbf{x}'_i \beta)^2 = \arg\min_{\beta \in \mathbb{R}^k} E_n \left[(y - \mathbf{x}' \beta)^2 \right],$$

where $E_n[\cdot]$ is the expectation under the empirical distribution of the data, and

$$SSR(\beta) \equiv \sum_{i=1}^{n} (y_i - \mathbf{x}'_i \beta)^2 = \sum_{i=1}^{n} y_i^2 - 2\beta' \sum_{i=1}^{n} \mathbf{x}_i y_i + \beta' \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}'_i \beta$$

is the sum of squared residuals as a function of β .

・ロト ・回ト ・ヨト ・ヨト … ヨ

Projection in \mathbb{R}^n

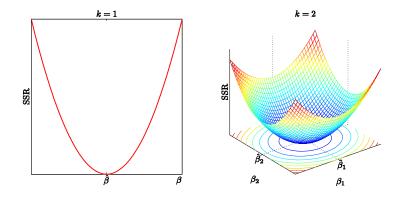


Figure: Objective Functions of OLS Estimation: k = 1, 2

æ

・ロン ・回 と ・ ヨン・

Normal Equations

- SSR(β) is a quadratic function of β, so the FOCs are also sufficient to determine the LSE.
- Matrix calculus³ gives the FOCs for $\hat{\beta}$:

$$\begin{aligned} \mathbf{0} &= \quad \frac{\partial}{\partial \beta} SSR(\widehat{\beta}) = -2\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{y}_{i} + 2\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}' \widehat{\beta} \\ &= \quad -2\mathbf{X}' \mathbf{y} + 2\mathbf{X}' \mathbf{X} \widehat{\beta}, \end{aligned}$$

which is equivalent to the normal equations

$$\mathbf{X}'\mathbf{X}\widehat{\mathbf{\beta}} = \mathbf{X}'\mathbf{y}.$$

So

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}.$$

$$\frac{\partial}{\partial \mathbf{x}}(\mathbf{a}'\mathbf{x}) = \frac{\partial}{\partial \mathbf{x}}(\mathbf{x}'\mathbf{a}) = \mathbf{a}$$
, and $\frac{\partial}{\partial \mathbf{x}}(\mathbf{x}'\mathbf{A}\mathbf{x}) = (\mathbf{A} + \mathbf{A}')\mathbf{x}$.

Notations

Matrices are represented using uppercase bold. In matrix notation the sample (data, or dataset) is (y, X), where y is an n × 1 vector with *i*th entry y_i and X is a matrix with *i*th row x'_i, i.e.,

$$\mathbf{y}_{(n\times 1)} = \begin{pmatrix} \mathbf{y}_1\\ \vdots\\ \mathbf{y}_n \end{pmatrix} \text{ and } \mathbf{X}_{(n\times k)} = \begin{pmatrix} \mathbf{x}_1'\\ \vdots\\ \mathbf{x}_n' \end{pmatrix}$$

• The first column of X is assumed to be ones if without further specification, i.e., the first column of X is

$$\mathbf{1}=(\mathbf{1},\cdots,\mathbf{1})'.$$

- The bold zero, **0**, denotes a vector or matrix of zeros.
- Reexpress X as

$$\mathbf{X} = (\begin{array}{ccc} \mathbf{X}_1 & \cdots & \mathbf{X}_k \end{array})$$
 ,

where different from \mathbf{x}_i , \mathbf{X}_j , $j = 1, \dots, k$, represents the *j*th column of **X** and is all the observations for *j*th variable.

• The linear regression model upon stacking all *n* observations is then

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{u}$$

where **u** is an $n \times 1$ column vector with *i*th entry u_i .

Ping Yu (HKU)

・ロト・(型ト・ミト・ミト ヨー のへの

LSE as a Projection

- The above derivation of β̂ expresses the LSE using rows of the data matrices y and X. The following expresses the LSE using columns of y and X.
- y ∈ ℝⁿ, X₁, ..., X_k ∈ ℝⁿ are linearly independent, M = span(X₁,..., X_k) ≡ span(X),⁴ H = ℝⁿ with the Euclidean inner product.⁵

$$\Pi(\mathbf{y}) = \arg\min_{h \in M} \|\mathbf{y} - h\|^{2}$$

= $\mathbf{X} \cdot \arg\min_{\beta \in \mathbb{R}^{k}} \|\mathbf{y} - \mathbf{X}\beta\|^{2}$
= $\mathbf{X} \cdot \arg\min_{\beta \in \mathbb{R}^{k}} \sum_{i=1}^{n} (y_{i} - \mathbf{x}_{i}^{\prime}\beta)^{2},$ (7)

where $\sum_{i=1}^{n} (y_i - \mathbf{x}'_i \beta)^2$ is exactly the objective function of OLS.

