Chapter 8. Single-Equation GMM*

The LSE, the GLS estimator, the MLE, the IV estimator and the 2SLS estimator are all special
cases of the generalized method of moments (GMM) estimator. This estimator is hinted in, e.g.,
Sargan (1958), Amemiya (1974) and White (1982b), but a formal development is usually credited
to Hansen (1982). In statistics, a related estimator is the generalized estimating equations (GEE)
estimator of Liang and Zeger (1986).

This chapter covers the single-equation generalized method of moments (GMM). Related mate-
rials can be found in Chapter 3 of Hayashi (2000), Chapters 21 and 22 of Ruud (2000), Chapter 6 of
Cameron and Trivedi (2005), Chapter 8 of Wooldrige (2010), and Chapter 13 of Hansen (2022). For
an intuitive introduction on GMM, see Alastair Hall (1993) and Wooldridge (2001); for discussion
on empirical application issues, see Ogaki (1993); for a more comprehensive treatment of GMM,
see Matyds (1999) and Alastair Hall (2005).

1 GMM Estimator

We consider the linear model in this section. In a linear model,

Elg(wi,B)] = E [z (yi — x;8)] = 0, (1)

where g(+,-) is a set of moment conditions, and w; = (y;, X}, Z) This is the instrument exogeneity
condition E [z;u;] = 0 in the endogenous linear regression model y; = x;3 + u; with E[x;u;] # 0.

Define the sample analog of
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When [ > k, we cannot solve g,,(3) = 0 exactly as intuitively shown in Figure [l The idea of the
GMM is to define an estimator which sets g,,(3) "close" to zero.

For some [ x [ weight matrix W,, > 0, let

Tn (B) =1 7,(8)Wng,(8). (2)

This is a non-negative measure of the "length" of the vector g, () under the inner product (-, )y
in Section 3 of Chapter 2. For example, if W,, = I, then, J,, (8) = n-5,,(8)7,.(8) = n|7,(8)|?
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Figure 1: g,(8) = 0 Can Not Hold Exactly for Any 5: k=1,1 =2

the square of the Euclidean length. The GMM estimator minimizes J,, (3). Note that if | = k,
then g, (3) = 0 can be solved exactly. The GMM estimator reduces to the MoM estimator (the IV

estimator) and W, is not required. The first order conditions for the GMM estimator are

~

0 = aaﬂJn (8) = 2n£3g;<B)ann(ﬂ>
= -2 <;X’z> W, <:L (Z’y - Z’X3)> :
Bev = [(X'Z) W, (ZX)] ' [(X'Z) W, (Zy)] . (3)

While the estimator depends on W,,, the dependence is only up to scale, for if W, is replaced
by ¢W,, for some ¢ > 0, ,@GM u does not change. In Section 4 of Chapter 7, 3 is identified as
(IVAT) 'IVAX = (E [xiz}] E[z;z}) ' AE[z;z}] 'E [zixg])_l E [x;7}) E[z;z})] 'AE[z;2)| ' E|z;y:], so
there, W,, is the sample analog of F[z;z}] !AE[z;z}]"!. When A = E[z,;z}], we obtain the 2SLS
estimator, that is, W,, = (Z'Z) .

From the FOCs of GMM estimation, we can see that although we cannot make g,(8) = 0
exactly, we could let some of its linear combinations, say B,g,,(3), be zero, where B,, is a k x [
matrix. For a weight matrix W,, B, = (1X'Z)W,. If W, -5 W > 0, and 1X'Z
E [x;z]] = G', B,, converges to B = G'W. So Benras is as if defined by a MoM estimator such
that Bgn(B) = 0. Equivalently, BG mar is using k instruments Bz, a linear combination of z, to

estimate (3.



2 Distribution of the GMM Estimator

Note that

b = () ()] (e )

Now,
<1X’Z> W, (lz’X> ., Gg'waG
n n
and
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where Q= F [zzz;uf] = FE[g;q}] with g; = z;u;. So
-~ d
vn (ﬁGMM - ﬁ) — N(0,V),

where

V = (G'WG) ™ (G'WQWG) (G'WG) . (4)

In general, GMM estimators are asymptotically normal with "sandwich form" asymptotic variances.

It is easy to check this asymptotic distribution is the same as the MoM estimator defined by

~

Bg,(8) = 0.

Exercise 1 Suppose the moment conditions are E [g(w;, 3)] = 0 with g(w,3) = g1(w) — ga(W)[.
Set up J,(B) as in (@ and derive the asymptotic distribution of the corresponding GMM estimator

of 3.

A natural question is what is the optimal weight matrix W that minimizes V. This turns out
to be Q71. The proof is left as an exercise. This yields the efficient GMM estimator:

B=(X'zQ'Z'X)"' X'207 7'y,

which has the asymptotic variance Vo = (G' QflG) ~!. This corresponds to the linear combination
matrix B = G'Q 1.
Wy = Q! is usually unknown in practice, but it can be estimated consistently. For any

w, = W, we still call B the efficient GMM estimator, as it has the same asymptotic distribution.

Exercise 2 In the linear model estimated by GMM with general weight matric W, the asymptotic
variance of BGMM is V in .

(i) Let Vg be this matriz when W = Q~1. Show that Vo = (G'Q*IG)A.



(i) We want to show that for any W, V. — Vo > 0. To do this, start by finding matrices A and
B such that V = A’QA and Vo = B'QB.

(iii) Show that B'QA = B'QB and therefore BQ(A — B) = 0.

(iv) Use the expressions V.= A’QA, A = B+ (A — B), and B'Q(A — B) = 0 to show that
V > V.

Exercise 3 Show that when a new group of instrumental variables is added in, the optimal asymp-
totic variance matriz Vo will not increase. Discuss when the two asymptotic variance matrices will

be equal. (Hint: use the result in Ezercise[d )

In the homoskedastic case, E [u?|z;] = 02, then Q = E [z;2]] 0 « E [z,2}] suggesting the weight
matrix W, = (Z'Z) ", which generates the 2SLS estimator. So the 2SLS estimator is the efficient
GMM estimator under homoskedasticity. When the heteroskedasticity is present, the optimal
weight matrix Q7! explores also the potential information of correlation between the squared

/

error, u?, and the cross-products of the instrumental variables, z;z’.

I. Testing E [u?|z;] = 02 can

be similarly conducted as in testing homoskedasticity in linear regression. Nevertheless, we need
to make an additional assumption to simplify the asymptotic arguments, i.e., Cov(x;, u;|z;) is a
constant[] Without this assumption, the tests for heteroskedasticity are more complicated; see
Wooldridge (1990) for the details.

Exercise 4 Tuke the single equation
y =XB+u, E[u|Z] = 0.

Assume E[u?|z;] = 0. Show that if B is estimated by GMM with weight matriz W, = (Z'7)71,
then
N (fa - ,6) 4N (0,g2 (G’M_lG)_l) ,

where G = E[z;x}] and M = E|[z;z})].

The following example illustrates why Wg = Q1.

Example 1 (Optimal Weight Matrix) Suppose Elx;| = Ely;| = p and Cov(z;,y;) = 0. We
try to find an efficient GMM estimator for p. First, sort out moment conditions E[g(w;, pn)] = 0,

g(Wi, 1) = ( xi_”)-
Yi —

Since 1 appears in both moment conditions, we hope to find a better estimator than T or y which

where w; = (z;,y;)':

uses only one moment condition. Of course, E[g(w;, )] = 0 uses extra information (x; and y;

have a common mean) about p, and not robust to such information.

"When z; = x; as in linear regression, Cov(x;,u;|z;) = 0, so such an assumption is not required.



We can use T or gy to estimate u, but a weighted average may be better. Suppose i = wWT +

(1 —w)y, and z; and y; are uncorrelated; then the asymptotic distribution of [i is
Vi (i = ) =5 N (0,022 + (1-w)’ 02,

where 0% = Var(z) and oy, = Var(y). Minimizing the asymptotic variance, we have

2
__ %
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That is, the sample (of x and y) with a larger variance is given a smaller weight, and the sample with
n @, may have a larger asymptotic variance than T or y). The asymptotic variance under this

a smaller variance is given a larger weight. (Check that p = which corresponds to W, = Iy

, . 030y : 2 2
optimal weight is P < min {aﬁ,ay}.

From Exercise[]] and[3, the optimal weight matriz

S 8
qI
N

B(w: — )’ E[(w—u)(yi—un)‘l:(a? o)

_ Wi, W, n-1 =
Wo = Elg(wi, m)g(wis )] ( Blwi—w) (i —w]  Ellyi— )’

SO i ) 2
Ju) = 1+ (1) Wag (1) = n (CK B k) ) ,
and

s the same as the weighted average above.
In practice, 02 and 02 are unknown. In this simple example, they can be substituted by their

sample analog. The next section deals with the general case. [

Exercise 5 In FExercise 12 of Chapter 7, find the efficient GMM estimator of B based on the
moment condition E[z;(y; — x;3)] = 0. Does it differ from 2SLS and/or OLS?

3 Estimation of the Optimal Weight Matrix

Given any weight matrix W,, > 0, the GMM estimator BG M 1s consistent yet inefficient. For
example, we can set W, = I;,. In the linear model, a better choice is W,, = (Z’Z)_1 which
corresponds to the 2SLS estimator. Given any such fist-step estimator, we can define the residuals

Ui = yi — X,Baayy and moment equations g; = z;u; = g <wi, Bam M). Construct

n

_ _ s 1 ~
9n = gn(IBG’MM) = ; Zgia
=1

g9 = g’b — Gn»



and define
1 & - 1 & -
W, = (n §;‘§;"> = (n > G- gng;) : (5)
=1 =1

Then W,, -2 Q! and GMM using W,, as the weight matrix is asymptotically efficient.

Exercise 6 Take the model y; = X3+ u; with E[z;u;] = 0. Let u; = y; —x;,é where B 18 consistent
for B (e.g., a GMM estimator with arbitrary weight matrix). Define the estimate of the optimal
GMM weight matriz

1 ¢ -
~2
W, = <n E ziz;ui> .

i=1

Show that W,, -2 Q=1 where Q = E[zlzzuf]

A common alternative choice is to set
1 & -
wo- (130) ©
1=

which uses the uncentered moment conditions. Since F [g;] = 0, these two estimators are asymp-
totically equivalent under the hypothesis of correct specification. However, Alastair Hall (2000) has
shown that the uncentered estimator is a poor choice. When constructing hypothesis tests, under
the alternative hypothesis the moment conditions are violated, i.e. F [g;] # 0, so the uncentered
estimator will contain an undesirable bias term and the power of the test will be adversely affected.
A simple solution is to use the centered moment conditions to construct the weight matrix.

Here is a simple way to compute the efficient GMM estimator for the linear model. First, set
W, = (Z Z)_l, estimate B using this weight matrix to get the first-step estimator ,@GM , and
construct the residual u; = y; — x;BG amy- Then set g; = z;u;, and let g be the associated n x [
matrix. Then the efficient GMM estimator is

~ -1
B=(XZ(§9-r9.3,)  ZX) XZ(F5-ng,g,) " Zy.

In most cases, when we say "GMM" we actually mean "efficient GMM". There is little point in
using an inefficient GMM estimator when the efficient estimator is easy to compute. An estimator

of the asymptotic variance of ,/8\ can be seen from the above formula. Set
T, Iy (I — 1\~ L1 -1
Vzn(XZ(gg—ngngn) ZX) .

Asymptotic standard errors are given by the square roots of the diagonal elements of \Y, /n.

Exercise 7 Suppose we want to estimate o2 in Exercise . (i) Show that n=' >°1 | 42 is consistent,



where U; = y; — xiB. (ii) In the structural model

y = Xi168;+ X285+,
Xy = XyI'ig+ZoT92 +V,

~ ~ /
show that n%b <1, _BIQ,QSLS) Y'MzY (1, _B;,zsLS) is also a consistent estimator of o2, where
Y = (v, Xy).

Given the efficient estimator B, we can continue to reestimate W,, by replacing g; by g (wi, B)
and construct a new estimator of 3. This is repeated until the 3 estimator converges or enough
iterations are conducted. The estimator generated from this procedure is called the iterative esti-

mator.

4 Nonlinear GMM
Suppose the moment conditions are
Eg(wi, 80)] =0,

where g(-,-) € R is a general nonlinear function of € R¥, [ > k. The GMM estimator 6 minimizes
Jn (0) =1 7,(0)Wy3,(0),

where g,(0) = n" 130 g(wi,0) = n 1Y | 9i(6), and W, is a consistent estimator of Q71 =
E[g:(00)gi(60)'] " which is the optimal weight matrix. For example,

-1
1 e . _
=1

with g; = ¢; <5> constructed using a preliminary consistent estimator 5, perhaps obtained by first
setting W,, = I,,. Since the GMM estimator depends upon the first-stage estimator, often the
weight matrix W, is updated, and then 0 recomputed. This estimator can be iterated if needed.

In Appendix A, we show 0 is CAN under some regularity conditions based on Newey and
McFadden (1994). More specifically,

NG (5 — 90) N (0, (G’Q—lc;)*l) = N(0,V), (7)

where G = E [0g;(680)/06’']. The asymptotic covariance matrix of 6 can be consistently estimated
N PPN | . PO .
by V = (G'Q—lc;) , where @ = n=1 S g#(0)gr(8) with g*(0) = gi(0) — G, (), and G =

nt " 9g:(6)/08'.
(*) For the MLE, the one-step estimator is efficient. Similarly, the one-step GMM estimator is



efficient. Such an estimator is defined as

—~ ~ ~\ / ~ ~ -1 ~\ / ~ ~
9—0-— <Gn (9) Q- (9) G, (9)) G, (9) ol (0) 3.(0),
where 0 = 6 + Op(1/y/n), Gy (0) = %gn(ﬂ), and Q, (0) =1/n>"" | g(w;,0)g(w;,0)".
Exercise 8 The equation of interest is
yi = m(x;, B) + u;, Elziui] = 0.

The observed data is (y;,X;,2;), z; islx1 and B is kx 1,1 > k. Show how to construct an efficient
GMM estimator for 3.

5 Hypothesis Testing

This section summarizes the tests in GMM. We first discuss two specification tests - the Hausman
test for the presence of endogeneity and the J test for the validity of overidentifying restrictions.
The J test is also called the Sargan-Hansen test due to a special case established by Sargan (1958)
and the general case by Hansen (1982). We then consider the three asymptotically equivalent tests
in the GMM framework - the Wald, Lagrange Multiplier (or Rao’s Score), and Likelihood Ratio
test. The LR test is also called the distance test or the Newey-West test due to Newey and West
(1987a). These tests are counterparts of those in the likelihood framework (see Section 4 of Chapter
4).

It should be emphasized that a specification test is a test for the whole model, not only for the
restrictions of interest. Only if it is guaranteed that the rest of the model (e.g., the rank condition)
is specified correctly, a rejection of the null is a sign of violation of the interested restrictions.

Nevertheless, a rejection of the null is typically cause for concern.

5.1 Testing for Exogeneity: The Hausman Test (*)

The null is E[xu] = 0, i.e., x is exogenous. If the null is true, then no instruments are needed.
Suppose the model is homoskedastic under the null, that is, E[u?|x] = 0. Under the null, the LSE
is efficient, while under the alternative it is inconsistent. On the other hand, the 2SLS estimator is
consistent under both the null and alternative. The Hausman test examines the null by checking
for a statistically significant difference between the OLS and 2SLS estimate of 3. There are various

versions of this test, three of which are

~ ~ PN ~ ~
—1
T = (52,2SLS - ﬁQ,OLS) \Z (ﬁz,QSLs - ﬁz,OLS) ,



where

G35 and 05 ¢ are estimates of 0% based on the 2SLS and OLS residuals, respectively, X, =
Mx, X2, and Zo = Mx,Z>. T» was proposed by Wu (1973; his T3 statistic) and by Hausman
(1978); T3 was proposed by Durbin (1954). Under the null, 7} 4, x2, where r =rank(V;) and
V; =plim (\A/]) See also Smith (1994) for several asymptotically equivalent limited information

tests.

5.2 Testing Overidentifying Restrictions: The J Test

The hypotheses are
Hy:3 By st. Elg(wi,By)] =0 (8)

vVersus

Hi: VB¢ B, E[g(wl,ﬁ)] 75 0,

where B is the parameter space. When [ = k, there always exists a 8, € B such that E[g(w;, 8))] =
0. So only if [ > k, we need this test - to test whether the overidentifying restrictions are valid.

For example, take the linear model y; = x},;8; +x5,8, + u; with E[xj;u;] = 0 and E[xg;u;] = 0.
It is possible that 3, = 0, so that the linear equation may be written as y; = x),;8; + u,;. However,
it is possible that B, # 0, and in this case it would be impossible to find a value of B, so that
Elx1; (yi — x1;81)] = 0 and E[x2; (y; — x},;81)] = 0 hold simultaneously. In this sense an exclusion
restriction (35 = 0) can be seen as an overidentifying restriction.

Note that yn(B) 2, E[g:(8y)], and thus yn(fi) can be used to assess whether or not the
hypothesis that E[g;(8;)] = 0 is true or not. The test statistic is the criterion function at the

parameter estimates

~ ~ ~

~ N _ _ S
Ju=Jn (B) = 79,(B) Wo5,(B) = n%5,(B) (75— n9,5,) ' 5.(8).
where W, is defined in . Under the hypothesis of correct specification,

d 2
In — Xi—k-

The degrees of freedom of the asymptotic distribution are the number of over-identifying restric-

tions. If the statistic J,, exceeds the chi-square critical value, we can reject the model.



Exercise 9 Tuake the linear model

v = X6+ ug,
Elz;w;] = 0,

and consider the GMM estimator B of B. Let
N ~
Jn=ng, (B) @5, (B)

denote the test of overidentifying restrictions. Show that J, 4, X?_k by demonstrating each of the

following:

(i) Since Q@ >0, we can write @1 = CC' and @ = C'~1C~L.
(ii) Jp =n (C’gn (B))' (C'ﬁc)fl 'y, (B)

(iii) C'g, (B) =D, C'g, (B,) where

-1
I, - C <1Z’X’) le'z) Q! <1Z’X>] <1X’Z> Q1o
n n n n

1
~7Z'u.
n

D,

?n (/80)

(iv) D, 2=I; - R(R'R)"'R/ where R = C'E[z;x}] = C'G.
(v) n1/2C'g, (By) <= Z ~ N(0,T).

i) J, -5 7' (I, - R(R'R)"'R/) Z.

