
Chapter 8. Single-Equation GMM∗

The LSE, the GLS estimator, the MLE, the IV estimator and the 2SLS estimator are all special

cases of the generalized method of moments (GMM) estimator. This estimator is hinted in, e.g.,

Sargan (1958), Amemiya (1974) and White (1982b), but a formal development is usually credited

to Hansen (1982). In statistics, a related estimator is the generalized estimating equations (GEE)

estimator of Liang and Zeger (1986).

This chapter covers the single-equation generalized method of moments (GMM). Related mate-

rials can be found in Chapter 3 of Hayashi (2000), Chapters 21 and 22 of Ruud (2000), Chapter 6 of

Cameron and Trivedi (2005), Chapter 8 of Wooldrige (2010), and Chapter 13 of Hansen (2022). For

an intuitive introduction on GMM, see Alastair Hall (1993) and Wooldridge (2001); for discussion

on empirical application issues, see Ogaki (1993); for a more comprehensive treatment of GMM,

see Mátyás (1999) and Alastair Hall (2005).

1 GMM Estimator

We consider the linear model in this section. In a linear model,

E [g(wi,β)] = E
[
zi
(
yi − x′iβ

)]
= 0, (1)

where g(·, ·) is a set of moment conditions, and wi = (yi,x
′
i, z
′
i)
′. This is the instrument exogeneity

condition E [ziui] = 0 in the endogenous linear regression model yi = x′iβ + ui with E[xiui] 6= 0.

Define the sample analog of (1)

gn(β) =
1

n

n∑
i=1

gi(β) =
1

n

n∑
i=1

zi
(
yi − x′iβ

)
=

1

n

(
Z′y − Z′Xβ

)
.

When l > k, we cannot solve gn(β) = 0 exactly as intuitively shown in Figure 1. The idea of the

GMM is to define an estimator which sets gn(β) "close" to zero.

For some l × l weight matrix Wn > 0, let

Jn (β) = n · gn(β)′Wngn(β). (2)

This is a non-negative measure of the "length" of the vector gn(β) under the inner product 〈·, ·〉Wn

in Section 3 of Chapter 2. For example, if Wn = Il, then, Jn (β) = n · gn(β)′gn(β) = n ‖gn(β)‖2,
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Figure 1: gn(β) = 0 Can Not Hold Exactly for Any β: k = 1, l = 2

the square of the Euclidean length. The GMM estimator minimizes Jn (β). Note that if l = k,

then gn(β) = 0 can be solved exactly. The GMM estimator reduces to the MoM estimator (the IV

estimator) and Wn is not required. The first order conditions for the GMM estimator are

0 =
∂

∂β
Jn

(
β̂
)

= 2n
∂

∂β
g′n(β̂)Wngn(β̂)

= −2n

(
1

n
X′Z

)
Wn

(
1

n

(
Z′y − Z′Xβ̂

))
,

so

β̂GMM =
[(

X′Z
)
Wn

(
Z′X

)]−1 [(
X′Z

)
Wn

(
Z′y
)]
. (3)

While the estimator depends on Wn, the dependence is only up to scale, for if Wn is replaced

by cWn for some c > 0, β̂GMM does not change. In Section 4 of Chapter 7, β is identified as

(Γ′AΓ)−1 Γ′Aλ =
(
E [xiz

′
i]E[ziz

′
i]
−1AE[ziz

′
i]
−1E [zix

′
i]
)−1

E [xiz
′
i]E[ziz

′
i]
−1AE[ziz

′
i]
−1E[ziyi], so

there, Wn is the sample analog of E[ziz
′
i]
−1AE[ziz

′
i]
−1. When A = E[ziz

′
i], we obtain the 2SLS

estimator, that is, Wn = (Z′Z)−1.