 ${}^{4}span(\mathbf{X}) = \left\{ \mathbf{z} \in \mathbb{R}^{n} | \mathbf{z} = \mathbf{X} \alpha, \alpha \in \mathbb{R}^{k} \right\} \text{ is called the$ **column space**or**range space**of**X**. ${}^{5}\text{Recall that for } \mathbf{x} = (x_{1}, \cdots, x_{n}), \text{ and } \mathbf{z} = (z_{1}, \cdots, z_{n}), \text{ the Euclidean inner product of } \mathbf{x} \text{ and } \mathbf{z} \text{ is } \left\{ \mathbf{x}, \mathbf{z} \right\} = \sum_{i=1}^{n} x_{i} z_{i}, \text{ so } \|\mathbf{x}\|^{2} = \left\langle \mathbf{x}, \mathbf{x} \right\rangle = \sum_{i=1}^{n} x_{i}^{2}.$

continue...

• As $\Pi(\mathbf{y}) = \mathbf{X}\widehat{\boldsymbol{\beta}}$, we can solve out $\widehat{\boldsymbol{\beta}}$ by premultiplying both sides by \mathbf{X} , that is,

$$\mathbf{X}'\Pi(\mathbf{y}) = \mathbf{X}'\mathbf{X}\widehat{\boldsymbol{\beta}} \Rightarrow \widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\Pi(\mathbf{y}),$$

where $(\mathbf{X}'\mathbf{X})^{-1}$ exists because **X** is full rank.

• On the other hand, orthogonal conditions for this optimization problem are

$$\mathbf{X}'\widehat{\mathbf{u}}=\mathbf{0},$$

where $\widehat{\mathbf{u}} = \mathbf{y} - \Pi(\mathbf{y})$.

- Since these orthogonal conditions are equivalent to normal equations (or the FOCs), $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$.
- These two $\hat{\beta}$'s are the same since $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\Pi(\mathbf{y}) = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\hat{\mathbf{u}} = 0.$
- Finally,

$$\Pi(\mathbf{y}) = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} = \mathbf{P}_{\mathbf{X}}\mathbf{y},$$

where P_X is called the projection matrix.

◆□▶ ◆□▶ ◆臣▶ ★臣▶ 臣 のへの

Multicollinearity

- In the above calculation, we first project **y** on $span(\mathbf{X})$ and then find $\hat{\boldsymbol{\beta}}$ by solving $\Pi(\mathbf{y}) = \mathbf{X}\hat{\boldsymbol{\beta}}$.
- The two steps involve very different operations: optimization versus solving linear equations.
- Furthermore, although $\Pi(\mathbf{y})$ is unique, $\widehat{\beta}$ may not be. When rank(\mathbf{X}) < k or \mathbf{X} is rank deficient, there are more than one (actually, infinite) $\widehat{\beta}$ such that $\mathbf{X}\widehat{\beta} = \Pi(\mathbf{y})$.
- This is called **multicollinearity** and will be discussed in more details in the next chapter.
- In the following discussion, we always assume rank(**X**) = *k* or **X** is *full-column rank*; otherwise, some columns of **X** can be deleted to make it so.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Projection in \mathbb{R}^n

Generalized Least Squares

- All are the same as in the last example except (x, z)_W = x'Wz, where the weight matrix W is positive definite and denoted as W > 0.
- The projection

$$\Pi(\mathbf{y}) = \mathbf{X} \cdot \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^{k}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{\mathbf{W}}^{2}.$$
(8)

FOCs are

 $\left< \textbf{X}, \widetilde{\textbf{u}} \right>_{\textbf{W}} = \textbf{0}$ (orthogonal conditions)

where $\widetilde{\mathbf{u}} = \mathbf{y} - \mathbf{X}\widetilde{\beta}$, that is,

$$egin{array}{c} \langle {f X}, {f X}
angle_{f W} \widetildeeta = \langle {f X}, {f y}
angle_{f W} \Rightarrow \widetildeeta = ({f X}' {f W} {f X})^{-1} {f X}' {f W} {f y}. \end{array}$$

Thus

$$\Pi(\mathbf{y}) = \mathbf{X} (\mathbf{X}' \mathbf{W} \mathbf{X})^{-1} \mathbf{X}' \mathbf{W} \mathbf{y} = \mathbf{P}_{\mathbf{X} \perp \mathbf{W} \mathbf{X}} \mathbf{y}$$

where the notation $P_{X \perp WX}$ will be explained later.