(vii) Z/ (I, - R(R'R)"'R/) Z ~ x? ;.

(Hint: I — R(R'R)'R/ is a projection matriz. Note also the difference in the notation Z
and Z.)

An alternative way to understand the J test by Sargan (1958) is to show that it is actually an

F test in the homoskedastic linear model

yi = X101+ X585 + wi, (9)
FElzu;) = 0, Blul|z] = o?,

!/

where z; = (x);,2);)’. Exogeneity of the instruments means that they are uncorrelated with u;,

which suggests that the instruments should be approximately uncorrelated with u;, where u; =
~ ~ ~ ~1 ~r\/
yi — x1;,81 — x5,8, with 8 = (,81, 62> being the 2SLS estimator. So we expect in the regression

Uy = x1;01 + 25,02 + vi, (10)

10



the estimate of § = ( 1 5’2), is close to zero. Let F' denote the homoskedasticity-only F' statistic
testing d2 = 0; then o F' converges to Xl22—k2 = X?_k.

D o
u'Pz u

Exercise 10 In the homoskedastic linear model @/, show that (i) J, = nR2 = T/ where R2
is the uncentered R2 in the regression (@, and Zg = Mx, Z2; (ii) IoF has the same asymptotic

distribution as J,.

To further appreciate the idea of the J test, consider the linear model @D again. Suppose we
have one endogenous variable x2; and two instruments zo;, and then we can use either instrument
to estimate 3 = (ﬂ’l, ﬁé)/. If Hy holds, we expect that these two instruments will generate similar
estimates. If the two estimates are very different, then we suspect Hy fails. The J test implicitly
makes this comparison; see Newey (1985b) for such a Hausman test interpretation of the .J testﬂ
In other words, the J test is testing whether the estimates from different sets of instruments are
consistent with each other; it is not testing whether z is exogenous. Acceptance is consistent with
all of the instruments being endogenous, while failure is consistent with a subset being exogenous.
Passing an overidentification test does not validate instrumentation. In other words, the null
hypothesis of the GMM over-identification test is refutable but nonverifiable as a test of exogeneity
of z (see Breusch (1986)) - if the null is rejected, then we are sure that some (although need not all)
instruments are not exogenous; while even if the null is not rejected, all or some of the instruments
can be endogenous.

The following exercise rigorously shows that the J test does not have power against some

direction of violation of the null.

Exercise 11 We use the same setup and notations as in Fzxercise @ except that Elg(w,3,) =
Elz(y — x'B,))] = E [zu] = § /\/n. Show the following results.

() vn (B - ﬁn> AN ((G’Q—lG)_l G/Q—la,v), where V = (G'Q1G) .

(i) Jn —5 X2, (), where A = §'Q71 (2 — GVG') Q5.
(iii) X\ =0 if and only if 6 € span(G).

From this exercise, when § falls in span(G), a k-dimensional space, the J test does not have
power. Intuitively, when the null (8] holds, § =\/nE[g(w,3,))] = /n (Elg(w, B3,,)] — E[lg(w,B)]) =
Gv/n (B, — By) stays in span (G), a k-dimensional space, where we denote the 3 under the local
alternative as (3, and that under the null as B,. Since for whatever value E [g(w,3)] takes, we
can always find some 3 such that G'Q2~1E [g(w, 3)] = 0 and we actually estimate 3 using these
moment conditions, the J test obtains power only from the remaining [ — k¥ moment conditions not
covered by G'Q~1E [g(w,3)] = 0. This is why the degree of freedom of .J,, is | — k and also why
only when 9 falls in a (I — k)-dimensional space, the J test has power. On the other hand, if we

use the inner product (x,z) = x’Q 7'z, then when § falls in span(G)*, the asymptotic bias of B,

2See also Angrist (1991) for the dummy instrument case.

11



(G/Q_lG)_l G'Q2714, is zero. Intuitively, the estimation of 3 is based on G'Q~'E [g(w,3)] = 0
as mentioned in Section 1, so only the deviation § such that G'Q21§ # 0 would introduce bias to
B. In this sense, the bias of 3 and the power of the J test satisfy some orthogonality property.

The J test is a very useful by-product of the GMM methodology, and it is advisable to report
the statistic J,, whenever GMM is used. When over-identified models are estimated by GMM, it is
customary to report the .J,, statistic as a general test of model adequacy.

(**) As reported in the July 1996 issue of the Journal of Business and Economic Statistics, the
J test tends to over-reject in finite samples. On the other hand, Tauchen (1986) reported cases
in which J,(8) evaluated at the iterative estimator led to underrejection of the overidentifying
restrictions.

When the J test rejects the null, there are two responses, either screening correct moments
based on some moment selection procedure as in Section or estimating the misspecified model
directly. We briefly discuss the second response here based on Hall and Inoue (2003). It can be
shown that (i) the probability limit of the GMM estimator depends on the limit of the weighting
matrix; (ii) the limiting distribution of the GMM estimator depends on the limiting distribution
of the elements of the weighting matrix (especially the rate of converence to its limit); (iii) the
iterated estimators are not asymptotically equivalent; (iv) the three asymptotically equivalent tests
discussed in the next subsection are not asymptotically equivalent or asymptotically y2-distributed
under the null. They propose statistics for testing hypotheses about the pseudo-parameters which

have limiting x? distributions under the null. (**)

5.3 Three Asymptotically Equivalent Tests: The Wald, LM and Distance Test

Suppose we want to test

Hyp:r(B)=0 vs Hy:r(B)#0.
(9x1) (gx1)

We impose the same regularity conditions, Assumption RLS.1’; as in Section 4 of Chapter 5 on r(-).
Specifically, we assume that r(-) is continuously differentiable at the true value § and R = %r(ﬁ)’
has rank gq.

We described before how to construct estimates of the asymptotic covariance matrix of the

GMM estimates. These may be used to construct Wald tests of statistical hypotheses. Specifically,
AN\ [~ ~~7—1 ~
W, =n-r <,6') [R’VR} r (ﬁ) :
where ,[Ai is the unrestricted estimator

B = arg minJu(B),

12



and for a given weight matrix W, in Section [3] the GMM criterion function

and R = Or (B>//86.

The principal advantage of the Wald test is that it only requires the unconstrained estimator to
compute it. Its principal disadvantage is that it is not invariant to reparametrization as discussed
in Section 10 of Chapter 5. When the hypothesis is non-linear, a better approach is to directly use
the GMM criterion function. This is sometimes called the GMM Distance statistic, and sometimes
called a LR-like statistic. The idea was first put forward by Newey and West (1987a). Define the

restricted estimator E as

= arg min J,(3).
B g uin, (8)

The two minimizing criterion functions for 8 and 3 are Jn(B) and J,(8). The GMM distance

statistic is the difference
Dn = Jn(IB) - Jn(IB)

As discussed before, if r is non-linear, the Wald statistic can work quite poorly. In contrast, current
evidence suggests that the D statistic appears to have quite good sampling properties, and is the
preferred test statistic; see Hansen (2006) for a comparison of its higher-order properties with the
Wald statistic. Newey and West (1987a) suggested to use the same weight matrix W, for both null
and alternative, as this ensures that D,, > 0. This reasoning is not compelling, however, and some
current research suggests that this restriction is not necessary for good performance of the test.
This test shares the useful feature of LR tests in that it is a natural by-product of the computation
of alternative models.

Another test is the Lagrange multiplier (LM) or the score test. Its test statistic is constructed

) it =0 [ (3) W ()] ¥ [ (3) W (3)].

where .

V= |c. (8) w.c. ()]

and G, (E)/ann (B) is the first-order derivative of J, () at B and plays the role of the score
function in the likelihood framework. As the LM test statistic in the likelihood framework, we need
only calculate the restricted estimator B, while we need to calculate both ,5' and B in the distance
statistic.

As in Section 11 of Chapter 5, we can also consider the minimum distance (or minimum chi-

square) test. Define

BEMD = arg r(f[gl)ileo <B - 5) v-! (B - 5) ;

where B is the optimal GMM estimator, and V is an estimator of its asymptotic covariance matrix.
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It can be shown that /n (,@EMD - B) = 0p(1); see, e.g., Proposition 2 of Newey and West (1987a).

The minimum chi-square statistic is
MC, =n <5 - 5EMD> v (,3 - IBEMD> :
Like the distance statistic, it requires two minimizations to compute.

5.3.1 The Trinity in GMM

As in the likelihood case, we can show that the Wald, LM and distance tests are asymptotically
equivalent. Actually, we can show they are asymptotically equivalent even under the local alterna-
tives and when the moment conditions are nonlinear in 3. Moreover, they are even asymptotically
equivalent to the minimum chi-square test. This result is rigorously stated in Theorem 2 of Newey
and West (1987a).

Proposition 1 Under some regularity conditions, and the local alternatives B, = B + n~1/2p,
d 2
Wn — Xq()\)7

where A = b'R (R'VR) ' Rb. In addition, W,,—D,, = 0,(1), W,,—LM,, = 0,(1), and W,—MC,, =
op(1).

It should be emphasized that the optimal weight matrix is used in the construction of D,;
otherwise, D,, is not asymptotically chi-squared and is not asymptotically equivalent to W,,. This
is parallel to the result in the misspecified likelihood case. Also, the form of the LM statistic would
be more complicated, and would in general involve the Jacobian matrix R of the constraints. So it
is strongly suggested to use the optimal weight matrix in the hypothesis testing of GMM.

We now consider some special cases. The following proposition follows from Proposition 1, 3
and 4 of Newey and West (1987a).

Proposition 2 (i) When the model is just-identified, LM, = D,,. (ii) When g(w,8) = gi1(w) —
92(W)B, Dn = LMy, = MCy. (iii) When g(w,B) = g1(w) — g2(w)B and r(8) = R'B8 — c,
W, =D, =LM, =MC,.

Result (i) can be easily proved. In the just-identified case, g, (B) =0, s D, = J,(8) =

n-g, (,@)I W.,g, (,B) On the other hand, given G, (B’) is invertible,

) W..G, (B)] v [(N;,L (fa)'wngn <~B>,]

LM, = n {gn (B

14



The equivalence in (ii) does not include W, because it involves the Jacobian of the constraints when
r(-) is nonlinear. We will provide some intuition on D,, = LM,, at the end of the next subsection.
The following exercise shows Result (iii) in the linear instrumental variables case. The minimum
distance statistic J' in Section 11 of Chapter 5 is numerically equivalent to D, and LM, even if

the restrictions are nonlinear since it can be put in case (ii) of Proposition

Exercise 12 Take the linear model

o= XiB+ui
E[zlul] = 0,

and consider the unrestricted GMM estimator B and restricted GMM estimator ,B of B under the

linear constraints R'3 = c. Define

and then B = arg n%ian(,B) and B = arg Rr%irl Jn(B). Define the Lagrangian

L(B,A) = %Jn(ﬁ) +XN(RB-c).
(i) Show that
B = B- (X'zﬁ—lz’x)_1 R [R’ (X’zﬁ—lz’x)_1 R} o (Rfﬁ _ c) 7

% [R’ (X’zﬁ—lz’x) - R] - (R’B - c) .

>)
Il

(ii) Derive the asymptotic distribution ofB under the null.
(iii) Show that
- ~ 1/~ ~\/ ~ ~ -
Jn (B) = Ju (B) + - (B~ B) X207 2X (B~ B).
(iv) Show that the distance statistic is equal to the Wald statistic.

(**)The numerical equivalence result suggests a convenient way to calculate D,, in the linear

model
yi = xB+w,
Elz;w;) = 0,
Define z} = z;u;, and Z* = (z3,--- ,z}), vF = vi/w, y* = (y5,-- ,v}), xI = x;/u; and X* =
(x3,---,x%)". The 2SLS estimator 3 for a regression of y* on X* with instruments Z* is an efficient
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estimator of 3, where W, in @ is used as the efficient weight matrix (why?). Define @} = y —x}’ B,

and u* = (uj,--- ,u;)’. The sum of squares of the predicted values of a regression of @} on z} is
Sp =02 (Z2V2") 126 = (y — XB)ZW,Z'(y — XB)/n = Ju(B).

Substitute out the constraints R’3 — ¢ = 0, and repeat the procedure above for the restricted
estimator Let §n be the counterpart of §n; then D,, = §n — §n

The numerical equivalence result seems puzzling given the ranking W > LR > LM in the
normal regression model (see Section 5 of Chapter 4). Part of the explanation is that we assume
that all statistics use the same estimate V of V. Also, our objective function uses the FOCs rather
than the log-likelihood itself. (**)
5.3.2 Summary of the Trinity in GMM and the M-estimation (*)
We generally consider the extremum estimator which is defined as

0 = argmax ,,(0)
st. 8 ¢ OCR”

where @, (+) is a general criterion function. To test Hy : r(€) = 0, we sometimes need the constrained

estimator, denoted as 6, which solves

max Qn(0)
st. r(@)=0

Among extremum estimators, the most popular cases are M-estimators (e.g., the MLE) and

GMM estimators. Their criterion functions are as follows:

n

1. M-estimators: @, (0) = £ 3~ m (w;;0), that is, the objective function is a sample average.
i=1

2. GMM: Q,(0) = —%gn(O)’ ngn(0)

Here, we define Q,(0) = —%Jn (6) to give an analog of the average log-likelihood in the ML case.

3When the constraints are nonlinear, we cannot substitute out for the constraints and use the 2SLS calculation to
obtain the residuals for the restricted estimates.
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The following notation will be used throughout this section:

om(w;; 0) Os(wi;0)  0*m(wy; 0)
s(wi;0) = ————~ H(w;;0) = = ,
(kx1) 00 (kxk) 00’ 0000’
gn(e) = - Zg Wla a ) - I' (0), /80
(Ix1) (kxq)
3gn(Wi, 0) dg(wi; 69)
Gn(0) = “IViT) g - p|9RET)
(l><(k‘)) 80/ (Ixk) |: 80/
Q, (0) = lZn:g(W"t‘))g(W"G’)’ Q = Elg(wi;00)9(w;60)'].
(ZX"Z) n - (3 (3] 7([)([) (3] (3]

We summarize the asymptotic approximation of these statistics and tests in the following two
tables, which are Tables 7.1 and 7.2 of Hayashi (2000). Table 1 provides the correspondence of
Taylor expansion for the sampling error between M-estimators and GMM estimators. Table 2
gives the components of the three asymptotically equivalent test statistics in the ML and GMM
estimation. Also, Figure [2] provides an intuitive explanation for these three tests. W, can be
interpreted as twice the difference in the criterion function at the two estimates, using a quadratic
approximation to the criterion function at 5; LM, can be interpreted as twice the difference in the
criterion function at the two estimates, using a quadratic approximation to the criterion function
at 5; and D, is precisely twice the difference in the criterion function at the unconstrained and

constrained estimates. Note that the same covariance matrix € is used in Qn(a) and Qn(6).

Exercise 13 Suppose § € R, Hy is 0 — ¢ = 0, and the curvature of Q,(0) at 0 is —% and at 0 is
—3. Show that (i) W, is twice the difference in Q,(0) at 0 and 5, using a quadratic approrimation
to Qn(0) at @; (i) LM, is twice the difference in Qn(6) at 0 and /é, using a quadratic approximation
to Qn(6) at 6.

Jn (5 - 00> w1 Qi) oo (1), %l L, (o3, Avar<§> — ¢ lny!
Terms for substitution M-estimators GMM
Qn (0) LY m(wi;0) —39,(0)W,,5,,(0)
o .
Vgl 75 2 s (wii 60) —[Gn(60)] Wik 3 g (w3 60)
=1 =1
v E [H(w;;09)] -G'WG

> E [s(w;;60)s(w;;60)'] G'WOWG

Table 1: Taylor Expansion for the Sampling Error
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1 —
sWan PP nQn(H)

Figure 2: Trinity

Wald: n-r(@) [ R(0)'S (9)} 11«(5)
LM: n <8Qn(0 ) <8Q" )
n(0

LR: 20 [Qu(9) - ()m

Terms for substitution

Conditional ML Efficient GMM

Qn(0)

s

b

1 i log f (yi |x:;6) ~15.(0Y91g,(6)

_2Qu@®) 1 ahH aeie & - _
"Qu(0) o Z s(w: )(wz,a) G'Q G, (Z(X;k)_Gn(e) a%) Q, (9)
GG, G =G,0), O =Q, (9)

replace 9 by 6 in above (Ixk) (Ix1)

Table 2: Trinity

From Figure [2 we can understand why D,, = LM, when g(w, ) is linear in 8 even if r(-) is

nonlinear in Proposition [2[(ii).

This is because in this case, @, (8) is exactly quadratic if g(w, 3)

is linear in B3, so the quadratic approximation of the LM statistic (the lower blue line) coincides
with @, (0) itself (the red line). As a result, the differences at the two estimates in Q,,(83) and the

quadratic approximation are the same.

* The same weighting matrix is used in Qn(a) and @, () for GMM to guarantee LR is greater than 0 in finite
samples. Also, we can see D, = J,,(0) — J,(0).

5 or let 1(0)

= E[s(w;;0)s(wi;0)'], and & = 1(9).
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5.4 Confidence Regions

By inverting the test statistics, we can construct confidence regions for 8. A straightforward choice
of the test statistic is the Wald statistic. However, as mentioned above, the distance statistic may
perform better in some cases of hypothesis testing. We expect the confidence region by reverting
the distance statistic would inherit its good properties in testing. Suppose we want to construct
confidence region for @5, where 8 = (07,05) € R* and 65 € R*? is a subvector of 8. We need to
find 65 such that

In (61 (62) ,92) — Jn <§> < Xa o

where 51 (03) = argmin g, J, (01,03) for a given 02, the df of the x? limiting distribution is ko
because the df of J, (51 (02) ,02) is | — k1 and the df of J, (5) is | — k so the difference is
(I —Fk1)— (I —k) =k — k1 = ka. Of course, we can construct confidence region for 82 by collecting

0,’s such that J, <51 (02) ,02) < Xl2—k1,a directly. However, by observing that .J,, (51 (02) ,92) =
[Jn (51 (62) ,02) —Jn (5)} + Jn (5), we can conclude that this confidence region is based on the

joint test of overidentification and 05 = 69. If the model is misspecified so that the overidentifying

conditions are invalid, this confidence region can be null.