From the FOCs of GMM estimation, we can see that although we cannot make gn(β) = 0

exactly, we could let some of its linear combinations, say Bngn(β), be zero, where Bn is a k × l
matrix. For a weight matrix Wn, Bn =

(
1
nX′Z

)
Wn. If Wn

p−→ W > 0, and 1
nX′Z

p−→
E [xiz

′
i] = G′, Bn converges to B = G′W. So β̂GMM is as if defined by a MoM estimator such

that Bgn(β̂) = 0. Equivalently, β̂GMM is using k instruments Bz, a linear combination of z, to

estimate β.
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2 Distribution of the GMM Estimator

Note that

β̂GMM − β =

[(
1

n
X′Z

)
Wn

(
1

n
Z′X

)]−1 [( 1

n
X′Z

)
Wn

(
1

n
Z′ (y −Xβ)

)]
=

[(
1

n
X′Z

)
Wn

(
1

n
Z′X

)]−1 [( 1

n
X′Z

)
Wn

(
1

n
Z′u

)]
.

Now, (
1

n
X′Z

)
Wn

(
1

n
Z′X

)
p−→ G′WG

and (
1

n
X′Z

)
Wn

(
1√
n

Z′u

)
d−→ G′WN (0,Ω) ,

where Ω= E
[
ziz
′
iu

2
i

]
= E [gig

′
i] with gi = ziui. So

√
n
(
β̂GMM − β

)
d−→ N (0,V) ,

where

V =
(
G′WG

)−1 (
G′WΩWG

) (
G′WG

)−1
. (4)

In general, GMM estimators are asymptotically normal with "sandwich form" asymptotic variances.

It is easy to check this asymptotic distribution is the same as the MoM estimator defined by

Bgn(β̂) = 0.

Exercise 1 Suppose the moment conditions are E [g(wi,β)] = 0 with g(w,β) = g1(w)− g2(w)β.

Set up Jn(β) as in (2) and derive the asymptotic distribution of the corresponding GMM estimator

of β.

A natural question is what is the optimal weight matrix W0 that minimizes V. This turns out

to be Ω−1. The proof is left as an exercise. This yields the effi cient GMM estimator:

β̂ =
(
X′ZΩ−1Z′X

)−1
X′ZΩ−1Z′y,

which has the asymptotic variance V0 =
(
G′Ω−1G

)−1. This corresponds to the linear combination

matrix B = G′Ω−1.

W0 = Ω−1 is usually unknown in practice, but it can be estimated consistently. For any

Wn
p−→W0, we still call β̂ the effi cient GMM estimator, as it has the same asymptotic distribution.

Exercise 2 In the linear model estimated by GMM with general weight matrix W, the asymptotic

variance of β̂GMM is V in (4).

(i) Let V0 be this matrix when W = Ω−1. Show that V0 =
(
G′Ω−1G

)−1.
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(ii) We want to show that for any W, V −V0 ≥ 0. To do this, start by finding matrices A and

B such that V = A′ΩA and V0 = B′ΩB.

(iii) Show that B′ΩA = B′ΩB and therefore B′Ω(A−B) = 0.

(iv) Use the expressions V = A′ΩA, A = B + (A − B), and B′Ω(A − B) = 0 to show that

V ≥ V0.

Exercise 3 Show that when a new group of instrumental variables is added in, the optimal asymp-
totic variance matrix V0 will not increase. Discuss when the two asymptotic variance matrices will

be equal. (Hint: use the result in Exercise 2.)

In the homoskedastic case, E
[
u2
i |zi
]

= σ2, then Ω = E [ziz
′
i]σ

2 ∝ E [ziz
′
i] suggesting the weight

matrix Wn = (Z′Z)−1, which generates the 2SLS estimator. So the 2SLS estimator is the effi cient

GMM estimator under homoskedasticity. When the heteroskedasticity is present, the optimal

weight matrix Ω−1 explores also the potential information of correlation between the squared

error, u2
i , and the cross-products of the instrumental variables, ziz

′
i. Testing E

[
u2
i |zi
]

= σ2 can

be similarly conducted as in testing homoskedasticity in linear regression. Nevertheless, we need

to make an additional assumption to simplify the asymptotic arguments, i.e., Cov(xi, ui|zi) is a
constant.1 Without this assumption, the tests for heteroskedasticity are more complicated; see

Wooldridge (1990) for the details.

Exercise 4 Take the single equation

y = Xβ + u, E[u|Z] = 0.