Ρ	ina	Yu	(Hk	(U)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Projection Matrices

- Since Π(y) = P_Xy is the orthogonal projection onto span(X), P_X is the orthogonal projector onto span(X).
- Similarly, û = y − Π(y) = (I_n − P_X) y ≡ M_Xy is the orthogonal projection onto span[⊥](X), so M_X is the orthogonal projector onto span[⊥](X), where I_n is the n×n identity matrix.
- Since

$$P_X X = X(X'X)^{-1}X'X = X,$$

 $M_X X = (I_n - P_X) X = 0;$

we say P_X preserves $\textit{span}(X),\,M_X$ annihilates $\textit{span}(X),\,\text{and}\,M_X$ is called the annihilator.

• This implies another way to express $\widehat{\mathbf{u}}$:

$$\widehat{\mathbf{u}} = \mathbf{M}_{\mathbf{X}}\mathbf{y} = \mathbf{M}_{\mathbf{X}}(\mathbf{X}\boldsymbol{\beta} + \mathbf{u}) = \mathbf{M}_{\mathbf{X}}\mathbf{u}.$$

• Also, it is easy to check $M_X P_X = 0$, so M_X and P_X are orthogonal.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Projection Matrices

continue...

- $\mathbf{P}_{\mathbf{X}}$ is symmetric: $\mathbf{P}'_{\mathbf{X}} = \left(\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\right)' = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' = \mathbf{P}_{\mathbf{X}}$.
- $\mathbf{P}_{\mathbf{X}}$ is idempotent⁶(intuition?): $\mathbf{P}_{\mathbf{X}}^2 = \left(\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\right)\left(\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\right) = \mathbf{P}_{\mathbf{X}}.$
- $\mathbf{P}_{\mathbf{X}}$ is positive semidefinite: for any $\alpha \in \mathbb{R}^{n}$, $\alpha' \mathbf{P}_{\mathbf{X}} \alpha = (\mathbf{X}' \alpha)' (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}' \alpha \ge 0$,
- "Positive semidefinite" cannot be strengthen to "positive definite".
- Why? For an idempotent matrix, the rank equals the trace⁷.

$$\operatorname{tr}(\mathbf{P}_{\mathbf{X}}) = \operatorname{tr}(\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}') = \operatorname{tr}((\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}) = \operatorname{tr}(\mathbf{I}_k) = k < n,$$

and

$$\operatorname{tr}(\mathbf{M}_{\mathbf{X}}) = \operatorname{tr}(\mathbf{I}_n - \mathbf{P}_{\mathbf{X}}) = \operatorname{tr}(\mathbf{I}_n) - \operatorname{tr}(\mathbf{P}_{\mathbf{X}}) = n - k < n.$$

- For a general "nonorthogonal" projector **P**, it is still unique and idempotent, but need not be symmetric (let alone positive semidefiniteness).
- For example, $P_{X \perp WX}$ in the GLS estimation is not symmetric.

⁶A square matrix **A** is **idempotent** if $\mathbf{A}^2 = \mathbf{A}\mathbf{A} = \mathbf{A}$.

⁷ Trace of a square matrix is the sum of its diagonal elements. tr(A+B) = tr(A) + tr(B) and tr(AB) = tr(BA): $\land \bigcirc$

Partitioned Fit and Residual Regression

E

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Partitioned Fit

• It is of interest to understand the meaning of part of $\hat{\beta}$, say, $\hat{\beta}_1$ in the partition of $\hat{\beta} = (\hat{\beta}'_1, \hat{\beta}'_2)'$, where we partition

$$\mathbf{X}\boldsymbol{\beta} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix} \begin{pmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \end{pmatrix}$$

with rank(\mathbf{X}) = k.