6 Moment Selection (*)

If the J test rejects the null, we suspect there are some moment conditions which are invalid. Thus,
it may be useful to employ a moment selection procedure to estimate which moments are correct
and which are incorrect. On the other hand, as mentioned in Section [9) we may need to select
moments among many valid ones to improve finite-sample inference. We use Andrews (1999) and

Donald and Newey (2001) to exemplify these two scenarios.

6.1 Andrews (1999)

Andrews (1999) develops parallel information criteria (IC) as in the least squares environment;
he labels these criteria by adding the prefix GMM. He shows that the GMM-version IC is indeed
analogue of the usual IC. To see why, note that for a moment selection vector ¢ (which is a vector

of 0 and 1 with 1 indicating that the corresponding moment equation is included),

Jn(c) = ngg@};lgw,c (9n(8) — Dep)' Wi, (5,,(6) — Deps) (11)

is the same as (with a op(1) diﬁ'erence)ﬂ

Jn(e) = ninf (7,c(0)) Wn(c) (G,(9))

f
6o

% Actually, by the results of Back and Brown (1993), the minimizers in these two minimization problems are exactly
the same.
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where D¢ sets the moment conditions with zeros in ¢ equal to u (e € RI™* corresponds to the
just-identified model, or the smallest model allowed), g, includes the elements of g, with ones
in ¢, and W,, and W,,(c) are constructed in the same fashion as in Section The number of
parameters with selection vector ¢ is k + [ — |c|, where |c| is the number of moment conditions
selected by ¢, and [ — |c| is the number of excluded moment conditions. Rewrite k 4+ [ — |c| as
[ — ge, where gc = |c| — k is the number of "over-identifying restrictions". All parameters in J
are (6', /) € R!. With the selection parameter c, the last g parameters are set as zero. Thus,
different selection vectors correspond to the setting of different parameters equal to zero in , just
as different models correspond to the setting of different parameters equal to zero in the likelihood
environment of Section 4 in Chapter 6. Actually, J;(c) (= Jn(c) + 0p(1) N X2, under "correct"
selection) plays the role of 2n [(,,(M2) — £,(M1)], and ¢ plays the role of ko there.

The general moment selection criteria (MSC) is specified as
MSC,,(c) = Ju(c) — h(|c|)kn,

where ¢ € C is a moment selection vector, C is the selection set which may not include all possible
selection vectors, h(-) is strictly increasing, k, — oo and k, = o(n). Take h(z) = x — k, where k is

the number of parameters; then

GMM-BIC: kn =1Inn and MSCgicn(c) = Jp(c) — (|c| — k) Inn;
GMM-AIC: kn =2 and M SCaicn(c) = Jn(c) —2(|c| — k) ;
GMM-HQIC: kn = QInlnn for some @ > 2 and M SCuqicn(c) = Jn(c) — Q (|c| — k) Inlnn.

The MSC estimator, €yssc, is the minimizer of M SC),(c). It is shown that cj;g¢ is consistent in
the sense that €ygc L, cg, where cq is the set of moments whose expectation is zero for some
0 € © and whose number is largest among all such sets of moments. We assume ¢y € C and is
unique; otherwise, ¢j;sc will converge to a set that includes all possible selection vectors which
maximize the number of valid moments. €j;g5c determines when there are no over-identification
restrictions. In GMM-AIC, k, = 2 -» o0, so the GMM-AIC procedure is not consistent. It has
positive probability even asymptotically of selecting too few moments.

A simple method can be used to detect whether an MSC is reliable. In cases where an MSC
performs poorly, there are typically two or more selection vectors that yield MSC values close to
the minimum and that yield parameter estimates differing noticeably from each other. In cases
where a moment selection procedure performs well, the latter typically does not occur.

Andrews also considers two testing procedures to select correct moment conditions: downward
testing (DT) and upward testing (UT) procedures. These procedures are similar to informal meth-
ods based on the J test often employed by empirical researchers to determine which moments to
use. In the DT procedure, we start with ¢ € C for which |c| is the largest, and then test with
progressively smaller |c| until the null cannot be rejected. Let kpr be this value of lc|; Tpr is the

selection vector that minimizes J,,(c) over ¢ € C with |c| = kpr. If the critical values used in the
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J test diverge to infinity at a slower rate than n, then ¢pr is consistent. The UT procedure is a
converse procedure of the DT procedure. Under additional restrictions which avoids the procedure
stopping early, ¢y is also consistent, where €y is similarly defined as ¢pr with %UT, the largest
k such that for all |c| < k there is at least one ¢ for which the null is not rejected, replacing EDT.

Monte Carlo results show that GMM-BIC, DT, and UT procedures perform best and about
equally well, the GMM-HQIC procedure is next best and the GMM-AIC procedure is worst overall.

Andrews and Lu (2001) extend the results to cover simultaneous moment and model selection;
they apply their procedures to dynamic panel models. Hong et al. (2003) use GEL-statistics to
provide an alternative interpretation of Andrews’ MSCs. Chen et al. (2007) propose a nonpara-
metric likelihood ratio testing procedure for choosing between a parametric (likelihood) model and
a moment condition model when both models could be misspecified; their procedure is based on
comparing the Kullback-Leibler Information Criterion (KLIC) between the parametric model and
moment condition model. Hall et al. (2007) propose an entropy-based moment selection procedure
to select relevant moments among valid moment conditions (with possibly weak identification).
DiTraglia (2013) extends the focused information criterion (FIC) of Claeskens and Hjort (2003)
to FMSC and shows that the use of an invalid but highly relevant instrument can substantially
improve inference in finite samples. Caner (2009) studies the LASSO-type GMM estimator and

Liao (2013) extends to the general shrinkage estimator.

6.2 Donald and Newey (2001)

Different from Andrews (1999) who is searching for the largest set of valid instruments, Donald
and Newey (2001) propose a simple method to choose among wvalid instruments, by minimizing
approximate MSE. Their emphasis is on MSE approximation when the instruments may be weak
and the number of instruments may be large.

The model is

yi = 21,01 + x50 +ui = x;8 + w;, Elui|z;] = 0,

o 26\ _op) 4y — Z1 0
X; = (X%)_f( z)+ i (E[X2i|zi]>+<v2i>’

where z; can be a few continuous variables, many dummy variables or even be infinite dimensional,

and (u;, v;) is homoskedastic (see Donald, Imbens and Newey (2009) for extensions). Let

Yl ="(z) = W1k (zi), - ik (2:))

be a vector of instruments, where 'l,bZK includes zy;. Because E[u;|z;) =0, E [1,bZKul] = 0. Different
values of K correspond to different instrument sets. Usually, we specify '(le such that the earliest
terms have the biggest impact on the reduced form. Given that 'lﬂ,LK depends on K, the instrument
sets need not form a nested sequence. K cannot be too large to avoid too variable estimator due

to the selection process.

21



Define ¥X = (¢1 S ,1/;5) and PX = ¥X (\IIK’\IJK) WX’ where A~ denotes a generalized
inversel y,X2,71,X are defined by stacking the corresponding vectors. A is the minimum of
(y — XB)PE(y — X3)/(y — XB)(y — XB), and A = (K — I} — 2)/n. The estimators considered

are

2SLS: B = (X'PEX)'X'PKy,
LIML: 8= (X'PKX - AX'X)~ (X’PK y - KX’y) ,
B2SLS: B = (X'PXX - AX'X)"! (X'PXy - AX'y),
where B2SLS is a bias adjusted version of 2SLS (see Nagar (1959) and Rothenberg (1984)), it is a K-

estimator with K = and is shown to be unbiased to second order in the fixed-instrument,

(RT3
normal-error model in Rothenberg (1984). The instrument selection is based on minimizing the
approximate MSE of a linear combination X/B of the IV estimator, where X is some vector of
estimated linear combination coefficients.

Estimating the MSE requires preliminary estimates of some of the parameters of the model
and a goodness of fit criterion for estimation of the (first stage) reduced form using the instrument
1,biK . The preliminary estimator can be either an IV estimator with only as many instruments as
right-hand side variables or an IV estimator where instruments are chosen to minimize one of the
first stage goodness of fit criteria below. Note that the preliminary estimator does not depend on

K. Given some preliminary estimator of 3, say B, define

G2 =0'u/n, 63 = VAVA/N, Oau = VAl/n,
where 1 =y — X3, va = VH !X, V = (I-PHX)X, and H = X'PEX /n for some fixed K is an
estimator of f'f/n with f = [f(z1), -+, f(z,)]’. As to goodness of fit criterion, cross-validation and
Mallows (1973) reduced form goodness of fit criteria are considered. The cross-validation criterion
is
A L (5
RiU(K) - Z b 92"
" (1-PE)
The Mallows criterion is
Vil 2K
+O3

RY(K) =

where v v)\ VEH1IX with VK = (I - PE)X, and A;; denotes the 4, jth element of a matrix A.

"The generalized inverse of A is defined in Appendix C of Chapter 2.
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Given these preparations, the approximate MSE of the estimators are

~ K? ~ K
2SLS: SA(K) = 3§u7 +352 <R>\(K) - 3§n> ,

~2

LIML: Sx(K) =52 <RA(K) _ %K) ,
N . 52 K

B2SLS: S\(K) =52 (RA(K) - "3;) :

where the approach to calculating the approximate MSE is similar to Nagar’s (1959). 2SLS includes
a bias term 8§\UK72, while LIML and B2SLS include only variance terms. The first variance term
GiﬁA(K ) is common and comes from approximating the reduced form f(z) by linear combinations

of 9% (z). The second variance term comes from the FOCs of the three estimators:

2SLS:  X'PE(y —Xp) =0,
LIML: (X — &) PE(y - XB) = 0,a = X'u/d'q,
B2SLS: X'PX(y —XB) — (K —1; —2)X'i =0,

where u =y — X/ B for each estimator E, da’ in LIML eliminates an important source of 2SLS
bias arising from the correlation between X and u, and the bias correction for B2SLS subtracts an
estimate of the bias from 2SLS FOCs. The first variance term decreases with K while the second
increases with K. For each estimator, the K that minimizes the corresponding S A(K) will result
in X/,B that has relatively small MSE asymptotically. For 2SLS, K accounts for a trade-off between
bias and variance, while for LIML and B2SLS, K accounts for a trade-off only between variance
terms. When dim(zy) = 1, the value of K that minimizes these criteria will not depend on A

Donald and Newey show that their method can improve the finite sample properties of the three

IV estimators in the sense that R
ﬂ 2.9
ming Sx(K) ’

where Sx(-) is the true dominant term of the exact MSE. They also compare the approximate MSE

of these estimators, and find the LIML is best.

Their results also apply to the choice of nonlinear functions to use in the efficient semiparamet-
ric instrumental variables estimator of Newey (1990b). In this case instrument choice is analogous
to choosing the smoothing parameter in semiparametric estimation. In Donald and Newey’s frame-
work, Kuersteiner and Okui (2010) extend the model averaging of Hansen (2007b) to the 2SLS

estimation.

7 Extensions to GMM (*)

Note that for the asymptotic arguments in the previous sections to go through, we need some

critical assumptions on the data generating process. Relaxing these assumptions is the task of
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current econometric practices. We will overview some extensions in the literature. These extensions
are interacted with each other and also with the alternative inference methods mentioned above.
From Appendix A, the asymptotic approximation in requires at least the following six

assumptions. We list these assumptions and the relevant literature to relax them.

(i) wi,i=1,--- ,n,is arandom sample. If w;, i = 1,--- ,n, are time series wy, t = 1,--- , T, such

that g(wy, @) are correlated, then the optimal

Q = TE [g7(00)gr(00)']

= > Elg(wi00)9(wi . 80)] = > .

V=—00 vV=—00

A consistent estimator of €2 is often called the heteroskedasticity and autocorrelation consistent
(HAC) estimator. Reading starts from Newey and West (1987b, 1994), Andrews (1991),
Andrews and Monahan (1992) and Phillips (2005).

(ii) g(w, @) is smooth in . When ¢ is nondifferentiable and/or discontinuous in @ (e.g., the
moment conditions in quantile regression), the asymptotic arguments in Section [4 and the
usual calculation algorithm for the GMM estimator may be problematic; see Pakes and Pollard
(1989), Andrews (1997a) and Chernozhukov and Hong (2003) for classical referencesf]

(iii) G is full column rank. When this assumption fails, there is the weak or partial identification
problem as mentioned in Chapter 1. Especially, when G ~ n~1/2C, the instruments are weak,
and @ cannot be consistently estimated ] The 2SLS estimator is close to the LSE so suffers a
serious bias problem. This strand of literature starts from Nelson and Startz (1990a,b) and
Bound et al. (1995). Classical references include Staiger and Stock (1997) and Stock and
Wright (2000) on estimation and Wang and Zivot (1998) [LR and LM tests|, Moreira (2003)
[two conditional tests| and Kleibergen (2002, 2005) [K-test] on inference. See Stock et al.
(2002), Dufour (2003), Hahn and Hausman (2003), Andrews and Stocks (2007), Mikusheva
(2013), Andrews et al. (2019) and Keane and Neal (2024) for summaries.

(iv) ! is fixed. When [ can go to infinity, there are many moment conditions which will increase
the bias of the GMM estimator and deteriorates the estimation of 2. Reading starts from
Bekker (1994), Chao and Swanson (2005), Han and Phillips (2006), Newey and Windmeijer
(2009) and Mikusheva and Sun (2022). See Anatolyev (2019) for a summary.

(v) k is fixed. When k can go to infinity, there are nonparametric parameters in the moment
conditions. For identification, we need infinite moment conditions. Reading starts from
Newey and Powell (2003), Ai and Chen (2003), Blundell and Powell (2003), Hall and Horowitz
(2005) and Darolles et al. (2011). See Chen (2007) for a summary.

SEspecially, Andrews (1997a) discusses the asymptotic properties of the J statistic while Pakes and Pollard (1989)
do not.

’If G ~ Cn~'/2, then E[g(w;,8)] = G (B8 — B,) = n~Y2C (B — B,). As a result, J, (8) /n = 0 even for 8 # B,,
and the identification fails.
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(vi) There are only moment equalities. If there are moment inequalities, @ can only be partially
identified. Reading starts from Chernozhukov et al. (2007), Beresteanu and Molinari (2008),
Pakes et al. (2015). See Molchanov and Molinari (2014, 2018), Bontemps and Magnac (2017),
Canay and Shaikh (2017), Ho and Rosen (2017) and Molinari (2020) for summaries.

In the following, we illustrate the difficulties introduced by (iii) and (iv), i.e., weak instruments
and many instruments, and we also show how to test whether the instruments are weak and how

to conduct inference with weak instruments. Our discussions follow Sections 12.35-12.39 of Hansen

(2022).

7.1 Identification Failure

Recall the reduced form equation

The parameter 3 fails to be identified if I'so has deficient rank. The consequences of identification
failure for inference are quite severe.

Take the simplest case where k3 = 0 and ko = [o = 1. Then the model may be written as

y = zB+u. (12)
r = zv+uv,

and T'yy = v = E[za] /E [2%]. We see that 3 is identified if and only if v # 0, which occurs
when F [zz] # 0. Thus identification hinges on the existence of correlation between the excluded
exogenous variable and the included endogenous variable.

Suppose this condition fails. In this case v = 0 and E [zz] = 0. We now analyze the distribution
of the least squares and IV estimators of 3. For simplicity we assume conditional homoskedasticity

and normalize the variances of u,v and z to unity. Thus

() (11), (13)

The errors have non-zero correlation p # 0 when the variables are endogenous.

By the CLT we have the joint convergence

1 — ZiU; d & N 1 p
a()=(2)001)

It is convenient to define £y = £; — p{, which is normal and independent of &,.
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As a benchmark it is useful to observe that the least squares estimator of § satisfies

—1 n
2 nTlY i vl p
— = —— O
/BOLS 5 n_l 227,21 'U,? P 7 )

so endogeneity causes BOLS to be inconsistent for 5. Under identification failure v = 0 the asymp-

totic distribution of the IV estimator is

—~ —1/25
nTEY iz d € §
Piv—B=——5 %11,%_>*1:P+*0~
n Eizlzzxz 52 §2

This asymptotic convergence result uses the continuous mapping theorem which applies since the
function £, /&, is continuous everywhere except at £, = 0, which occurs with probability equal to
Zero.

This limiting distribution has several notable features. First, EIV does not converge in proba-
bility to a limit, rather it converges in distribution to a random variable. Thus the IV estimator is
inconsistent. Indeed, it is not possible to consistently estimate an unidentified parameter and S is
not identified when v = 0. Second, the ratio £;/{, is symmetrically distributed about zero so the
median of the limiting distribution of BIV is B+ p. This means that the IV estimator is median
biased under endogeneity. Thus under identification failure the IV estimator does not correct the
centering (median bias) of least squares. Third, the ratio £;/£, of two independent normal random
variables is Cauchy distributed. This is particularly nasty as the Cauchy distribution does not have
a finite mean. The distribution has thick tails, meaning that extreme values occur with higher
frequency than the normal. Inferences based on the normal distribution can be quite incorrect.
Together, these results show that v = 0 renders the IV estimator particularly poorly behaved — it
is inconsistent, median biased, and non-normally distributed.

We can also examine the behavior of the ¢-statistic. For simplicity consider the classical (ho-

moskedastic) t-statistic. The error variance estimate has the asymptotic distribution
~ 1< =2
o = - > (Z/i - wiﬁlv)
i=1
I, 2L . I~ 5/ 2
= - (B =)+ 3 at (A - 6)
=1 =1 =1
2
LI 2p5—1 <§1> .
£ \&

Thus the t-statistic has the asymptotic distribution
d, §1/82 &1

Bv — B .
" \/H ) 7~ slen(&) 2
R P n 2T 9.8 & _9,8 &
7 2iet z/‘\/azz,l \/1 2p£;+<£;) / 1€2] \/1 2p£;+<£;>

The limiting distribution is non-normal, meaning that inference using the normal distribution will
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be (considerably) incorrect. This distribution depends on the correlation p. The distortion is
increasing in p. Indeed as p — 1 we have £, /&, %, 1 and the unexpected finding 5% -~ 0. The
latter means that the conventional standard error s (BIV) for BIV also converges in probability to
zero. This implies that the ¢-statistic diverges in the sense |t | 2, 0. In this situations users may

incorrectly interpret estimates as precise despite the fact that they are highly imprecise.