Assume E[u2
i |zi] = σ2. Show that if β̂ is estimated by GMM with weight matrix Wn = (Z′Z)−1,

then
√
n
(
β̂ − β

)
d−→ N

(
0, σ2

(
G′M−1G

)−1
)
,

where G = E[zix
′
i] and M = E[ziz

′
i].

The following example illustrates why W0 = Ω−1.

Example 1 (Optimal Weight Matrix) Suppose E[xi] = E[yi] = µ and Cov(xi, yi) = 0. We

try to find an effi cient GMM estimator for µ. First, sort out moment conditions E[g(wi, µ)] = 0,

where wi = (xi, yi)
′:

g(wi, µ) =

(
xi − µ
yi − µ

)
.

Since µ appears in both moment conditions, we hope to find a better estimator than x or y which

uses only one moment condition. Of course, E[g(wi, µ)] = 0 uses extra information (xi and yi
have a common mean) about µ, and not robust to such information.

1When zi = xi as in linear regression, Cov(xi, ui|zi) = 0, so such an assumption is not required.
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We can use x or y to estimate µ, but a weighted average may be better. Suppose µ̂ = ωx +

(1− ω) y, and xi and yi are uncorrelated; then the asymptotic distribution of µ̂ is

√
n (µ̂− µ)

d−→ N
(

0, ω2σ2
x + (1− ω)2 σ2

y

)
,

where σ2
x = V ar(x) and σ2

y = V ar(y). Minimizing the asymptotic variance, we have

ω =
σ2
y

σ2
x + σ2

y

.

That is, the sample (of x and y) with a larger variance is given a smaller weight, and the sample with

a smaller variance is given a larger weight. (Check that µ̃ = x+y
2 , which corresponds to Wn = I2

in (2), may have a larger asymptotic variance than x or y). The asymptotic variance under this

optimal weight is
σ2xσ

2
y

σ2x+σ2y
≤ min

{
σ2
x, σ

2
y

}
.

From Exercise 1 and 2, the optimal weight matrix

W0 = E[g(wi, µ)g(wi, µ)′]−1 =

(
E[(xi − µ)2] E[(xi − µ) (yi − µ)]

E[(xi − µ) (yi − µ)] E[(yi − µ)2]

)−1

=

(
σ−2
x 0

0 σ−2
y

)
,

so

Jn(µ) = n · gn(µ)′W0gn(µ) = n

(
(x− µ)2

σ2
x

+
(y − µ)2

σ2
y

)
,

and

µ̂ = ωx+ (1− ω) y

is the same as the weighted average above.

In practice, σ2
x and σ

2
y are unknown. In this simple example, they can be substituted by their

sample analog. The next section deals with the general case. �

Exercise 5 In Exercise 12 of Chapter 7, find the effi cient GMM estimator of β based on the

moment condition E[zi(yi − xiβ)] = 0. Does it differ from 2SLS and/or OLS?

3 Estimation of the Optimal Weight Matrix

Given any weight matrix Wn > 0, the GMM estimator β̂GMM is consistent yet ineffi cient. For

example, we can set Wn = Il. In the linear model, a better choice is Wn = (Z′Z)−1 which

corresponds to the 2SLS estimator. Given any such fist-step estimator, we can define the residuals

ûi = yi − x′iβ̂GMM and moment equations ĝi = ziûi = g
(
wi, β̂GMM

)
. Construct

gn = gn(β̂GMM ) =
1

n

n∑
i=1

ĝi,

ĝ∗i = ĝi − gn,
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and define

Wn =

(
1

n

n∑
i=1

ĝ∗i ĝ
∗′
i

)−1

=

(
1

n

n∑
i=1

ĝiĝ
′
i − gng′n

)−1

. (5)

Then Wn
p−→ Ω−1, and GMM using Wn as the weight matrix is asymptotically effi cient.

Exercise 6 Take the model yi = x′iβ+ui with E[ziui] = 0. Let ûi = yi−x′iβ̃ where β̃ is consistent

for β (e.g., a GMM estimator with arbitrary weight matrix). Define the estimate of the optimal

GMM weight matrix

Wn =

(
1

n

n∑
i=1

ziz
′
iû

2
i

)−1

.

Show that Wn
p−→ Ω−1 where Ω = E[ziziu

2
i ].