- We will show that $\hat{\beta}_1$ is the "net" effect of X_1 on y when the effect of X_2 is removed from the system. This result is called the Frisch-Waugh-Lovell (FWL) theorem due to Frisch and Waugh (1933) and Lovell (1963).
- The FWL theorem is an excellent implication of the projection property of least squares.
- To simplify notation, $\mathbf{P}_j \equiv \mathbf{P}_{\mathbf{X}_j}$, $\mathbf{M}_j \equiv \mathbf{M}_{\mathbf{X}_j}$, $\Pi_j(\mathbf{y}) = \mathbf{X}_j \hat{\beta}_j$, j = 1, 2.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - 釣ゑで

The FWL Theorem

Theorem

 $\hat{\beta}_1$ could be obtained when the residuals from a regression of **y** on **X**₂ alone are regressed on the set of residuals obtained when each column of **X**₁ is regressed on **X**₂. In mathematical notations,

$$\widehat{\boldsymbol{\beta}}_1 = \left(\mathbf{X}_{1\perp 2}^{\prime}\mathbf{X}_{1\perp 2}\right)^{-1}\mathbf{X}_{1\perp 2}^{\prime}\mathbf{y}_{\perp 2} = \left(\mathbf{X}_{1}^{\prime}\mathbf{M}_2\mathbf{X}_1\right)^{-1}\mathbf{X}_{1}^{\prime}\mathbf{M}_2\mathbf{y}.$$

where $\mathbf{X}_{1\perp 2} = (\mathbf{I} - \mathbf{P}_2)\mathbf{X}_1 = \mathbf{M}_2\mathbf{X}_1$, $\mathbf{y}_{\perp 2} = (\mathbf{I} - \mathbf{P}_2)\mathbf{y} = \mathbf{M}_2\mathbf{y}$.

• This theorem states that $\hat{\beta}_1$ can be calculated by the OLS regression of $\tilde{y} = M_2 y$ on $\tilde{X}_1 = M_2 X_1$. This technique is called **residual regression**.

Corollary

$$\Pi_1(\mathbf{y}) \equiv \mathbf{X}_1 \widehat{\boldsymbol{\beta}}_1 = \mathbf{X}_1 \left(\mathbf{X}_{1 \perp 2}' \mathbf{X}_1 \right)^{-1} \mathbf{X}_{1 \perp 2}' \mathbf{y} \equiv \mathbf{P}_{12} \mathbf{y} = \mathbf{P}_{12}(\Pi(\mathbf{y})).$$

・ロト ・回ト ・ヨト ・ヨト … ヨ

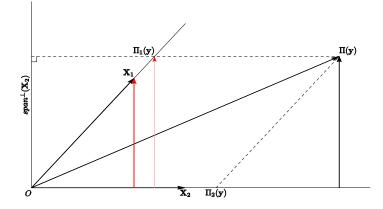
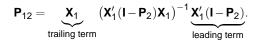


Figure: The FWL Theorem

<ロ> (四) (四) (日) (日) (日)



- $I P_2$ in the leading term annihilates $span(X_2)$ so that $P_{12}(\Pi_2(y)) = 0$. The leading term sends $\Pi(y)$ toward $span^{\perp}(X_2)$.
- But the trailing X₁ ensures that the final result will lie in span(X₁).
- The rest of the expression for P_{12} ensures that X_1 is preserved under the transformation: $P_{12}X_1 = X_1$.
- Why $P_{12}y = P_{12}(\Pi(y))$? We can treat the projector P_{12} as a sequential projector: first project y onto span(X) to get $\Pi(y)$, and then project $\Pi(y)$ to $span(X_1)$ along $span(X_2)$ to get $\Pi_1(y)$.
- $\hat{\boldsymbol{\beta}}_1$ is calculated from $\Pi_1(\mathbf{y})$ by

$$\widehat{\boldsymbol{\beta}}_1 = (\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'\Pi_1(\mathbf{y}).$$

◆□▶ ◆□▶ ◆臣▶ ★臣▶ 臣 のへの

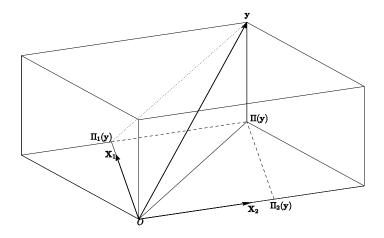


Figure: Projection by P₁₂

Ding	Vir i	(HKU)	
i iliy	10 1	(1110)	

38/42

<ロ> <同> <同> < 回> < 回> < 回> = 三回

Proof I of the FWL Theorem (brute-force)

- Calculate β₁ explicitly in the residual regression and check whether it is equal to the LSE of β₁.
- Residual regression includes the following three steps.