7.2 Weak Instruments

In the previous subsection we examined the extreme consequences of full identification failure.
Similar problems occur when identification is weak in the sense that the reduced form coefficients
are of small magnitude. In this section we derive the asymptotic distribution of the OLS, 2SLS,
and LIML estimators when the reduced form coefficients are treated as weak. We show that the
estimators are inconsistent and the 2SLS and LIML estimators remain random in large samples.
To simplify the exposition we assume that there are no included exogenous variables (no x;) so

we write Xa, z2, and By simply as x,z, and 8. The model is

y=x'B+u,

(14)
x =I"z + vs.

/ . . .
Recall the reduced form error vector f = (e, v})" and asume its covariance matrix

TR
E[ff'|lz] =% = ( 2” 212 ) . (15)
21 22

Recall that the structural error is u = e — 3'vo = ~/f, which has variance E [u2|z] = ~'X~, where
vy = (1, —,@’),. Also define the covariance X, = E [vou|z] = X917 — X99/3.

In the last subsection we assumed complete identification failure in the sense that I' = 0. We
now want to assume that identification does not completely fail but is weak in the sense that T’
is small. A rich asymptotic distribution theory has been developed to understand this setting by
modeling T" as “local-to-zero”. The seminal contribution is Staiger and Stock (1997). The theory
was extended to nonlinear GMM estimation by Stock and Wright (2000).

The technical device introduced by Staiger and Stock (1997) is to assume that the reduced form

parameter is local-to-zero, specifically
I =n"'/2C. (16)

where C is a free matrix. The n~1/2 scaling is picked because it provides just the right balance
to allow a useful distribution theory. The local-to-zero assumption is not meant to be taken
literally but rather is meant to be a useful distributional approximation. The parameter C indexes
the degree of identification. Larger |C|| implies stronger identification; smaller ||C|| implies weaker
identification.

We now derive the asymptotic distribution of the least squares, 2SLS, and LIML estimators
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under the local-to-unity assumption (16). The least squares estimator satisfies

BOLS - B = (n_lX’X)_1 (n_lX’u) = (n_lV'QVg)_1 (n_1V’2u) +op (1) 2, 22_2122u.

Thus the least squares estimator is inconsistent for 3.

To examine the 2SLS estimator, by the central limit theorem
LS g = (61,6)
= il — \81,82/)>
vn i=1

where vec(€) ~ N (0, E [ff' @ zz']). This implies

b
NG

Z'u -5 €, = €.

We also find that

1 1 1
ﬁz’x = ﬁz’zc + ﬁZ'VQ <, Q.C +&,.
Thus
, 1 ’ 1 / -1 1 / d I y—1
X'PzX = ﬁxz 7'z %ZX — (QzC +£,)' Q, (QC +&y)
and

1 171 ;o
X'Pzu = (%X’Z) (nz’z) (\/ﬁZ’u) 4, (Q,C+¢&,) Qyle,.

We find that the 2SLS estimator has the asymptotic distribution

BQSLS -B= (X/PZXY1 (X'Pzu) 4, [(QzC + €)' Q. ' (Q.C+ &) - (QzC + &) Q, ¢,

(17)

As in the case of complete identification failure we find that BQSLS is inconsistent for 3, it is

asymptotically random, and its asymptotic distribution is non-normal. The distortion is affected
by the coefficient C. As ||C|| — oo, the distribution in converges in probability to zero

suggesting that BQSLS is consistent for 3. This corresponds to the classic “strong identification”

context.

Now consider the LIML estimator. The reduced form is Y = ZII + V. This implies MzY =

MzV and by standard asymptotic theory

1 1
~Y'MzY = -V'MzV 5 = = F [v/].
n n

Define 3 = (3,1}) so that the reduced form coefficients equal IT = (I'3,T') = n~1/2CA3. Then

Loov_tzzcas Lav 4 Q,cht¢
n n vn

3
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and
Y'Z(22)"'2Y % (Q,CB+¢) Q' (Q.CB +¢).

This allows us to calculate that by the continuous mapping theorem

YY'Z(ZZ) ' Z'Yy 0 . 7 (Q.CB+€) Q' (Q,CB+E)y
— 11N /411 3

= II}VIH Y'Y 'MzY~vy ~ 230"

which is function of £ and thus random. We deduce that the asymptotic distribution of the LIML

estimator is
2 / 1 / - I 1 /
BLHWL — B = X PZX — n,ng MZX X qu — nng Mzu
d - * -1 — *
— [(Q:C+£)'Q, " (Q.C+ &) — ' S2n]  [(QC+&,) Q. '€, — 1 B20%a,] .

Similarly to 2SLS, the LIML estimator is inconsistent for 3, is asymptotically random, and non-
normally distributed.

We summarize

Theorem 1 Under @,

2 p -1
IBOLS -8 222 You,

Boss— B -5 [(QC +£,)' Q.1 (Q.C +&,)] (Q.C+¢,) Q)

and

Boni — B -5 [(QC +6) Q1 (QuC + &) — 1" Sa]  [(QuC + &) Q1€, — 1 EnSn,] |

where

e Y (QuCB+8)Q," (Q.CP+€)y

= mi
a v '3y

All three estimators are inconsistent. The 2SLS and LIML estimators are asymptotically random
with non-standard distributions, similar to the asymptotic distribution of the IV estimator under
complete identification failure explored in the previous subsection. The difference under weak

identification is the presence of the coefficient matrix C.

7.3 Many Instruments

Some applications have available a large number [ of instruments. If they are all valid, using a
large number should reduce the asymptotic variance relative to estimation with a smaller number
of instruments. Is it then good practice to use many instruments? Or is there a cost to this

practice? Bekker (1994) initiated a large literature investigating this question by formalizing the
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idea of “many instruments”. Bekker proposed an asymptotic approximation which treats the
number of instruments [ as proportional to the sample size, that is, | = an, or equivalently that
I/n — « € [0,1). The distributional theory obtained is similar in many respects to the weak
instrument theory outlined in the previous subsection. Consequently the impact of “weak” and
“many” instruments is similar.

Again for simplicity we assume that there are no included exogenous regressors so that the model
is . We also make the simplifying assumption that the reduced form errors are conditionally

homoskedastic, i.e., . In addition we assume that the conditional fourth moments are bounded
E [|ny4 |z] <B<w. (18)

The idea that there are “many instruments” is formalized by the assumption that the number of

instruments is increasing proportionately with the sample size

l
— . 1
~—a (19)

The best way to think about this is to view « as the ratio of [ to n in a given sample. Thus if an
application has n = 100 observations and [ = 10 instruments, then we should treat o = 0.10.
Suppose that there is a single endogenous regressor . Calculate its variance using the reduced
form: Var () = Var (2'T')+Var (v). Suppose as well that Var (z) and Var (u) are unchanging as
increases. This implies that Var (2'T") is unchanging even though the dimension [ is increasing. This
is a useful assumption as it implies that the population R? of the reduced form is not changing with
I. We don’t need this exact condition, rather we simply assume that the sample version converges

in probability to a fixed constant. Specifically, we assume that
1 n
- > T'zizT -5 H> 0. (20)
i=1

Again, this essentially implies that the R? of the reduced form regressions for each component of
X converge to constants.
As a baseline it is useful to examine the behavior of the least squares estimator of 3. First,

observe that the variance of vec(n™! Y7 | I'z;f!) conditional on Z, is

n
X on 2 Z Izz I 250
i=1

by . Thus it converges in probability to zero:

n
n 'y T'zf] - 0. (21)
=1
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Combined with and the WLLN we find

1 @& 1 @ 1 &
/ p
— E XU = — E Izu;, + — E Voill; — 2oy
=1 =1 =1

and

1 & 1 & 1 & 1 & 1
p
ﬁ Z Xixg = ﬁ Z I‘,ZZ’Z;F + g Z I"ziv'% + ﬁ Z V2iZ;F + g Z V27;V,2,L' — H+ 222.
i=1 i=1 i=1 =1 i=1
Hence
~ 1 <& -1 1 &
Bois — B = (n ZXiX;> <n ZXZU’Z> £, (H + 222)_1 Yo,
i=1 i=1

i.e., the LSE is inconsistent for 3.

Now consider the 2SLS estimator:
2 1 / - 1 /
ﬁQSLS — ﬁ = *X PZX *X qu
n n
1 L 1, 1, IS PV
=|-T'ZZT + -T'Z'Vy + —V,ZT + —V,P7zV, —I"Z'u+ —V5Pzu |, (22)
n n n n n n

In the expression on the right-side of several of the components have been examined in
and . We now examine the remaining components %VéPZVQ and %V'szu which are sub-
components of the matrix %V’PZV. Take the jk'" element %V}PZV;C.
First, take its expectation. We have (given under the conditional homoskedasticity assumption
E)
E [ivgpzvk

1 1 !
z] = ~tr (B [PaVaV}|Z]) = tr (P2) By = B — Ty (23)

using tr(Pz) = L.

Second, we calculate its variance which is a more cumbersome exercise. Let P, = Z! (Z' Z)f1 Z,
be the im'™ element of Pz. Then V&PZV;\C = > 1 UjiUkmPim. The matrix Pz is idem-
potent. It therefore has the properties > " | P;; =tr(Pz) = [ and 0 < P; < 1. The property
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PzPz = Pz also implies "' _, P2 = P;;. Then

1
Var <TLV;PZVI€

2
Z> = %E <ZZ UjiUm — F ujiukm]l{i:m})Pim> Z

i=1 m=1

n n n

- %E Z Z Z Z (Ujiukm - Eﬂfl {7’ m}) m (U]qukr - ijl {q = 7’}) Py
i=1

=1 m=1g¢=1r=1

1 n
= EZ(uﬂUM—E k)’ P}

n
+% Z Z b [Uiuzm P2 + - Z Z B u]zukmujmukz] P

=1 m#i i=1 m#i
s nz(z DN
i=1 m=1
l
< nZ;Pﬁ:sBTﬁHO.

The third equality holds because the remaining cross-products have zero expectation as the obser-
vations are independent and the errors have zero mean. The first inequality is . The second
uses Y i P2<>"  Pyand Y n_, P2 = P,;. The final equality is Y & | Py = [.

Using ., ., Markov’s inequality, and combining across all j and k we deduce that

1
~V'PzV = aX. (24)
n
Returning to the 2SLS estimator and combining , , and , we find
Basrs — B 5 (H+ aXa) ' aXy,.

Thus 2SLS is also inconsistent for 3. The limit, however, depends on the magnitude of .
We finally examine the LIML estimator. implies

1 1 1
“Y'MzY = -V'V--V'PzV -2 (1-0)%.
n n n

Similarly,
| R o (Lo = A [ Lo L =, Ly
—Y'Z(2'2)"72Y = BI'(-ZZ|TB+BT(-Z'V |+ (-V'Z|TB+-V'PzV
n n n n n
2, 3H3 +ax.
Hence
— =
N ) "}’/YIZ (le)—l Z/Y")’ » ) ’)’, <,3 Hﬁ +a2)’7 Qa
= Imin —> ININ =
= Y'Y 'MzY~ ¥ (1 — a) Xy 1-—«
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and

- 1 1 el 1
Brmr — B = <X/PZX - ﬁX/MzX> (X/qu - ﬁX/Mzu)
n n n n

(0% «

—1
L2, <H + aXoy — 1 (1 — a) 222) (Ongu — (1 — a) 22u>

—« l1—«

= H'lo=o0.

Thus LIML is consistent for 3 unlike 2SLS.

We state these results formally.

Theorem 2 In model , under assumptions , (@ and (@), then as n — oo,

BOLS — B (H+ ) ' 3o,
Bosis — B - (H+ aXy) ' aSy,,

Brm — B —= 0.

This result is quite insightful. It shows that while endogeneity (39, # 0) renders the least
squares estimator inconsistent, the 2SLS estimator is also inconsistent if the number of instruments
diverges proportionately with n. The limit in Theorem [2| shows a continuity between least squares
and 2SLS. The probability limit of the 2SLS estimator is continuous in o with the extreme case
(o = 1) implying that 2SLS and least squares have the same probability limit. The general
implication is that the inconsistency of 2SLS is increasing in «. The theorem also shows that unlike
2SLS the LIML estimator is consistent under the many instruments assumption. Effectively, LIML
makes a bias-correction.

Theorem |[1| (weak instruments) and 2| (many instruments) tell a cautionary tale. They show
that when instruments are weak and/or many, the 2SLS estimator is inconsistent. The degree
of inconsistency depends on the weakness of the instruments (the magnitude of the matrix C in
Theorem [1)) and the degree of overidentification (the ratio o in Theorem [2). The theorems also
show that the LIML estimator is inconsistent under the weak instrument assumption but with a
bias-correction, and is consistent under the many instrument assumption. This suggests that LIML
is more robust than 2SLS to weak and many instruments.

An important limitation of the results in Theorem [2] is the assumption of conditional ho-
moskedasticity. It appears likely that the consistency of LIML fails in the many instrument setting
if the errors are heteroskedastic.

In applications users should be aware of the potential consequences of the many instrument
framework. It is useful to calculate the “many instrument ratio” o = [/n. While there is no
specific rule-of thumb for « which leads to acceptable inference a minimum criterion is that if
a > 0.05 you should be seriously concerned about the many-instrument problem. In general, when

« is large it seems preferable to use LIML instead of 2SLS.
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7.4 Testing for Weak Instruments

In the previous subsections we found that weak instruments results in non-standard asymptotic
distributions for the 2SLS and LIML estimators. In practice how do we know if this is a problem?
Is there a way to check if the instruments are weak?

This question was addressed in an influential paper by Stock and Yogo (2005) as an extension of
Staiger and Stock (1997). Stock-Yogo focus on two implications of weak instruments: (1) estimation
bias and (2) inference distortion. They show how to test the hypothesis that these distortions are
not “too big”. They propose F-tests for the excluded instruments in the reduced form regressions
with non-standard critical values. In particular, when there is one endogenous regressor and a single
instrument the Stock-Yogo test rejects the null of weak instruments when this F-statistic exceeds
10. While Stock and Yogo explore two types of distortions, we focus exclusively on inference as
that is the more challenging problem. In this subsection we describe the Stock-Yogo theory and
tests for the case of a single endogenous regressor (k3 = 1). In the following subsection we describe
their method for the case of multiple endogeneous regressors.

While the theory in Stock and Yogo allows for an arbitrary number of exogenous regressors
and instruments, for the sake of clear exposition we will focus on the very simple case of no
included exogenous variables (k; = 0) and just one exogenous instrument (I = 1) which is model
(12). Furthermore, as in Section we assume conditional homoskedasticity and normalize the
variances as in . Since the model is just-identified the 2SLS, LIML, and IV estimators are all
equivalent.

The question of primary interest is to determine conditions on the reduced form under which
the IV estimator of the structural equation is well behaved, and secondly, what statistical tests can
be used to learn if these conditions are satisfied. As in Section [7.2] we assume that the reduced
form coefficient T is local-to-zero, specifically I' = n=/24. The asymptotic distribution of the IV

estimator is presented in Theorem [I} Given the simplifying assumptions the result is

where (§,,,&,) are bivariate normal, and £, = £; in Section For inference we also examine the

behavior of the classical (homoskedastic) t-statistic for the IV estimator. Note
. 1 ¢ S \2
52 = - > (yz - xzﬂlv)
i=1
1 ¢ 2 O -~ 1~ 5 (5 2
C IS 2 o)+ S ()
i=1 i=1 i=1

d o 5 & &)’
! 2pM+f2+<M+§2>'

34



Thus

P B — B d Eu/ (B + &)
" ~21 n 2711 n o 2
Vo n >im1%/ ’ /n D im1 ZiTi \/1 - 2pui"£2 + (uiuég) [+ &
= sign (1 + &) Su == S. (25)
& €u
\/1 o QPIH‘SQ + (/H‘fz)

In general, S is non-normal and its distribution depends on the parameters p and pu.

Can we use the distribution S for inference on 57 The distribution depends on two unknown
parameters and neither is consistently estimable. This means we cannot use the distribution in
with p and p replaced with estimates. To eliminate the dependence on p one possibility is to use
the “worst case” value which turns out to be p = 1. By worst-case we mean the value which causes
the greatest distortion away from normal critical values. Setting p = 1 we have the considerable

simplification

S=8 =¢ (1 ; i) sign (1), (26)

where & ~ N (0,1). When the model is strongly identified (so |u| is very large) then .S; < € is
standard normal, consistent with classical theory. However when g is very small (but non-zero)
|S1| ~ €2/ |p| (in the sense that this term dominates), which is a scaled x? and quite far from
normal. As || — 0 we find the extreme case |S;| - oo.

While is a convenient simplification it does not yield a useful approximation for inference
as the distribution in is highly dependent on the unknown p. If we take the worst-case value
of p, which is u = 0, we find that |S;| diverges and all distributional approximations fail.

To break this impasse Stock and Yogo (2005) recommended a constructive alternative. Rather
than using the worst-case p they suggested finding a threshold such that if u exceeds this threshold
then the distribution (26| is not “too badly” distorted from the normal distribution.

Specifically, the Stock-Yogo recommendation can be summarized by two steps. First, the distri-
bution result (26 can be used to find a threshold value 72 such that if 42 > 72 then the size of the
nominal 5% test “Reject if |¢,]| > 1.96” has asymptotic size P (|S1]| > 1.96) < 0.15. This means that
while the goal is to obtain a test with size 5%, we recognize that there may be size distortion due
to weak instruments and are willing to tolerate a specific distortion. For example, a 10% distortion
means we allow the actual size to be up to 15%. Second, they use the asymptotic distribution
of the reduced-form (first stage) F-statistic to test if the actual unknown value of ;2 exceeds the
threshold 72. These two steps together give rise to the rule-of-thumb that the first-stage F-statistic
should exceed 10 in order to achieve reliable IV inference. (This is for the case of one instrumental
variable. If there is more than one instrument then the rule-of-thumb changes.) We now describe
the steps behind this reasoning in more detail.