A common alternative choice is to set

Wn =

(
1

n

n∑
i=1

ĝiĝ
′
i

)−1

, (6)

which uses the uncentered moment conditions. Since E [gi] = 0, these two estimators are asymp-

totically equivalent under the hypothesis of correct specification. However, Alastair Hall (2000) has

shown that the uncentered estimator is a poor choice. When constructing hypothesis tests, under

the alternative hypothesis the moment conditions are violated, i.e. E [gi] 6= 0, so the uncentered

estimator will contain an undesirable bias term and the power of the test will be adversely affected.

A simple solution is to use the centered moment conditions to construct the weight matrix.

Here is a simple way to compute the effi cient GMM estimator for the linear model. First, set

Wn = (Z′Z)−1, estimate β using this weight matrix to get the first-step estimator β̂GMM , and

construct the residual ûi = yi − x′iβ̂GMM . Then set ĝi = ziûi, and let ĝ be the associated n × l
matrix. Then the effi cient GMM estimator is

β̂ =
(
X′Z

(
ĝ′ĝ − ngng′n

)−1
Z′X

)−1
X′Z

(
ĝ′ĝ − ngng′n

)−1
Z′y.

In most cases, when we say "GMM" we actually mean "effi cient GMM". There is little point in

using an ineffi cient GMM estimator when the effi cient estimator is easy to compute. An estimator

of the asymptotic variance of β̂ can be seen from the above formula. Set

V̂ = n
(
X′Z

(
ĝ′ĝ − ngng′n

)−1
Z′X

)−1
.

Asymptotic standard errors are given by the square roots of the diagonal elements of V̂/n.

Exercise 7 Suppose we want to estimate σ2 in Exercise 4. (i) Show that n−1
∑n

i=1 û
2
i is consistent,
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where ûi = yi − xiβ̂. (ii) In the structural model

y = X1β1 + X2β2 + u,

X2 = X1Γ12 + Z2Γ22 + V,

show that 1
n−l2

(
1,−β̂′2,2SLS

)
Y′MZY

(
1,−β̂′2,2SLS

)′
is also a consistent estimator of σ2, where

Y = (y,X2).

Given the effi cient estimator β̂, we can continue to reestimate Wn by replacing ĝi by g
(
wi, β̂

)
and construct a new estimator of β. This is repeated until the β estimator converges or enough

iterations are conducted. The estimator generated from this procedure is called the iterative esti-

mator.

4 Nonlinear GMM

Suppose the moment conditions are

E [g(wi,θ0)] = 0,

where g(·, ·) ∈ Rl is a general nonlinear function of θ∈ Rk, l ≥ k. The GMM estimator θ̂ minimizes

Jn (θ) = n · gn(θ)′Wngn(θ),

where gn(θ) = n−1
∑n

i=1 g(wi,θ) ≡ n−1
∑n

i=1 gi(θ), and Wn is a consistent estimator of Ω−1 ≡
E [gi(θ0)gi(θ0)′]−1 which is the optimal weight matrix. For example,

Wn =

(
1

n

n∑
i=1

ĝiĝ
′
i − gng′n

)−1

with ĝi = gi

(
θ̃
)
constructed using a preliminary consistent estimator θ̃, perhaps obtained by first

setting Wn = In. Since the GMM estimator depends upon the first-stage estimator, often the

weight matrix Wn is updated, and then θ̂ recomputed. This estimator can be iterated if needed.

In Appendix A, we show θ̂ is CAN under some regularity conditions based on Newey and

McFadden (1994). More specifically,

√
n
(
θ̂ − θ0

)
d−→ N

(
0,
(
G′Ω−1G

)−1
)
≡ N (0,V) , (7)

where G = E
[
∂gi(θ0)/∂θ′

]
. The asymptotic covariance matrix of θ̂ can be consistently estimated

by V̂ ≡
(
Ĝ′Ω̂−1Ĝ

)−1
, where Ω̂ = n−1

∑n
i=1 g

∗
i (θ̂)g∗i (θ̂)′ with g∗i (θ) = gi(θ) − gn (θ), and Ĝ =

n−1
∑n

i=1 ∂gi(θ̂)/∂θ′.