Step 1: Projecting y on X_2 , we have the residuals

$$\widehat{\boldsymbol{u}}_{\boldsymbol{y}} = \boldsymbol{y} - \boldsymbol{X}_2 (\boldsymbol{X}_2' \boldsymbol{X}_2)^{-1} \boldsymbol{X}_2' \boldsymbol{y} = \boldsymbol{M}_2 \boldsymbol{y}.$$

Step 2: Projecting X_1 on X_2 , we have the residuals

$$\widehat{\boldsymbol{U}}_{\boldsymbol{X}_1} = \boldsymbol{X}_1 - \boldsymbol{X}_2 (\boldsymbol{X}_2' \boldsymbol{X}_2)^{-1} \boldsymbol{X}_2' \boldsymbol{X}_1 = \boldsymbol{M}_2 \boldsymbol{X}_1.$$

Step 3: Projecting $\hat{\mathbf{u}}_y$ on $\hat{\mathbf{U}}_{\mathbf{x}_1}$, we get the residual regression estimator of β_1

$$\begin{split} \widetilde{\beta}_{1} &= \left(\widehat{U}_{\mathbf{X}_{1}}^{\prime}\widehat{U}_{\mathbf{X}_{1}}\right)^{-1}\widehat{U}_{\mathbf{X}_{1}}^{\prime}\widehat{u}_{\mathbf{y}} = \left(\mathbf{X}_{1}^{\prime}\mathbf{M}_{2}\mathbf{X}_{1}\right)^{-1}\left(\mathbf{X}_{1}^{\prime}\mathbf{M}_{2}\mathbf{y}\right) \\ &= \left[\mathbf{X}_{1}^{\prime}\mathbf{X}_{1} - \mathbf{X}_{1}^{\prime}\mathbf{X}_{2}(\mathbf{X}_{2}^{\prime}\mathbf{X}_{2})^{-1}\mathbf{X}_{2}^{\prime}\mathbf{X}_{1}\right]^{-1}\left[\mathbf{X}_{1}^{\prime}\mathbf{y} - \mathbf{X}_{1}^{\prime}\mathbf{X}_{2}\left(\mathbf{X}_{2}^{\prime}\mathbf{X}_{2}\right)^{-1}\mathbf{X}_{2}^{\prime}\mathbf{y}\right] \\ &\equiv \mathbf{W}^{-1}\left[\mathbf{X}_{1}^{\prime}\mathbf{y} - \mathbf{X}_{1}^{\prime}\mathbf{X}_{2}\left(\mathbf{X}_{2}^{\prime}\mathbf{X}_{2}\right)^{-1}\mathbf{X}_{2}^{\prime}\mathbf{y}\right] \end{split}$$

・ロン ・回 と ・ ヨン ・ ヨ

continue...

• On the other hand,

$$\widehat{\boldsymbol{\beta}} = \begin{pmatrix} \mathbf{X}_1' \mathbf{X}_1 & \mathbf{X}_1' \mathbf{X}_2 \\ \mathbf{X}_2' \mathbf{X}_1 & \mathbf{X}_2' \mathbf{X}_2 \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{X}_1' \mathbf{y} \\ \mathbf{X}_2' \mathbf{y} \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{W}^{-1} & -\mathbf{W}^{-1} \mathbf{X}_1' \mathbf{X}_2 (\mathbf{X}_2' \mathbf{X}_2)^{-1} \\ * & * \end{pmatrix} \begin{pmatrix} \mathbf{X}_1' \mathbf{y} \\ \mathbf{X}_2' \mathbf{y} \end{pmatrix},$$

and

$$\begin{aligned} \widehat{\boldsymbol{\beta}}_1 &= \mathbf{W}^{-1} \mathbf{X}_1' \mathbf{y} - \mathbf{W}^{-1} \mathbf{X}_1' \mathbf{X}_2 (\mathbf{X}_2' \mathbf{X}_2)^{-1} \mathbf{X}_2' \mathbf{y} \\ &= \mathbf{W}^{-1} \left[\mathbf{X}_1' \mathbf{y} - \mathbf{X}_1' \mathbf{X}_2 (\mathbf{X}_2' \mathbf{X}_2)^{-1} \mathbf{X}_2' \mathbf{y} \right] = \widetilde{\boldsymbol{\beta}}_1. \end{aligned}$$