The first step is to use the distribution to determine the threshold 72. Formally, the goal

is to find the value of 72 = u? at which the asymptotic size of a nominal 5% test is actually a given
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r (e.g., 7 = 0.15), thus P (]S1| > 1.96) < r. By some algebra and the quadratic formula the event
§<1+§>‘ < x is the same as

2 2 2

[ ( H) lall

L e < &+ 5 < 1 +xp

as g > 0. The random variable between the inequalities is distributed 3 (,u2 /4), a noncentral

chi-square with one degree of freedom and noncentrality parameter ;2/4. Thus

2
P(\S1|2m):P(X% (1?/4) > —|—:w> +P<X% (1?/4) gljl—:w>
2 2 2 2
[ [ 1
frd 1 — _ - . -
G(4+x,u,4)+G(4 xu,4), (27)
where G (u, \) is the distribution function of x2 (A). Hence the desired threshold 72 solves

-2 72 2 -2
1-6 (T +1.96r, = T 196r, 7 ) =
G<4+ 967’,4>+G<4 967’,4) r

or effectively
2

2
G<T4+1.967,T4) —1—7
because 74—2 —1.967 < 0 for relevant values of 7. The numerical solution (computed with the non-
central chi-square distribution function, e.g. ncx2cdf in MATLAB) is 72 = 1.70 when 7 = 0.15.
(That is, the command

ncx2cedf (1.7/4 4+ 1.96 « sqrt(1.7),1,1.7/4)

yields the answer 0.85. Stock and Yogo (2005) approximate the same calculation using simulation
methods and report 72 = 1.82.) This calculation means that if the reduced form satisfies p? > 1.7,
or equivalently if I'?> > 1.7/n, then the asymptotic size of a nominal 5% test on the structural
parameter is no larger than 15%.

To summarize the Stock-Yogo first step, we calculate the minimum value 72 for ;2 sufficient to
ensure that the asymptotic size of a nominal 5% t-test does not exceed r, and find that 72 = 1.70
for r = 0.15.

The Stock-Yogo second step is to find a critical value for the first-stage F-statistic sufficient to
reject the hypothesis that Hy : 2 = 72 against Hy : u? > 72. We now describe this procedure.

They suggest testing Hy : u? = 72 at the 5% size using the first stage F-statistic. If the F-
statistic is small so that the test does not reject then we should be worried that the true value of
12 is small and there is a weak instrument problem. On the other hand if the F-statistic is large
so that the test rejects then we can have some confidence that the true value of p? is sufficiently
large that the weak instrument problem is not too severe.

To implement the test we need to calculate an appropriate critical value. It should be calculated

under the null hypothesis Hg : u? = 72. This is different from a conventional F-test which is
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calculated under Hy : p? = 0.

We start by calculating the asymptotic distribution of F'. Since there is one regressor and one
instrument in our simplified setting the first-stage F'-statistic is the squared t-statistic from the
reduced form. Given our previous calculations it has the asymptotic distribution

~2 2
- (Xt 2iwi)” d

G T e el () (2)

This is a non-central chi-square distribution G (u, ,uQ) with one degree of freedom and non-centrality
parameter ,u2.
To test Hp : pu? = 72 against Hy : u? > 72 we reject for F' > ¢ where c is selected so that the

asymptotic rejection probability satisfies
P (F > c|u? = 72) — P (X% (7’2) > c) =1-G (C,T2) =0.05

for 72 = 1.70, equivalently G (c,1.7) = 0.95. This is found by inverting the non-central chi-
square quantile function, e.g. the function @ (p,d) which solves G(Q(p,d),d) = p. We find that
¢ = Q(0.95,1.7) = 8.7. In MATLAB, this can be computed by ncx2inv(.95,1.7). Stock and Yogo
(2005) report ¢ = 9.0 because they used 72 = 1.82.

This means that if ' > 8.7 we can reject Hy : u? = 1.7 against Hy : p4? > 1.7 with an asymptotic
5% test. In this context we should expect the IV estimator and tests to be reasonably well behaved.
However, if F' < 8.7 then we should be cautious about the IV estimator, confidence intervals, and
tests. This finding led Staiger and Stock (1997) to propose the informal “rule of thumb” that the
first stage F' statistic should exceed 10. Notice that F' exceeding 8.7 (or 10) is equivalent to the
reduced form ¢-statistic exceeding 2.94 (or 3.16), which is considerably larger than a conventional
check if the t-statistic is “significant”. Equivalently, the recommended rule-of-thumb for the case
of a single instrument is to estimate the reduced form and verify that the ¢-statistic for exclusion
of the instrumental variable exceeds 3 in absolute value.

Does the proposed procedure control the asymptotic size of a 2SLS test? The first step has
asymptotic size bounded below r (e.g., 15%). The second step has asymptotic size 5%. By the
Bonferroni bound the two steps together have asymptotic size bounded below r + 0.05 (e.g., 20%).
We can thus call the Stock-Yogo procedure a rigorous test with asymptotic size r + 0.05 (or 20%).

Our analysis has been confined to the case ky = l2 = 1. Stock and Yogo (2005) also examine the
case [z > 1 (which requires numerical simulation to solve) and both the 2SLS and LIML estimators.
They show that the F-statistic critical values depend on the number of instruments I as well as
the estimator. Their critical values (calculated by simulation) are in their paper and posted on

Motohiro Yogo’s webpage. We report a subset in Table 1.
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Maximal Size r
2SLS LIML

Il 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25
1 164 9.0 6.7 5.5 164 9.0 6.7 5.5
2 199 116 87 7.2 8.7 53 44 39
3 223 128 95 7.8 6.5 44 3.7 33
4 246 140 103 8.3 54 39 33 3.0
5 269 151 11.0 8.8 48 36 3.0 28
6 292 162 11.7 94 44 33 29 26
7 315 174 125 99 4.2 32 27 2.5
8§ 33.8 185 13.2 10.5 40 30 26 24
9 36.2 197 140 11.1 3.8 29 25 23

10 385 209 148 11.6 3.7 28 25 22

15 504 26.8 187 122 33 25 22 20

20 623 328 22.7 17.6 3.2 23 21 19

25 742 388 26.7 20.6 3.8 22 20 18

30 86.2 44.8 30.7 23.6 3.9 2.2 1.9 1.7
Table 1: 5% Critical Value for Weak Instruments, ko = 1

One striking feature about these critical values is that those for the 2SLS estimator are strongly
increasing in [y while those for the LIML estimator are decreasing in Iy (except for r = 0.10 where
the critical values are increasing for large l3). This means that when the number of instruments
lo is large, 2SLS requires a much stronger reduced form (larger p?) in order for inference of 3, to
be reliable, but this is not the case for LIML. This is direct evidence that LIML inference is less
sensitive to weak instruments than 2SLS. This makes a strong case for LIML over 2SLS, especially
when [s is large or the instruments are potentially weak.

We now summarize the recommended Staiger-Stock/Stock-Yogo procedure for ky > 1, kg = 1,

and [y > 1. The structural equation and reduced form equations are
yi = 2181 + 2y +u,
Y2 = Z,171 + Zl272 + v,

where following the literature, the endogenous variable x2 is denoted as y». The structural equation
is estimated by either 2SLS or LIML. Let F' be the F-statistic for Hp : 75 = 0 in the reduced form

equation. Let s <B2) be a standard error for 8, in the structural equation. The procedure is:

1. Compare F' with the critical values ¢ in Table 1 with the row selected to match the number
of excluded instruments l2 and the columns to match the estimation method (2SLS or LIML)

and the desired size r.

2. If F > ¢ then report the 2SLS or LIML estimates with conventional inference.
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There are possible extensions to the Stock-Yogo procedure.

One modest extension is to use the information to convey the degree of confidence in the
accuracy of a confidence interval. Suppose in an application you have lo = 5 excluded instruments
and have estimated your equation by 2SLS. Now suppose that your reduced form F-statistic equals
12. You check Table 1 and find that F' = 12 is significant with » = 0.20. Thus we can interpret the
conventional 2SLS confidence interval as having coverage of 80% (or 75% if we make the Bonferroni
correction). On the other hand if F' = 27 we would conclude that the test for weak instruments is
significant with » = 0.10, meaning that the conventional 2SLS confidence interval can be interpreted
as having coverage of 90% (or 85% after Bonferroni correction). Thus the value of the F-statistic
can be used to calibrate the coverage accuracy.

A more substantive extension, which we now discuss, reverses the steps. Unfortunately this
discussion will be limited to the case I = 1. First, use the reduced form F-statistic to find
a one-sided confidence interval for p? of the form [u2,00). Second, use the lower bound p? to
calculate a critical value ¢ for S7 such that the 2SLS test has asymptotic size bounded below 0.05.
This produces better size control than the Stock-Yogo procedure and produces more informative
confidence intervals for 3,. We now describe the steps in detail.

The first goal is to find a one-sided confidence interval for u2. This is found by test inversion.
As we described earlier, for any 72 we reject Hy : p? = 72 in favor of Hy : p? > 72 if F > ¢
where G(c,72) = 0.95. Equivalently, we reject if G(F,72) > 0.95. By the test inversion principle
an asymptotic 95% confidence interval [u%, 00) is the set of all values of 72 which are not rejected.
Since G(F,7%) < 0.95 for all 72 in this set, the lower bound u? satisfies G(F,72) = 0.95, and is
found numerically. In MATLAB, the solution is mu2 when ncx2cdf(F,1,mu2) returns 0.95.

The second goal is to find the critical value ¢ such that P (|S1| > ¢) = 0.05 when u? = u2. From
this is achieved when

2 2 2 2
KL FrL KL Hr
1 . M 2
G< + cur, >+G< Clby,, > 0.05 (29)

This an be solved as

2 2
0 T
G <4L + ey, 4L> =0.95.

(The third term on the left-hand-side of is zero for all solutions so can be ignored.) Using the
non-central chi-square quantile function Q(p, d), this ¢ equals
2 2
Q(0.95, ) — &=
Hr

C =

For example, in MATLAB this is found as c=(ncx2inv(.95,1,mu2/4)-mu2/4)/sqrt(mu2). 95% confi-

dence intervals for 5 are then calculated as BQ ftc-s (52>.
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We can also calculate a p-value for the t-statistic ¢, for 55. This is

2 2 2 2
p=1-G (% +ltalns ") + 6 (“E ~ s, B2 )
where the third term equals zero if |t,| > pu; /4. In MATLAB, for example, this can be calculated
by the commands

T1= mu2/4+abs(T) *sqrt(mu2);

T2= mu2/4-abs(T) *sqrt(mu2);

p= -ncx2cdf(T1,1,mu2/4) +ncx2cdf(T2,1,mu2/4);

These confidence intervals and p-values will be larger than the conventional intervals and p-
values, reflecting the incorporation of information about the strength of the instruments through
the first-stage F-statistic. Also, by the Bonferroni bound these tests have asymptotic size bounded
below 10% and the confidence intervals have asymptotic converage exceeding 90%, unlike the Stock-
Yogo method which has size of 20% and coverage of 80%.

We have described an extension to the Stock-Yogo procedure for the case of one instrumental
variable lo = 1. This restriction was due to the use of the analytic formula for the asymptotic
distribution which is only available when I = 1. In principle the procedure could be extended
using simulation or bootstrap methods but this has not been done to my knowledge.

The weak instrument methods described here are important for applied econometrics as they
discipline researchers to assess the quality of their reduced form relationships before reporting struc-
tural estimates. The theory, however, has limitations and shortcomings, in particular the strong
assumption of conditional homoskedasticity. Despite this limitation, in practice researchers apply
the Stock-Yogo recommendations to estimates computed with heteroskedasticity-robust standard

errors. This is an active area of research so the recommended methods may change in the years
ahead.

7.5 Weak Instruments with ky > 1

When there is more than one endogenous regressor (k2 > 1) it is better to examine the reduced
form as a system. Staiger and Stock (1997) and Stock and Yogo (2005) provided an analysis of
this case and constructed a test for weak instruments. The theory is considerably more involved
than the k2 = 1 case so we briefly summarize it here excluding many details, emphasizing their
suggested methods.

The structural equation and reduced form equations are

y = z/1181 + y/2182 + u,
y2 = 1'"1221 + F/22Z2 + va,

where following the literature, the endogenous variables xo is denoted as yo. As in the previous

subsection we assume that the errors are conditionally homoskedastic.
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Identification of 3, requires the matrix I'go to be full rank. A necessary condition is that each
row of I'9y is non-zero but this is not sufficient.

We focus on the size performance of the homoskedastic Wald statistic for the 2SLS estimator
of B,. For simplicity assume that the variance of w is known and normalized to one. Using
representation in Exercise 15 of Chapter 7, the Wald statistic can be written as

SN IO SN S -1 SN
W, = u'Z (z’zzg) Z,Y5 (Y'Zz2 (z’ZZQ) Z’2Y2> <Y§Zz (zgzg) Z'2u> :
where 22 =Mz, Zs.
Recall from Section that Stock and Staiger model the excluded instruments zo as weak by
setting T'9g = n~Y2C for some matrix C. In this framework we have the asymptotic distribution

results .
EZIQZ2 L2,Q=E (2225] — E [22]] (E [zgﬂ)f1 E [z12}]
and
1
NLD
where £, ~ N(0,I). Furthermore, setting ¥ = E [vov}] and C = Q/2Cx /2,

> d
Z/2u - Q1/2£Oa

1 1
Vn vn

where &, is a matrix normal variate whose columns are independent N(0,I). The variables &, and

~ 1~ ~ ~ _
Z)Ys = ZyZaC+ =75V, = Q'*CE + Q7,32

&, are correlated. Together we obtain the asymptotic distribution of the Wald statistic
d _ _ _ -1 _
Wy -5 5= (C+6) [(C+&) (C+&)| (C+&) &

Note that 6’50 ~ N (0,6’6), vec (6/£2> ~ N (O,I;.C2 ® (6/6)> , and by the spectral decompo-
sition, C'C = H/AH with H'H = I and A diagonal. So the asymptotic distribution of the Wald
statistic is non-standard and a function of the model parameters only through the eigenvalues of
C'C and the correlations between the normal variates &y and .’52 The worst-case can be summa-
rized by the maximal correlation between &, and &, and the smallest eigenvalue of C'C. To mimic

the F-statistic, we rescale the latter by dividing by the number of excluded instruments l5. Define
G =CC/l, =="12Cc'Qe=12/1,

and
9= Anin (G) = Auin (2712€'QCE2) i3,

where C C is the matrix counterpart of the concentration parameter I'VZZT'/ 0'12] asly = k; =0 and

ko = 1.

'9Rigorously, this result is shown in the many instruments framework with 13 /n — 0.
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This can be estimated from the reduced-form regression
y2 = I'pz1 + Doz + Vo
The estimator is

~ ~ ~ ~ o~ ~ o~ ~ ~ ~ o~ \—1 s —~
G = 37121, (zgzg> TpeS /21y = 57172 (Y’Qz2) (zgz2> (Z2Y2> S12,,

1

1
VoiVh, = —— Y4Mz Yo =
n—1

n —1[ 4 n—1

i)

I

<
N

<
¥

Y,M; Yo,

Q)
Il
>~
£
5
—
@R
~—

G is a matrix F -type statistic for the coefficient matrix fgg, and has the limiting distribution
(é—i- 52)I (6 + 52) /la. In summary, the asymptotic distribution of lzé is a noncentral Wishart
distribution of dimension ko with degree of freedom ls and noncentrality matrix CC. Here, the
noncentral Wishart distribution is a multiple dimensional generalization of the noncentral chi-square
distribution; comparing to x? (,u2) in , we can see C C plays the role of 42 in the ks = 1 case.
By the CMT, g converges to the minimum eigenvalue of a noncentral Wishart distribution, divided
by ls.

The statistic g was proposed by Cragg and Donald (1993) as a test for underidentification. Stock
and Yogo (2005) use it as a test for weak instruments. Using simulation methods they determined
critical values for g similar to those for ko = 1. For given size > 0.05 there is a critical value ¢
(reported in the table below) such that if § > ¢ then the 2SLS (or LIML) Wald statistic W,, for
,5'2 has asymptotic size bounded below 7. On the other hand, if § < ¢ then we cannot bound the
asymptotic size below r and we cannot reject the hypothesis of weak instruments.

Critical values (calculated by simulation) are reported in their paper and posted on Motohiro
Yogo’s webpage. We report a subset for the case ks = 2 in Table 2. The methods and theory
applies to the cases ko > 2 as well but those critical values have not been calculated. As for the
ko = 1 case the critical values for 2SLS are dramatically increasing in /5. Thus when the model is
over-identified, we need a large value of g to reject the hypothesis of weak instruments. This is a
strong cautionary message to check the g statistic in applications. Furthermore, the critical values
for LIML are generally decreasing in lo (except for 7 = 0.10 where the critical values are increasing
for large l3). This means that for over-identified models LIML inference is less sensitive to weak

instruments than 2SLS and may be the preferred estimation method.
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Maximal Size r
2SLS LIML

Il 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25
2 70 46 39 36 70 46 39 3.6
3 134 82 64 54 54 38 33 31
4 169 99 75 6.3 4.7 34 3.0 28
5 194 112 84 6.9 43 31 28 26
6 21.7 123 91 74 41 29 26 25
7T 237 133 98 79 39 28 25 24
8§ 256 143 104 84 3.8 27 24 23
9 275 152 11.0 8.8 3.7 27 24 22

10 293 16.2 116 9.3 36 26 23 21

15 38.0 20.6 14.6 11.6 35 24 21 20

20 46.6 25.0 17.6 138 36 24 20 19

25 55.1 29.3 20.6 16.1 3.6 24 197 1.8

30 63.5 33.6 23.5 18.3 41 24 195 1.7
Table 2: 5% Critical Value for Weak Instruments, ko = 2

Exercise 14 When 02 = E [’U,2] % 1, what is the form of the Wald statistic, and what is its

asymptotic distribution?

Exercise 15 In the LIML estimator, what is the asymptotic distribution of n(k — 1) when T'yy =
—1/209
n ;

7.6 Tests with Nonhomoskedatic Errors

The results of Stock and Yogo (2005) rely heavily on the assumption of homoskedasticity, i.e., the
data are independent, and holds. When k2 = 1 (for simplicity, assume k1 = 0), the asymptotic
variance of (X, 'Ay> can be written as the Kronecker product of a 2 x 2 matrix with a [ x [ matrix.
In the nonhomoskedastic case (e.g., heteroskedastic f, and/or data dependency across i due to
clustering or time-series correlation), this is not the case such that Stock and Yogo’s procedure
cannot be applied. As a robust alternative, Monteil Olea and Pflueger (2013) propose the effective
F-statistic, which adds a multiplicative correction to the conventional first-stage F-statistic for
testing v = 0 in models with homoskedastic errors.

The nonhomoskedasticity-robust F-statistics



~ ~2 o~ ~
for X1y v = 22Q, ! with Q, = %Z’Z and 52 = %Z?:l ©2. There is no theoretical justification

2.
for the use of either Fly or Fr to gauge instrument strength in nonhomoskedastic settings. As an
alternative, the effective F-statistic of Monteil Olea and Pflueger (2013) is

7' QA - ko2 /n B tr (2"/%NQZ>

T ) 6 (5na) " w(5na)

Fy.