(*) For the MLE, the one-step estimator is effi cient. Similarly, the one-step GMM estimator is
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effi cient. Such an estimator is defined as

θ̂ = θ̃ −
(

Gn

(
θ̃
)′

Ω−1
n

(
θ̃
)

Gn

(
θ̃
))−1

Gn

(
θ̃
)′

Ω−1
n

(
θ̃
)
gn(θ̃),

where θ̃ = θ0 +Op(1/
√
n), Gn (θ) = ∂

∂θ′
gn(θ), and Ωn (θ) = 1/n

∑n
i=1 g(wi,θ)g(wi,θ)′.

Exercise 8 The equation of interest is

yi = m(xi,β) + ui, E[ziui] = 0.

The observed data is (yi,xi, zi), zi is l×1 and β is k×1, l ≥ k. Show how to construct an effi cient
GMM estimator for β.

5 Hypothesis Testing

This section summarizes the tests in GMM. We first discuss two specification tests - the Hausman

test for the presence of endogeneity and the J test for the validity of overidentifying restrictions.

The J test is also called the Sargan-Hansen test due to a special case established by Sargan (1958)

and the general case by Hansen (1982). We then consider the three asymptotically equivalent tests

in the GMM framework - the Wald, Lagrange Multiplier (or Rao’s Score), and Likelihood Ratio

test. The LR test is also called the distance test or the Newey-West test due to Newey and West

(1987a). These tests are counterparts of those in the likelihood framework (see Section 4 of Chapter

4).

It should be emphasized that a specification test is a test for the whole model, not only for the

restrictions of interest. Only if it is guaranteed that the rest of the model (e.g., the rank condition)

is specified correctly, a rejection of the null is a sign of violation of the interested restrictions.

Nevertheless, a rejection of the null is typically cause for concern.

5.1 Testing for Exogeneity: The Hausman Test (*)

The null is E[xu] = 0, i.e., x is exogenous. If the null is true, then no instruments are needed.

Suppose the model is homoskedastic under the null, that is, E[u2|x] = σ2. Under the null, the LSE

is effi cient, while under the alternative it is inconsistent. On the other hand, the 2SLS estimator is

consistent under both the null and alternative. The Hausman test examines the null by checking

for a statistically significant difference between the OLS and 2SLS estimate of β. There are various

versions of this test, three of which are

Tj =
(
β̂2,2SLS − β̂2,OLS

)′
V̂−1
j

(
β̂2,2SLS − β̂2,OLS

)
,

8



where

V̂1 =
(
X̃′2PZ̃2

X̃2

)−1
σ̂2

2SLS −
(
X̃′2X̃2

)−1
σ̂2
OLS ,

V̂2 =

[(
X̃′2PZ̃2

X̃2

)−1
−
(
X̃′2X̃2

)−1
]
σ̂2

2SLS ,

V̂3 =

[(
X̃′2PZ̃2

X̃2

)−1
−
(
X̃′2X̃2

)−1
]
σ̂2
OLS ,

σ̂2
2SLS and σ̂

2
OLS are estimates of σ

2 based on the 2SLS and OLS residuals, respectively, X̃2 =

MX1X2, and Z̃2 = MX1Z2. T2 was proposed by Wu (1973; his T3 statistic) and by Hausman

(1978); T3 was proposed by Durbin (1954). Under the null, Tj
d−→ χ2

κ, where κ =rank(Vj) and

Vj =plim
(
V̂j

)
. See also Smith (1994) for several asymptotically equivalent limited information

tests.

5.2 Testing Overidentifying Restrictions: The J Test

The hypotheses are

H0 : ∃ β0 s.t. E[g(wi,β0)] = 0 (8)

versus

H1 : ∀ β ∈ B, E[g(wi,β)] 6= 0,

where B is the parameter space. When l = k, there always exists a β0 ∈ B such that E[g(wi,β0)] =

0. So only if l > k, we need this test - to test whether the overidentifying restrictions are valid.

For example, take the linear model yi = x′1iβ1 +x′2iβ2 +ui with E[x1iui] = 0 and E[x2iui] = 0.