• The partitioned inverse formula:

$$\begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix}^{-1} = \begin{pmatrix} \widetilde{\mathbf{A}}_{11}^{-1} & -\widetilde{\mathbf{A}}_{11}^{-1}\mathbf{A}_{12}\mathbf{A}_{22}^{-1} \\ -\mathbf{A}_{22}^{-1}\mathbf{A}_{21}\widetilde{\mathbf{A}}_{11}^{-1} & \mathbf{A}_{22}^{-1} + \mathbf{A}_{22}^{-1}\mathbf{A}_{21}\widetilde{\mathbf{A}}_{11}^{-1}\mathbf{A}_{12}\mathbf{A}_{22}^{-1} \end{pmatrix}$$
(9)

where $\widetilde{\boldsymbol{\mathsf{A}}}_{11} = \boldsymbol{\mathsf{A}}_{11} - \boldsymbol{\mathsf{A}}_{12}\boldsymbol{\mathsf{A}}_{22}^{-1}\boldsymbol{\mathsf{A}}_{21}.$

<ロ> <同> <同> < 回> < 回> < 回> = 三回

Proof II of the FWL Theorem

• To show
$$\widehat{\beta}_1 = (\mathbf{X}'_{1\perp 2}\mathbf{X}_{1\perp 2})^{-1}\mathbf{X}'_{1\perp 2}\mathbf{y}_{\perp 2}$$
, we need only show that
 $\mathbf{X}'_1\mathbf{M}_2\mathbf{y} = (\mathbf{X}'_1\mathbf{M}_2\mathbf{X}_1)\,\widehat{\beta}_1.$

• Multiplying $\mathbf{y} = \mathbf{X}_1 \widehat{\boldsymbol{\beta}}_1 + \mathbf{X}_2 \widehat{\boldsymbol{\beta}}_2 + \widehat{\mathbf{u}}$ by $\mathbf{X}_1' \mathbf{M}_2$ on both sides, we have

$$\mathbf{X}_1'\mathbf{M}_2\mathbf{y} = \mathbf{X}_1'\mathbf{M}_2\mathbf{X}_1\widehat{\boldsymbol{\beta}}_1 + \mathbf{X}_1'\mathbf{M}_2\mathbf{X}_2\widehat{\boldsymbol{\beta}}_2 + \mathbf{X}_1'\mathbf{M}_2\widehat{\mathbf{u}} = \mathbf{X}_1'\mathbf{M}_2\mathbf{X}_1\widehat{\boldsymbol{\beta}}_1,$$

where the last equality is from $M_2X_2 = 0$, and $X'_1M_2\hat{u} = X'_1\hat{u} = 0$ (why the first equality hold? $\hat{u} = Mu$ and $M_2M = M$).

・ロト ・回ト ・ヨト ・ヨト … ヨ

P₁₂ as a Projector along a Subspace

Lemma

Define $P_{X\perp Z}$ as the projector onto span(X) along span^{\perp}(Z), where X and Z are $n \times k$ matrices and Z'X is nonsingular. Then $P_{X\perp Z}$ is idempotent, and

$$\mathbf{P}_{\mathbf{X}\perp\mathbf{Z}} = \mathbf{X}(\mathbf{Z}'\mathbf{X})^{-1}\mathbf{Z}'.$$

- For orthogonal projectors, $\mathbf{P}_{\mathbf{X}} = \mathbf{P}_{\mathbf{X} \perp \mathbf{X}}$.
- To see the difference between P_X and $P_{X\perp Z}$, we check Figure 2 again.
- In the left panel, $\mathbf{X} = (1,0)'$ and $\mathbf{Z} = (1,1)'$; in the right panel, $\mathbf{X} = (1,0)'$. (why?)
- It is easy to check that

$$\textbf{P}_{\textbf{X}} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) \text{ and } \textbf{P}_{\textbf{X} \perp \textbf{Z}} = \left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right).$$

So an orthogonal projector must be symmetric, while an projector need not be. • $P_{12} = P_{X_1 \perp X_{1 \perp 2}}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□