In cases with homoskedastic errors, Frg reduces to Fiy, while in cases with nonhomoskedastic errors
it incorporates a multiplicative correction that depends on the robust variance estimate. Likewise,
in the just-identified case, Fgg reduces the Fr, while in the nonhomoskedastic case, it weights 5
by C)z rather than f];}/
It is easy to see that B
Basis = (VQA) QA

which behaves badly when its denominator, '/)\/Qz",\/, is close to zero. The statistic Fy measures the
same object, but it gets the standard error wrong and so does not have a noncentral x? distribution;
in the nonhomoskedastic case, Fy can be extremely large with high probability even when ’Ay’Qz'Ay
is small. By contrast, the statistic Fr measures the wrong population object, +' 2;}/7 rather than
~'Q,7, so while it has a noncentral y? distribution, its noncentrality parameter does not correspond
to the distribution of BQSLS. Finally, Frg measures the right object and gets the standard errors
right on average. More precisely, Fig is distributed as a weighted average of noncentral y? variables

f]%?/tr(f].w(j)z), are positive and sum to

where the weights, given by the eigenvalues of 5\3;/72 Qz
one. Monteil Olea and Pflueger (2013) show that the distribution of Fgg can be approximated by a
noncentral y? distribution and formulate tests for weak instruments as defined based on the Nagar
(1959) approximation to the bias of two-stage least squares and LIML. Their test rejects when the
effective Fpg exceeds a critical value as listed in Table 1 of Monteil Olea and Pflueger (2013). It
seems that conventional asymptotic approximations appear reasonable in specifications where Fgg
exceeds 10, so 10 is a good rule-of-thumb critical value when [ > 1.

In conclusion, Fgg, not Fr or Fy, is the preferred statistic for detecting weak instruments in
overidentified, nonhomoskedastic settings with one endogenous variable where one uses 2SLS or
LIML["|When [ = 1, Fgg (= Fr) can be compared to Stock and Yogo (2005) critical values based
on t-test size (the mean of the IV estimator does not exist when [ = 1 so the critical values cannot

be based on its bias).

7.7 Valid Inference with Weak IVs

In this subsection, we review four valid inference methods for § with weak IVs. The first three are
the AR test of Anderson and Rubin (1949), the LM test of Kleibergen (2002) and Moreira (2009),
and the conditional LR (CLR) test of Moreira (2003). The fourth is the ¢F method of Lee et al.

"' There is no analog of Frpg when ko > 1.
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(2022).

We follow the notations commonly used in this literature. Suppose

1 = yf+ Xy +u,
Yo = Zm+ XE+ v,

where 8 € R is the parameter of interest, yo € R™ is the observations for the only endogenous
regressor, X € R™*k1 and Z € R™*2 include observations for ks included IVs and s excluded IVs,
respectively, and u, v € R™ are unobserved errors. We assume Z'X = 0, so that Z is orthogonal
to X; otherwise, Z denotes the residual matrix after projecting Z onto X. The reduced-form

equations are

y1 = ZrB+ X+,
yo = Zm+ XE+ ve,

where v = v, + &5, and v; = u + v2/3, or in matrix form
Y = Znd + Xn+V,

where Y = (y1,12) € R™2, V = (v1,v2) € R"*2, a = (B,1), and n = (7,€). Denote the ith row of
a matrix by a subscript ¢. We assume

AN (0,9),

v2;

w1l W
1200 46 be known for simplicity. This assumption implies a

and we first assume =
wi2 w2

simple asymptotic variance structure of n=Y2Z'v; and n=Y2Z"vy; specifically,

( n~Y27",

lim Var
n=Y27'vy

n—o0

):Q@E[ZZZZ(].

Our hypotheses are
Hy:B=p3yvs. Hi:B# By
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7.71 AR, LM and CLR

Notice that Z'Y € R/2*2 is the sufficient statistic for (8, 7’)’, so the test can be based on Z'Y. The

nuisance parameter 7 remains. To eliminate the dependence on 7, decompose Z'Y into

~1/2 ~1/2

S = (Z2)'"Z'Yby - (bpQbo) 7,
= (22)V*z'va ey - (ahQ ae) V2,

bO == (17_50)1)(10 - (50)1)Ia

-1/2

where Z'Yby = Z' (y1 — y23¢) in S appears also in the AR test statistic, and afbp = 0. Then

S~ N(CBMmIZQ)v
T ~ N(dgpr, Ity),

and S and T are independent, where

pe = (22)PreRre,
cs = (B-Bo)- (o) ER,
dg = adQ lag - (af)Qflao)fl/2 € R.

S has a null distribution not dependent on 7, and 7" has a null distribution dependent on 7. That
is, we decompose the information in Z’'Y into two parts, where under the null, the second part T
is a sufficient statistic for 7, and the first part S is independent of .

The AR, LM and CLR test statistics are functions of

. sS's ST
Q= (5T)(ST) = ( 'S T'T ) - ( g:T %S; >

The distribution of @ depends on 7 only through A = 7#’Z’Z7 > 0, where AL/2 plays the role of
n/2 in the strong IV case. Specifically,

!
g - %8S
by
2
LM = %:S’T(T’T)”T’S:S’PT&
T

LR = % <QS —Qr + \/(QS —Qr)? +4Q%T> )

where Pr is the projection matrix on 7. Under the null, AR ~ XIZQ /lo and LM ~ X3 are pivotal.
On the other hand, LR depends on Q7 under the null, so the corresponding test cannot be similar
(i.e., the type-I error rate is invariant to 7) if a fixed critical value is used. The CLR test uses

critical values that depend on Q7 (which is sufficient for 7 under the null), i.e., it rejects the null
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when

LR > Ca (QT) 5

where ¢, (Qr) satisfies
Pg, (LR > co (QT) QT = q1) = @

for any g7, and note that the conditional distribution of LR given ()7 depends only on the con-
ditional distribution of @ = (Qg,Qst)’ given Q7 which does not depend on 7 under the null. It
turns out that ¢, (¢r) — X%,a (the critical value of LM) as gr — oo (strong IV) and ¢, (¢7) — XlQQ,a
(the critical value of AR times l2) as gr — 0 (weak IV).

When € is unkown, we can estimate it by

where V =Y — P;Y — PxY.

The AR test is inefficient under strong identification in over-identified models, so Kleibergen
(2002) and Moreira (2009) propose the LM test or the K test which is efficient under strong
identification. Kleibergen (2005) generalizes this statistic (and also the CLR test) to GMM. As
shown in Kleibergen (2005), his K test is a score test based on the CUE objective functionE
However, the power function of the LM test is not monotone. The LM test fails to reject some
nonlocal alternatives. Kleibergen (2002) explains that this is because the LM statistic equals zero

at two points, both satisfying the quadratic (in ) expression:
ahQ Y ' PY by = 0.

AMS mention that this is due to the switch of the sign of dg ad 8 moves through the value 8,g,
where fyg = (w11 — w12fy) / (W12 — wa2fp), provided w1z — waafy # 0, satisfies dg,, = 0. For a
deeper explanation, see Example I on page 2166 of Andrews (2016).

AMS determine a two-sided power envelope for invariant similar tests, where an invariant test
¢ (S, T) satisfies ¢ (S,T) = ¢ (F'S, FT) for all I3 x Iy orthogonal matrices F', and F' constitutes the
group of transformation G on (S,T). Actually, @ is a maximal invarint for G, which is why all
the three test statistics are only functions of Q). They find that the power curve of the CLR test
is quite close to this power envelope. This power envelope is also the power envelope under weak
IV asymptotics. Under the strong IV asymptoics, the CLR test is asymptotically equivalent (same
asymptotic distribution and same asymptotic critical value) to the LM test, so is also asymptotically
efficient.

When ls = 1, i.e., the model is just-identified, LR = LM = AR. Actually, the AR test is a
uniformly most powerful (UMP) two-sided invariant similar test, so are the LM and CLR tests.
Moreira (2009) also shows that these tests are UMP unbiased.

2The estimation counterpart of the CLR test is the LIML in the homoskedastic case and the CUE in the het-
erskedastic case.
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7.7.2 tF

The subsection reviews the valid ¢-ratio inference in Lee et al. (2022). In their setup, ks = lp =1
(a common case for applied work), so we consider the simple model in this subsection (with
included IVs being allowed). The motivation is that practitioners often use the rule-of-thumb F-
statistic threshold of 10 in the first stage and if ' > 10 then claim the interval B +1.96-s (B) as
the 95% CI (which is actually only a 80% CI). Rather than relying on a fixed pretesting threshold
value, they show how to smoothly adjust 2SLS ¢-ratio inference based on the first-stage F-statistic
to achieve the target coverage (not the reduced coverage like 80%), where the 2SLS instead of the
LIML is employed because practitioners seem prefer the former. In its simplest form, this amounts
to applying an adjustment factor to 2SLS standard errors based on the first-stage F' with the
adjustment factors provided in Table 3. They refer to this procedure as the tF procedure, and this
procedure is robust to nonhomoskedastic errors.

Stock and Yogo’s procedure implies a "step function" critical value function in
P(#*>cF>F*) <aq,

where we understand ¢ and F' as the limit random variables of ¢, and the F' statistic above;
specifically, if F' < F*, set ¢* = oo (accept the null), and otherwise, use the value ¢* as the critical
value for t2. For example, setting F* = 16.4 and ¢* = 1.96? achieves a = 15%. Equivalently,
this implies a CI procedure that sets the CI to the entire real line if F' < F*, and otherwise uses
+c* -5 (B) for the CI. As a "smooth" alternative, the tF critical value function ¢, (F') satisfies

P(#*>cy(F)) <a

for a prespecified significance level «, say, 5%, where ¢, (F') is a smooth function of F'.
Table 3: Selected values of tF critical values, \/cg.05 (F'), and tF s.e. adjustments, \/cg.05 (F')/1.96

Table 3 reports co o5 (F) as a function of F. cgo5(F) tends to infinity as F tends to 1.962
from above, and it is strictly decreasing in F' until reaching a minimum, 1.962, when F reaches
around 104.7. The unreported values of ¢g g5 (F') can be calculated by linear interpolation, which

is conservative as cg 05 (F) is a convex function of F. In practice, the 95% CI can be constructed
as 3+ 1.96."0.05 ¢F s.e.", where the 0.05 tF s.e. is s (B) - /005 (F)/1.96, and the adjustment

factor \/co.05 (F)/1.96 is reported in the third row of Table 3. For a different o value, ¢, (F) is
a different function of F. For example, c o1 (F) ends at 2.726% rather than the chi-square critical
value 2.5762.

The tF inference has significant power advantages over inference using constant thresholds ¢*
and F*. Also, the tF' and Anderson-Rubin (AR) tests have similar power, but neither uniformly
dominates the otherﬁ To compare them, we consider the expected length of these two Cls con-
ditional on F > 1.962, where we condition on the event F' > 1.962 because when F < 1.962 the

'3 Although AR has known power optimality among unbiased tests, tF is not unbiased.
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F 4.000 4.008 4.015 4.023 4.031 4.040 4.049 4.059 4.068 4.079
CE]_Oj(F) 18.656  18.236  17.826  17.425 17.033 16.649 16275 15909 15551 15.201
3 fC:)ua(F) /1.96 9.519 9.305 9.095 8.891 8.691 8.495 8.304 8.117 7.934 7.756
4.090 4.101 4.113 4.125 4.138 4.151 4.166 4.180 4.196 4.212

14.859 14524  14.197 13.878 13566 13.260  12.962 12.670 12385 12.107

7.581 7411 7.244 7.081 6.922 6.766 6.614 6.465 6.319 6.177

4.229 4.247 4.265 4.285 4305 4.326 4.349 4372 4.396 4422

11.834  11.568 11.308 11.053  10.804  10.561 10.324  10.091 9.864 9.642

6.038 5.902 5.770 5.640 5513 5.389 5.268 5.149 5.033 4.920

4.449 4.477 4.507 4.538 4570 4.604 4.640 4.678 4717 4.759

9.425 9.213 9.006 8.803 8.605 8412 8222 8.037 7.856 7.680

4.809 4701 4.595 4492 4391 4292 4.195 4.101 4.009 3.919

4.803 4.849 4.897 4.948 5.002 5.059 5.119 5.182 5.248 5.319

7.507 7.338 7173 7.011 6.854 6.699 6.549 6.401 6.257 6.117

3.830 3.744 3.660 3.578 3.497 3418 3.341 3.266 3:.193 3.121

5.393 5472 5.556 5.644 5.738 5.838 5.944 6.056 6.176 6.304

5.979 5.844 5.713 5.584 5.459 5.336 5.216 5.098 4984 4.872

3.051 2.982 2915 2.849 2.785 27923 2.661 2.602 2.543 2.486

6.440 6.585 6.741 6.907 7.085 7.276 7.482 7.702 7.940 8.196

4.762 4.655 4.550 4.448 4.348 4.250 4.154 4.061 3.969 3.880

2.430 2.375 2.322 2.270 2.218 2.169 2.120 2.072 2.025 1.980

8.473 8.773 9.098 9.451 9.835 10.253 10.711 11.214 11766  12.374

3:793 3.707 3.624 3.542 3.463 3.385 3.309 3.234 3.161 3.090

1.935 1.892 1.849 1.808 1.767 1.727 1.688 1.650 1.613 1.577

13.048  13.796  14.631 15.566  16.618  17.810  19.167  20.721 22516  24.605

3.021 2.953 2.886 2.821 2,758 2.696 2.635 2.576 2,518 2.461

1.542 1.507 1.473 1.440 1.407 1.376 1.345 1.315 1.285 1.256

27.058 29967 33457 37699 42930 49495 57902 68930 83.823 104.67

2.406 2.352 2.299 2.247 2197 2.147 2.099 2.052 2.006 1.96

1.228 1.200 1.173 1.147 1.121 1.096 1.071 1.047 1.024 1.00

Notes: The top number in each of the ten rows is the first-stage F-statistic, the middle number is the corresponding
critical value, C[}.QS(F)‘ and the bottom number in each row is the corresponding value of 6‘0705[}7) /1.96, where
we write 1.96 as a shorthand for @‘1(0.975). Numerical values in each pair are rounded up (e.g., 4.0051 rounds

up to 4.006).
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expected length of both Cls is infinite (see Dufour (1997)). It turns out that the conditional ex-
pected length of the AR CI is infinite, while that of the ¢F' CI is finite. In other words, conditional
on the event that they produce bounded intervals, the expected length of the tF' CI will always be
shorter than that of the AR CI.

(**) We provide more details on the results above. We first connect t,, in (25)) with the AR test
statistic. For a hypothesized value (3,

~

By
s (5)

with B being the IV estimator, and the first-stage ¢ test statistic is

ty, =

and F = f2. Recall that the AR test is to test whether 7 (3 — 3,) = 0, so the corresponding ¢ test

statistic is (A )
PR G
B QC)

It turns out that in this special case, the AR F-statistic F (8,) = tAF (8,)?. It can be shown that

2 ta (B,)°
n N AR AR 2
1 _ 2p (50) tn fELﬂO) + tn ;50)

where p () is the sample analog of p (3y) = Corr (ze*, zv) with e* being the AR error (i.e., the
error in regressing y — x3, on z, which is equal to v under the null). Under the assumption that
m=n"12y,

tAR (/30)2

82 <12 = 2 (tar (Bo) , £, (Bo)) = ,
1-2p(8,) tAR]gﬂo) + lf/AR]Ego)2

where

A(Bo)
( ar (o) ) - [ [ Vi aenaey ( L p(B) )
f fo p (/60) 1
with fo = n/y/AVar(7), A(By) = \/—m (8—PBg), p = Corr(zu,zv) (which is equal to

Corr (u,v) in the homoskedastic case), and p(B,) = i pZ(A/B(éi)A(ﬁ e As a result, for the
P 0 0

critical value function k (F'), the rejection probability

o A (8y)
V1420 A(B0) + A8y

PA(8y)p.fo (> k(F // L (£ (z,9,p (Bo)) >k (¥°)) ¢ ( y— fo;p(ﬂo)) dxzdy,

(30)
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where ¢ (-, -;7) is the bivariate normal density with means zero, unit variances, and correlation r.
To obtain the tF critical value function ¢, (F'), we need to find a decreasing function ¢, (-) for
F € (q1—a, F], followed by a flat function beyond F for some F' (e.g., 104.67 in Table 3), such that

Pa(gy)=0,p.f0 (> ca (F)) < o

for all p and fo # 0, where q1_, is the (1 — a)th quantile of x2. Because p = +1 is the least

favorable case, we need only to obtain a function ¢, (F') such that

Pagg)=0,jpl=1,50 (t* > ¢a (F)) =

for some set of small values of fy. For simplicity, take p = 1 and fy > 0 as an example, and p = —1
and/or fp < 0 can be symmetrically addressed. When p =1, tor (8;) is a linear function f which
follows N (fo,1), so

_ U= )

R

which is a quartic function, uniquely indexed by fy. This quartic function has the shape of a

t2

“W?”  with one trough located at f = 0, the other trough at f = fy, and an interior peak at
f = fo/2. Furthermore, the magnitude of the location and height of the interior peak of the
“W” function is monotonically increasing in |fy|. This greatly simplifies the expression of the null
rejection probability for any critical value function; the null rejection probability is the probability
that f takes on a value for which the quartic t? curve is above the critical value function. For any
continuous and decreasing (in f?) critical value function (that eventually plateaus), there exists an
interval of values of fy for which the "W" curve and the critical value function intersect only twice.
The acceptance probability is then simply @ (f (fo) — fo) —® (f (fo) — fo), where the intersections
between the two curves are denoted by f (fo) and f (fo); see Figure 7 of Lee et al. for an illustration.

As a result, the function ¢, (F') satisfies the following system of equations:

Y -
f (fo) (f;gf(’) o) _ ca (f (fo))

®(f(fo) = fo) =@ (f(fo) —fo) = 1—a,

£ (o) (£ (fo) — fo)°
3

= Cq (i(f()))

for a set of small values of fy. They prove the existence of the c, (-) function, and develop an
interative algorithm to solve the system of equations. The remaining question is the determination
of F'; they suggest the lowest possible plateau because a lower plateau will lead to a more powerful
test. To determine F' and verify size control for all p and fy values (the construction of ¢, (F)
above considers only small values of fy), they employ numerical integration of to compute

these rejection probabilities.
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To understand why
E[LAg|F > qi—o) = 0 and E [Lip|F > q1—4) < 00,

they show that conditional on F' > q1_,,

VI\JF—q_o(1-7
\/ 1o )Lfv, and Lip = Ca ()

Ly
F— dl—o dl—«

Lar =

are both inflated versions of Ljy, where L g is the limit random variable of CI length based on
the AR test, Lyy and L;p are similarly defined, and

o (—tar (8) + pf)* '
(£2 = 20tar (8) f + tar (8)?)

It turns out that the L4p inflation factor explodes as F' approaches q;_, from above, and even
accounting for the other parts of the inflation factor, the denominator F' — q;_, leads to an infinite
conditional expected length. As for L;r, the inflation factor does not grow as quickly as F' ap-
proaches g1, from above, and in particular grows slowly enough that conditional expected length
is finite. The key to this result is

lim co (F)(F —qi-a)=¢_,
qulfa

such that

= [ca (F)(F — q1-a) M
Ca(F>_\/ F_QI—Oc = vF—(h—a

and in a neighborhood of ¢1_q, 1/v/F — q1— is integrable (although 1/ (F — g1—o) in L4g is not).
(**)

7.8 Many Weak Instruments

We still focus on the case with only one endogenous regressor. In the homoskedastic case, Chao
and Swanson (2005) show that LIML and B2SLS are consistent when r,, //K,, — 0o, while 2SLS is
consistent only r, /K, — oo, where r, is the rate of growth of concentration parameter 7’ Z’'Zr /o2,
and K, is the number of instruments. Hansen, Hausman, and Newey (2008) argue that the 2SLS
estimator should not be used in applications with many instruments as it becomes very biased.
They also argue that a low first-stage F' statistic is not always indicative of a weak identification
issue, and t-statistics inferences based on more appropriate estimators other than 2SLS, along with
corrected standard errors, such as LIML and Fuller’s estimator under Bekker asymptotics with
nonnormal errors, may still be reliable.

In a heteroskedastic model, Chao et al. (2012) show that the consistency of 2SLS, B2SLS and
LIML require r, /K, — oo, while JIVE remains consistent when r,/v/K, — oo. Mikusheva and
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Sun (2022) show that the condition of r,, /v/K, — oo is also necessary for consistency. They develop

a jackknife AR test statistic which is valid under heteroskedasticity and weak identification:

R(By) = ZZPZJW (Bo) uj (Bo) »
\/ f 1=1 j#i
where Pj; is the (4,j) element of Pz, u; (8y) = yi — xify, and ® is a consistent estimator of

the asymptotic variance of \/% Doy 2z Pigui (Bo) wj (Bg). The new test uses an asymptotic
approximation based on a Central Limit Theorem (CLT) for quadratic forms in Chao et al. (2012).
It has uniformly correct size and good power properties due to the novel cross-fit variance etimator
®:

” P

~ 2
d=—_= /R
K, Zz_; P M“‘ij + ij

where M;; is the (4, j) element of Mz = I—Py, M; is the ith row of M, and u (B) is the column vec-
tor collecting u; (3,). Different from the naive estimator of ®, say ®; = K Sy Zﬁél s (ﬁo) 2(Bo),
® is consistent under both the null and the alterantive. In the spirit of Stock and Yogo (2005), they
develop a pre-test for weak identification, that can help to assess the reliability of the JIVE-Wald

[ui (Bo) Miu (Bo)] [uj (By) Mju(By)] s

test. Specifically, this is a two-step procedure: accept the null 8 = 3, if the pre-test F' statistic,
Z > Pywiz,
\/> i=1 j#i
is greater than 4.14 and the JIVE-Wald test statistic
~ 2
(5JIVE - 50)

w (BO) = ‘7

is greater than 3.84 or if F' < 4.14 and AR (f,) < 1.96, where

B = 2im1 2y Pigyizi
S DD S ey

is Byrvis in Chapter 7, T is a consistent variance etimator of F = \/% >oic1 2o i Pijrizy, and 1%
,T), where p? = 1’2" Zm —

is a consistent variance estimator of EJIVE. Note that F - N (\/“—;7
Yoy P (! zi)2 ~ 7'Z'Z7, i.e., F indeed includes the information of identification in the first stage.
This procedure has an asymptotic size smaller than 15%.

Besides JIVE, Hausman et al. (2012) show that heteroscedasticity-robust Fuller is also a good
choice under strong identification. For overidentification tests under homoskedasticity, see Ana-

tolyev and Gospodinov (2011), and under heteroskedasticity, see Chao et al. (2014).
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8 Alternative Inference Procedures (*)

Monte Carlo studies have shown that estimated asymptotic standard errors of the efficient two-step
GMM estimator can be severely downward biased in small samples. A key observation for the source
of this bias is that the weight matrix used in the calculation of the efficient two-step GMM estimator
is based on initial consistent parameter estimates whose variation is not embodied in the asymptotic
covariance matrix estimation. Windemeijer (2005) shows that when the moment conditions used
are linear in the parameters, the extra variation due to the presence of these estimated parameters
in the weight matrix accounts for much of the difference between the finite sample and the usual
asymptotic variance of the two-step GMM estimator.

To this problem, there are a few reactions in the literature. First, nonlinear procedures, es-
pecially the generalized empirical likelihood (GEL) estimation, are proposed. Inferences based on
these nonlinear procedures are more accurate because they circumvent the estimation of the opti-
mal weight matrixf'z] Second, linear procedures are proposed to incorporate the variation in the
first-stage estimator explicitly. Third, bootstrap procedures are put forward to refine the inferences
based on the two-step GMM estimator.

In this section, we will concentrate on two GEL estimators, the continuously-updated estimator
and the empirical likelihood estimator; we will also briefly discuss the inferences based on the

"general" GEL approach.

8.1 Continuously-Updated Estimator

There is an important alternative to the two-step GMM estimator. Specifically, we can let the

weight matrix be considered as a function of 8. The criterion function is then

n -1
=1

where
9;(0) = 9i(0) — 9, (6).

The 6 which minimizes this function is called the continuously-updated estimator (CUE) of
GMM, and was introduced by Hansen et al. (1996). An advantage of this estimator relative to
the two-step estimator is that it is invariant to how the moment conditions are scaled even when
parameter-dependent scale factors are introduced. This estimator appears to have some better
properties (e.g., smaller bias) than traditional GMM, but can be numerically tricky to obtain in
some cases, e.g., its objetive function may possess multiple local minima and may produce extreme
estimates (i.e., its distribution has a fat tail); see Section 4 of Hansen et al. (1996) for more details.
Donald and Newey (2000) interpret the CUE as a jackknife estimator to explain why the CUE is

less biased. Essentially, the CUE makes the estimator of Jacobian G asymptotically uncorrelated

4 Actually, the bias is also smaller.
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with g, (0), which eliminates an important source of nonzero expectations for the FOCs, and
hence of bias. Another way to look at the CUE is that it is the heteroskedasticity-robust version
of the LIML estimator.

Exercise 16 (i) Write out the objective function of the CUE in the linear homoskedastic endoge-
nous model. (ii) Show that this CUE is equivalent to the LIML estimator. (iii) Show that if g} (@)
is replaced by g;(0) in J,(0), then the new objective function J,(0) = J,(8)/(1 + J.(6)).

8.2 EL Estimator

The idea of empirical likelihood (EL) is due to Owen (1988, 1990); see also Qin and Lawless
(1994) and Imbens (1997) for its GMM extension. It is a non-parametric analog of likelihood
estimation.

The idea is to construct a multinomial distribution F' (p1,--- ,p,) which places probability p;
at each observation. To be a valid multinomial distribution, these probabilities must satisfy the

requirements that p; > 0 and
n
> pi=1. (31)
i=1

Since each observation is observed once in the sample, the log-likelihood function for this multino-

mial distribution is

log L (p1,- -+ ,pn) = Y _ log (pi) (32)
=1

First let us consider a just-identified model. In this case the moment condition places no
additional restrictions on the multinomial distribution. The maximum likelihood estimators of the
probabilities (p1, - - - , pn) are those which maximize the log-likelihood subject to the constraint .

This is equivalent to maximizing

Zlog (pi) — p (sz - 1) ;
=1 =1

where y is a Lagrange multiplier. The n FOCs are 0 = p; 1 _ 4. Combined with the constraint
we find that the MLE is p; = n~! yielding the log-likelihood —n log (n).

Now consider the case of an over-identified model with moment condition E [g(w;,0¢)] =
E[gi(89)] = 0. The multinomial distribution which places probability p; at each observation w;

will satisfy this condition if and only if
> pigi(6) = 0. (33)
i=1

The EL estimator is the value of 8 which maximizes the multinomial log-likelihood subject to

the restrictions and .
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The Lagrangian for this maximization problem is

n n n
L (e’plv IRy 470 Av/*‘) = Zlog (p’L) —H <Zpl - 1) - ’I’LA, Zplgl(0)7
i=1 =1 =1

where A and p are Lagrange multipliers. The FOCs of £ with respect to p;, 4 and X are

1 n n
— = p+nX\g(0), sz‘ =1 and Zpigi(o) = 0.
i=1 =1

)

Multiplying the first equation by p;, summing over ¢ and using the second and third equations, we

find p = n and
1
P A+ Ngi(0))
Substituting into £ we find
R(6,\) = —nlog(n) — Zlog (1+Xgi(0)).

i=1

For given 0 the Lagrange multiplier A (@) minimizes R (6, \):
A(0) =arg m}%n R(O, ).

This minimization problem is the dual of the constrained maximization problem. The solution
(when it exists) is well defined since R (6,A) is a convex function of A. The solution cannot
be obtained explicitly, but must be obtained numerically. This yields the (profile) empirical log-
likelihood function for 6:

R(0) =R(6,X(9)) = —nlog(n) — > log (1+ X(0) gi(6)).
=1

The EL estimate 6 is the value which maximizes R (0), or equivalently minimizes its negative
0 = arg mein [—R(0)].

Numerical methods are required for calculation of 0.

As a by-product of estimation, we also obtain the Lagrange multiplier A=A <§), probabilities

. 1
b n (1 + X,gz(§)> 7
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and maximized empirical likelihood
R(0) =5 (34)

In Appendix B, we show that 0 has the same asymptotic distribution as the usual GMM
estimator in Section {4} so the EL estimator is asymptotically efficient (without estimating the
optimal weight matrix). Also,

Vih —5 Q71N (0, V),

where V), =Q — G (G’ QflGr)f1 G’. Furthermore, 0 and X are asymptotically independent.
In a parametric likelihood context, tests are based on the difference in the log likelihood func-
tions. The same statistic can be constructed for empirical likelihood. In this case, the unrestricted

and restricted empirical log-likelihoods are

L= znjln(%i) = —nlogn — znjlog (1 + X’gz(b\)) )
i=1 i=1
LY = —nlogn,

so twice the difference between these two log-likelihoods is

LR, =2(LY —L5) =2 zn: log (1 + T\’gi(é)) .

i=1

Under the null , LR, 4, XlQ—kv which is shown in Appendix B. Kitamura (2001) shows that this
empirical likelihood ratio test of the overidentifying restrictions satisfies the optimal criterion of
Hoeffding (1965). The EL overidentification test is similar to the GMM overidentification test. They
are asymptotically first-order equivalent, and have the same interpretation. The overidentification
test is a very useful by-product of EL estimation, and it is advisable to report the statistic LR,

whenever EL is the estimation method.

8.3 GEL Estimators

Both the CUE and the EL estimator are special cases of the GEL estimator of Smith (1997);
see Newey and Smith (2004) and Smith (2011) for further discussions on the GEL estimator. To
describe GEL let the carrier function p(v) be a function of a scalar v that is concave on its domain,
an open interval V containing 0. Let A, (8) = {A|INgi(0) €V, i =1,--- ,n}. The estimator is the

solution to a saddle point problem

- _ . r _ .
Ocrr = arg iy s ; p (N'9:(0)) = argmin R(0), (35)

where © denotes the parameter space. The EL estimator is a special case with p(v) = log(1 — v)
and V = (—o00,1). The exponential tilting (ET) estimator of Kitamura and Stutzer (1997) and
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Imbens, Spady and Johnson (1998) is a special case with p(v) = —e” which has the computational
advantage, relative to EL, of having an unrestricted domain, although the restricted domain of
EL is usually not a problem in practiceﬂ The CUE is a special case with p(v) = —(1 + v)?/ 2@

Associated with each GEL estimator are empirical probabilities for observations. Specifically,

. ~__ n I~
i = p1(ANGi)/ Zj:l p1 (A7),

~

where p; is the first derivative of p, g; = ¢;(0), and

X =arg max o (Ngi) /n. (36)
e, (0) Zz; ( )
For EL and ET,
1 AGi
i = and —— —

n(1-Xg) Y Ao

respectively. These empirical probabilities 7; sum to one by construction, satisfy the sample moment
condition "7 | W;g; = 0 when the FOCs for X hold, and are positive when 3\\/@ is small uniformly
in 4.

Another formulation of these estimators is through the minimum discrepancy (MD) estimator
of Corcoran (1998). The MD estimator is defined as

n

0 = i h(m; 37
arg min_ 2 (ms) (37)
s.t. ngiw) = 0, Zm: 1,
i=1 i=1
where 7 = (m1,--+ ,7,). When h(7) = —In(n), wln(m) (the Kullback-Leibler information crite-

rion), and 72 we get the EL, ET and CUE, respectively. For each MD estimator there is a dual
GEL estimator when h(7) is a member of the Cressie and Read (1984) family of discrepancies in
which h(r) = [y(y+1)] ! [(nm)7+t —1] /n The corresponding p(v) = —(1 4+ v)FD/7 /(v +1).
When v = —1,0 and 1, we get the h functions for the EL, ET and CUE, respectively. A in
is proportional to the Lagrange multipliers for the first (moment) constraint in . The maxi-
mization problem for X in is considerably easier than the MD problem, having much smaller

dimension (I versus n) and being a simple concave programming problem. For v = —1 and 0, there

> Another GEL estimator is the minimum Hellinger distance estimator (MHDE) of Kitamura et al. (2013).

'5Note that for EL, ET and CUE, their p satisfies p,(0) = p,(0) = —1, which can be a general normalization for
any p, where p; is the jth derivative of p. Also, to normalize p such that p(0) = 0, sometimes let p(v) = 1 —¢” in ET
and p(v) = 1/2 — (1 +v)?/2 in CUE.

"For two discrete distributions with common support p = (p1,--- ,pn) and ¢ = (q1,--- ,qn), the Cressie-Read

n

n ~+1
power-divergence statistic is defined as I,(p,q) = ﬁ > pi {(%) — 1}. > h(m;) measures the distance
i=1 '

between 7 and the empirical distribution mynit. 7 = 0 defines the Kullback-Leibler distance from mynis to m; v = —1
defines the Kullback-Leibler distance from 7 to munit; v = —1/2 defines the Hellinger distance between 7 and mynis.
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are no explicit solutions for X and 7. When v = 1, explicit formulae for X and 7 are possible,
but they usually involve one or more of the 7;’s being negative and so give rise to problems of
interpretation.

Although the first-order properties of all GEL estimators are the same as the efficient GMM
estimator, their higher-order properties are quite different. For example, Newey and Smith (2004)
show that EL generally exhibits a smaller O (nil) bias than any other member of GEL unless the
centered third moments of the distribution of g; = ¢;(0p) happen to all vanish, in which case all
GEL estimators have the same O (n_l) bias. The intuition for this result is that the GEL FOCs

are )
n = n - = N - =

>or (0)| [Sho (0) 0 0) ] 5(0) -0

i=1 i=1
where G;(0) = 0g; (0) /00, ki = k(@) /325 k(9;) with k(v) = [py(v) +1] /v when v # 0
and k(0) = —1, and v; = 3\,@ For EL, %z = 7; while for CUE, %z = 1/n. The bias of 0
includes three parts: By = H(—a + E [G;Hg;]) /n is the asymptotic bias from the estimator based
on the optimal linear combination G'Q2~'g(w,0) = 0, Bq = —XFE [G;Pg;] /n comes from the

o~

correlation between the Jacobian G estimator with g, (0) , and Bg = HE [g;¢/Pg;] comes from the

correlation between the outer product matrix €2 estimator with g, (5), where 3 = (G’ QflG)fl,
H=3GQ ', P=Q"'-Q'GEG'Q ™, a; =tr(ZE [0%g;; (60) /0000']) /2 represents the bias
from the nonlinearity of ¢;; (0) = g; (w;,0), and G; = G;(0p). The CUE effectively eliminates
Bg by using the weights 7; in the Jacobian estimation but not Bgq because 751 = 1/n, while the
EL eliminates both by using "effective" weights 7; and & (that are different from 1/n). For a
general GEL estimator, the bias is By + (1 + p3/2) Bq. EL can eliminate Bq because its p3 = —2.
If p3 # —2, but Bg = 0 (or equivalently, F [g;g.gi;] = 0), then this source of bias can still be
eliminated. For example, in the linear IV setting of Section [I} when disturbances are symmetrically
distributed, this can happen. They also show that the bias-corrected EL is higher-order efficient,
possessing an O (n_2) variance that is no greater than that of any other bias-corrected method of
moments estimators. The proof of this result combines the arguments of Chamberlain (1987), as
explained in Section [9] and the third-order efficiency of the parametric MLE (see Rao (1963) and
Pfanzagl and Wefelmeyer (1978)).
If we want to test Hp: r(@) = 0, we can use the LR statistic

LR, =2 [R (5) _R (5)} :
which follows x2 under the null, where R(-) is defined in , and

6= in R(6).
arg win (6)
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As a result, the (1 — «) confidence region for 63, a ks-subvector of 0, is
2 |:R (61 (02) ,92) - R (b\)] < X%%a,

where 6, (62) = argmin g, R (01, 03) for a given O3. This Wilks’s phenomenon is invariant to the
choice of p(-) (or equivalently, h(-)), but second-order results depend intimately on the choice of
p. For example, the GEL is Bartlett correctable if and only if p(v) = log(1 — v). Also, such a
confidence region has the advantages of having natural shape and respects the range of 8,.

We can also use the LR statistic to test the overidentifying restrictions as in the EL case; all such
GEL tests are asymptotically first-order equivalent, but may have different higher-order properties
depending on h. Smith (1997) puts forward an alternative overidentifiction test based on p rather

than h. Specifically, he shows
n SN J
2n [Zp (A 91(9)) /n—p (0)] = Xk
i=1

under the null that the model is correctly specified, where note that the true value of X is ZEro,

which explains the presence of p (0).

8.4 Other Inference Procedures

Windmeijer (2005) proposes a finite-sample correction for the variance of linear efficient two-step
GMM estimators. His correction explicitly incorporates the variation in the first-stage estimator.
Details are included in Appendix C. Chao and Swanson (2001) derive the bias and MSE of 2SLS
under weak-instrument asymptotics, modified to allow the number of instruments to increase with
the sample size. They report improvements in Monte Carlo simulations by incorporating bias
adjustments. As to the bootstrap inference, there are basically two methods attributed to Hall
and Horowitz (1996) and Brown and Newey (2002) respectively; see also Lee (2014). Bond and
Windmeijer (2002) report problems with the bootstrap procedures when the weight matrix is a
poor estimate of the covariance matrix of the moment conditions, which occurs for example when

there are a large number of overidentifying restrictions.

9 Conditional Moment Restrictions
In many cases, the model may imply conditional moment restrictions
E[u (Wa BO) ’X] = 07

where u (w, 3) is some s x 1 function of the observation and the parameters. For example, in linear

!/

regression, u(w,3) =y —x'3, w = (y,x)/, and s = 1; in a joint model of conditional mean and
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variance,

. Yy— X,ﬁl
. 9) = ( (y—%'B1)* — f(x)Bs )

for a specification Var(y|x) = f(x)'B,, where 8 = (81, 85)’, s0 s = 2.

Conditional moment restrictions imply infinite unconditional moment conditions, since for any
function of x, say ¢(x), E[p(x)u(w,B3y)] = 0. So a natural question is which instruments are
optimal, or what is the semiparametric efficiency (or variance) bound for 3,. Chamberlain (1987)
derived this bound by approximating the CDF F'(x) and the conditional CDF F(w|x) with multi-

nomial distributions; see Appendix D. It turns out that the optimal instruments are
A(x) = G(x)'Q(x)

where G(x) = E [9u(w, By) /08| x], and Q(x) = E [u(w,Bq) u(w,By)'|x]. A(x) is similar to
the optimal linear combination B in the unconditional moment case, but now we condition every

random variable on x. Using the optimal instruments, the unconditional moment conditions are
E[m(w,B)] = E[A(X)u(w,Bo)] = 0.

Applying the formula of the asymptotic variance for the MoM estimator, we have the semipara-

metric efficiency bound for 3,

E [A(x)0u(w,By) /08" " E [A(x)u(w, By)u(w,By) Ax)] E [A(x)du(w,By) /o8]
- E[Gx)'Q(x)'G(x)] .

In the linear regression case, G(x) = x’, and Q(x) = 0?(x), so the optimal instrument is x/o?(x),
which corresponds to the generalized least squares estimator, and the semiparametric efficiency
bound for By is F [xx'/c?(x)].

The optimal instruments involve the conditional mean estimation. This will use nonparametric
estimation techniques which are not covered by this course; see Newey (1990b) for such estimations.
In practice, we may only want to select a group of instruments that need not be (asymptotically)
optimal. But given an infinite list of potential instruments, which should be used? This is essentially
a model selection problem, and will be briefly discussed in Section

(*) Kitamura et al. (2004) study the empirical likelihood-based inference in conditional moment
restrictions models. Andrews and Shi (2013) and Chernozhukov et al. (2013) study inference based

on conditional moment inequalities.
Exercise 17 (Empirical) Continue the empirical exercise in the last chapter.

(d) Re-estimate the model by efficient GMM. I suggest that you use the 2SLS estimates as the
first-step to get the weight matriz, and then calculate the GMM estimator from this weight

matriz without further iteration. Report the estimates and standard errors.
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(e) Calculate and report the J statistic for overidentification.

(f) Discuss your findings.

Appendix A: Asymptotics for the Nonlinear GMM
The following two theorems show that the GMM estimator is CAN.

Theorem 3 Suppose that w;, i = 1,2, , are i.i.d., W,, - W, and (1)) W >0 and WE[g(w,0)] =
0 only if @ = Oy; (ii) Oy € ©, which is compact; (iii) g(w, @) is continuous at each @ € © with
probability one; (iv) E[supgce ||g(W,80)||] < co. Then 0 -2 0.

Proof. We prove this theorem similarly as in the proof of the consistency of the MLE. Let @, (6)
be —7,(0)W,7,(0); we need to verify the four conditions at the end of Section 3.1 of Chapter
4. Condition (I): Let R be such that RR = W. If 6 # 0, then 0 # Wg(0) = R'Ry(0)
implies Rg(0) # 0 and hence Q(08) = — (Rg(0)])' (Rg(8)]) < Q(6g) = 0 for 8 # 6y, where
g(0) = E[g(w,0)]. Condition (II) is (ii) of the theorem. Given (ii), (iii) and (iv), Mickey’s
Theorem implies ¢(6) is continuous and supgcg |[7,(8) — g(8)] = 0. Thus condition (ITT) holds
by Q(0) = —g(0)"Wg(8) continuous. By © compact, ¢g(0) is bounded on ©, and by the triangle

and Cauchy-Schwartz inequalities,
|Qn (0) — Q(6)]

|[3.(6) — 9(0)) Wi [,,(8) — 9(0)]| + |9(8) (W + W) [3,,(8) — 9(0)]] + [9(8) (Wr, — W) g(6)]
< 1[9.(8) = g(O)II* [Wall +21l9(8) 9, (6) — g(&) Wl + llg(6)II* HWn—WH,

IN

so that supgeg |Qn (8) — Q (8)] == 0, and condition (IV) holds. m

Theorem 4 Suppose that the conditions in the above theorem hold, W, 2, W, and (i) 8y Einterior
of ©; (ii) g(w,0) is continuously differentiable in a neighborhood of N of 8y, with probability ap-
proaching one; (iii) E’[ (w,00)] =0 and E [Hg(w, 00)||2] < 00; (i) Elsupgepn ||[Vog(w,0)]|] < oo,
where Vog(w,0) = 80’ g(w,0) ; (v) G'WG is nonsingular for G = E [Veg(w,00)]. Then for =
E[g(w,80)g(w,00)], Vi (5 - og) L N (0, V), where V = (G'WG) ™' G'WOQWG (G'WG) ™!

~\ / ~
Proof. By (i), (i) and (i), the FOC 2G, (9) W3, (0) — 0 is satisfied with probability

approaching one, where G,, (0) = Vygg,,(0). Expanding gn(ﬁ) around @y, multiplying through by
v/n, and solving gives

Vit (0-00) =~ |G, (0) WG, 0)| G (B) Wavig, (0.

62



where 0 is the mean value. By (iv), G, (6) 2, G and G, (9) 2. G, so that by (v),
[Gn (0) WG, (0)} G, (6) W, 2 (G'WG) ' G'W.

The conclusion then follows by Slutsky’s theorem. m
The complicated asymptotic variance formula simplifies to (G’ QflG)fl when W = Q1. As
shown in Hansen (1982), this value for W is optimal in the sense that it minimizes the asymptotic

variance matrix of the GMM estimator. V can be consistently estimated by its sample analog,
~ ~ N\ —1 ~ ~ ~ N —1
= (G’WnG> G'W,OW, G (G’WnG) :

where G = G, <§), and Q = n~! oy g(wy, a)g(wi, 5)’ To prove the consistency of V, we first
prove the following lemma, which is Lemma 4.3 of Newey and McFadden (1994).

Lemma 1 If w; is i.i.d., a(w,8) is continuous at Qg with probability one, and there is a neighbor-
hood N of 8¢ such that E [supgep ||a(w, 0)||] < oo, then for any 0 -2 6y, n? Yiia (wi,5> 2,
Ela(w,09)].

Proof. By consistency of 0 there is 6p — 0 such that H@— OOH < ¢, with probability ap-
proaching one. Let A, (W) = supjg_g,|<s, lla (W,0) —a(w,8o)||. By continuity of a(w,8) at
0o, Ap(w) — 0 with probability one, while by the dominance condition, for n large enough
Ap(w) < 2supgep la(w,0)||. Then by the dominated convergence theoremll—_gl E[A,(w)] — 0,
so by the Markov inequalityHP (Jn ™t >0, An(wi)| > €) < E[Ap(w)] /e — 0 for all € > 0, giving
n '3 Ay (wi) 25 0. By the LLN, n=' 3" a (wi, 80) — E [a (w,80)]. Also, with probability

approaching one,

Hn_l Zj:l @ (Wi’a) - Zj:l a(wi, 90)H <n” Zj:l Ha (Wi’a) —a(wi GO)H < Zj:l An(wi) =0,

so the conclusion follows by the triangle inequality. =
The conditions in this lemma are weaker than those of Mickey’s theorem, because the conclusion
is simply uniform convergence at the true parameter. In particular, the function is only required

to be continuous at the true parameter.

Theorem 5 If the assumptions in the last theorem are satisfied, and for neighborhood N of 6y,
Blsupge lg(w, 0)|%) < o3, then V 25 V.

Proof. Applying the above lemma to a(w,0) = g(w,0)g(w,0), we get Q-2 Q, and applying to
a(w,8) = Vgg(w,8), we get G -+ G. The conclusion follows from the CMT and continuity of

matrix inversion and multiplication. m

"*Dominated convergence theorem: If X,, = X and for any n, |X,| <Y with E[Y] < oo, then E[X,] — E[X].
"'Markov’s inequality: For any nonnegative random variable X and a > 0, P (X > a) < E[X] /a.
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Appendix B: Asymptotics for EL

We first show the asymptotic distribution of 6 and A. Note that (5, X) jointly solve

~

0 ~ - 9i(0)
0= 7R 0, A - — - 3 < 38
axf(03) Z; 1+ Xg:(6) .
and P
0 /n < " Gi(0)A
0=__R 07 A)=-— =7 ~_ 39
00 ( ) ; 1+ Xg:(6) .

where G;(0) = 9g; (0) /060'. Let G, = n 1Y " | Gi(6p) = G, (00), G, = n LD " gi(60) =
G, (80) and 2, =n~! >iz19i (00) gi (90)/ = 2, (60).
Expanding around @ = 0y and A = A\g = 0 yields
0~G (X - AO) — G/ (40)
FExpanding around @ = 0y and A = Ag = 0 yields
0~—g, — G, (5 - 00) QA (41)
Premultiplying by G/ €2, 1 and using yields

0 ~ —G.O 5 -G .Q1G, (5 —0y) + G Ol

n

)
= —G.Q'g, -G Q1G, (5 - 00) .
Solving for 6 and using the WLLN and CLT yields

Jn (6 - 90) ~ - (GL'G,) G0, -5 (G'Q7IG) T G/TIN (0,Q) = N(0,V). (42)
Solving for A and using yields

VA

Q

2, (1- Ga (Gh92;'Ga) ' G921 Vi, (43)
Lo (1-6(@eT'e) e N (0,9)

= QIN(0,Vy)
Furthermore, since

o (1-c(ee'e) eet)ee e (@n'6) =0,

0 and X are asymptotically uncorrelated and hence independent.
We now show the asymptotic null distribution of LR,,. First, by a Taylor expansion, , and
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(13),

L30.0) ~ viloo(0-0)
~ (1 -G, (G,Q,'G,) "G, 1) Vng,

Second, since log (1 + u) ~ u — u?/2 for u small,
LR, = 32005 (14 X0®) ~ 28 Y5 - X3 00 (B3
i=1 i=1 i=1
~ XA -5 N (0,VA) Q71N (0, V) = P
Exercise 18 Show that N (0, V) Q"IN (0, V) =7 ,.

Appendix C: Linear Procedure of Windmeijer (2005)

Consider only the linear-in-parameter model. Suppose the step-one estimator is 51, and W,, de-

W, (al) = ;igz (al) 9i (4/9\1)/-
i=1

The step-two estimator satisfies

pends on 0, through

/éQ -0y = -— (G%W;l (51) Gn>_1 G;W;l <§1) 9n (90)
= —(GLW;,"(60)G,) " G,W. " (80)7, (60) + Dy, w..(60) (51 - 90) +op(n71),

where G, = 99, (8) /00" does not depend on @, and the jth column of Dg, w,,(g,) is given by

OW,, (0)
00,

. _ -1 _ _
DGO,WH(OO)[U .7] = - (G;lwn ! (00) Gn) [Glnwn ! (00) Wn ! (00) Gn]

6o
(GLW; 1 (80) Gn) ™ GLW,, 1 (80) 7, (60)
W, (0)

+ (G, W, ! (60) Gn)71 G, W, (60) 0.
J

W, ' (60) 7, (60) .

6o

Do, w..(60) (51 — 00) = Op(n71), so taking account of this term will result in a more accurate

approximation of the variance of 52 in finite samples. Note that when the model is just identified,

the correction disappears.
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A step-one linear estimator satisfies
61— 00 =— (G, W,'G,) ' G, W, "7, (60)
and the finite sample corrected estimate of the variance of 52 can be obtained as
Var (8:) = ~(G,w," (81) ) +Dg, (5 Var (6:) D}
2) = n¥Vn 1 n 62,W,,(61) ! 02, W, (51)

g, oy (GwW3 (02) 6) 4 (@it (B1) @) DG 6]

where the first term is the conventional estimate of the asymptotic variance; the first term of

DgQ’W" (51) is zero since <G%W’;1 (/0\1> G”) - G%erl (§1> 9n (52> = 0 from the FOCs, so
Dosw.(0:) = (G,HWT_LI @1) G">71 GLW,! (§1> avgzj(e) 3, w,! (51) In (52)
and

Var (@1) - % (GLW;'G,) ' G W, 'W, (51) WG, (GLW;'G,) .

Var (52) will provide a better finite sample estimate of Var (52) by taking into account the finite

sample variation of 6.

Appendix D: Semiparametric Efficiency Bound

Recall from Section 3.3 of Chapter 4, there are two criteria of efficiency. Chamberlain (1986) uses the
first criterion, i.e., best among regular estimators, while Chamberlain (1987, 1992) use the second
criterion, i.e., local asymptotic minimaxity (LAM) among all estimators. We will concentrate on
Chamberlain (1987) in this appendix. A key advantage of Chamberlain (1987)’s method is that it
provides a conjecture for the form of the semiparametric efficiency bound (and thus the form of
the efficient influence function) so sidesteps the need to directly calculate a complicated projection
problem in using the first criterion. More discussions on the first criterion can be found in Newey
(1990a) and Bickel et al. (1998).

Following the notations in the main text, suppose we have the following conditional moment

conditions in hand,

Elu(w,By) [x] = 0.

First (without loss of generality) transform the moments so they have unit conditional variances

and are uncorrelated conditional on x,
ut (w,8) = Q2 (x)u(w,8),

where Q(x) = E [u(w, By) u(w, By)'| x]. Then we ask how to choose A*(x) = A (x)Q'/2(x) such
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that the moment conditions F [m (w,3)] = E[A*(x)u* (w,3)] is optimal, where note that each
moment in v* is on an "equal footing".

From the intuition in Section 2 of Chapter 4, the larger %u; (w,Bq),j=1,---,s, is, the more
informative is the jth mometn for estimating By. So one might choose weights for each uj (w, Bo)

to be proportional to %u}‘ (w, By). Thus one might consider

m(w,B) = 5 u" (w,B8) v (w,8).

0
o’
But then we might have E [m (w,3;)] # 0 and so GMM would not necessarily be consistent. To
(,m,u (w, By), i.e

ensure consistency, use a function of x "close" to

A*(x) = “ (w, Bo) } e

duz

so that m (w, 8) = A*(x)u* (w,3) and E [m (w,3;)] = 0. This implies

}' 2(x)

]/ 1/2(X)Q_1/2(X) = G(x)'Q (x),

AG) = AT = B | o (v )

u(w,Bo)

{
B
and

m( HE) :(:{),sz 1(1[)1’1’(“7/6)'

Chamberlain (1987) assumes that x has a multinomial (finite discrete) distribution. Then the
conditional moment restrictions are equivalent to a set of unconditional moment conditions. Using
the optimal weight matrix choice, we can then derive the asymptotic lower bound for the GMM
estimator using these unconditional moment conditions. We then argue that this bound applies to
the conditional moment restriction case since an arbitrary distribution for x can be approximated
as well as desired by a multinomial distribution.

Suppose {71,---,7s} is the support for x, where 7; = P (x = 7;) for j =1,---,J. Note that

Elx=1j)u(w,B8)] = E[l(x=r1;)E[u(w,p)x]]
= Px=m)E[u(w,B)x =T
= miEu(w,B)x=1].
So Efu(w,By)|x] =0iff Elu(w,8)|x=71j]=0for j=1,--- ,Jif E[l(x=7;)u(w,8)] =0
for j =1,---,J, where iff means "if and only if".

Ifh(x)=(1(x=71), - ,1(x=7y)), then let m (w, 8) = h (x) @ u(w,B) (so E[m (w,B)] =
0), where ® is the Kronecker product which is defined for two matrices Ajrxn = (a;;) and By, =
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(bij) as
a1B - ainyB
A®B=
ay1B -+ ayunB
Using the optimal weight matrix, the best asymptotic variance for the GMM estimator using these

(unconditional) moments is (G’ Q_IG)_I, where

mE [aiﬂ,u(w,,@o)‘x = 7'1}

0 0
G:a—B,E[m(w,BO)]:E h(x)@aﬁ,u(W,,@o)] = .
TFJE [aiﬁ/u (W7ﬂ0)‘ x= TJ} Jsxk
and
Q = E[m(w,By)m(w,B)] =E[h(x)h(x) @u(w,B)u(w,B)]
= E [diag (h (x)) ® u(w, By) u (w, By)’]
= dlag(ﬂlE[ (w,Bg) u (W,,BO)/|X=T1],"'77FJE[U(Waﬁo)u(w750),‘XZTJ])'
So
(¢'o'g)™
Sy [ 2o )| =] B Byt e = ) [ 2o }
= j:17T] 0 =Tj 1120 ] =Tj 08 0 =Tj
= B{E| puw80)| x| Blutw o) utw.po)|x) B | . 6) }

= E[Gx/Qx)'Gx)] .

Since the multinomial distribution can closely approximate any distribution for x, this is the bound

for the conditional moment restriction model. Hence A(x) is in fact optimal as given above.
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