It is possible that β2 = 0, so that the linear equation may be written as yi = x′1iβ1 + ui. However,

it is possible that β2 6= 0, and in this case it would be impossible to find a value of β1 so that

E[x1i (yi − x′1iβ1)] = 0 and E[x2i (yi − x′1iβ1)] = 0 hold simultaneously. In this sense an exclusion

restriction (β2 = 0) can be seen as an overidentifying restriction.

Note that gn(β̂)
p−→ E[gi(β0)], and thus gn(β̂) can be used to assess whether or not the

hypothesis that E[gi(β0)] = 0 is true or not. The test statistic is the criterion function at the

parameter estimates

Jn = Jn

(
β̂
)

= ngn(β̂)′Wngn(β̂) = n2gn(β̂)′
(
ĝ′ĝ − ngng′n

)−1
gn(β̂),

where Wn is defined in (5). Under the hypothesis of correct specification,

Jn
d−→ χ2

l−k.

The degrees of freedom of the asymptotic distribution are the number of over-identifying restric-

tions. If the statistic Jn exceeds the chi-square critical value, we can reject the model.
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Exercise 9 Take the linear model

yi = x′iβ + ui,

E[ziui] = 0,

and consider the GMM estimator β̂ of β. Let

Jn = ngn

(
β̂
)′

Ω̂−1gn

(
β̂
)

denote the test of overidentifying restrictions. Show that Jn
d−→ χ2

l−k by demonstrating each of the

following:

(i) Since Ω > 0, we can write Ω−1 = CC′ and Ω = C′−1C−1.

(ii) Jn = n
(
C′gn

(
β̂
))′ (

C′Ω̂C
)−1

C′gn

(
β̂
)
.

(iii) C′gn

(
β̂
)

= DnC
′gn (β0) where

Dn = Il −C′
(

1

n
Z′X′

)[(
1

n
X′Z

)
Ω̂−1

(
1

n
Z′X

)]−1( 1

n
X′Z

)
Ω̂−1C′−1,

gn (β0) =
1

n
Z′u.

(iv) Dn
p−→I l −R(R′R)−1R′ where R = C′E[zix

′
i] = C′G.

(v) n1/2C′gn (β0)
d−→ Z ∼ N(0, Il).

(vi) Jn
d−→ Z ′

(
Il −R(R′R)−1R′

)
Z.

(vii) Z ′
(
Il −R(R′R)−1R′

)
Z ∼ χ2

l−k.

(Hint: Il −R(R′R)−1R′ is a projection matrix. Note also the difference in the notation Z

and Z.)

An alternative way to understand the J test by Sargan (1958) is to show that it is actually an

F test in the homoskedastic linear model

yi = x′1iβ1 + x′2iβ2 + ui, (9)

E [ziui] = 0, E[u2
i |zi] = σ2,

where zi = (x′1i, z
′
2i)
′. Exogeneity of the instruments means that they are uncorrelated with ui,

which suggests that the instruments should be approximately uncorrelated with ûi, where ûi =

yi − x′1iβ̂1 − x′2iβ̂2 with β̂ =
(
β̂
′
1, β̂

′
2

)′
being the 2SLS estimator. So we expect in the regression

ûi = x′1iδ1 + z′2iδ2 + vi, (10)
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the estimate of δ ≡
(
δ′1, δ

′
2

)′ is close to zero. Let F denote the homoskedasticity-only F statistic

testing δ2 = 0; then l2F converges to χ2
l2−k2 = χ2

l−k.

Exercise 10 In the homoskedastic linear model (9), show that (i) Jn = nR2
u =

û′P
Z̃2

û

û′û/n , where R
2
u

is the uncentered R2 in the regression (10), and Z̃2 = MX1Z2; (ii) l2F has the same asymptotic

distribution as Jn.

To further appreciate the idea of the J test, consider the linear model (9) again. Suppose we

have one endogenous variable x2i and two instruments z2i, and then we can use either instrument

to estimate β ≡
(
β′1,β

′
2

)′. If H0 holds, we expect that these two instruments will generate similar

estimates. If the two estimates are very different, then we suspect H0 fails. The J test implicitly

makes this comparison; see Newey (1985b) for such a Hausman test interpretation of the J test.2

In other words, the J test is testing whether the estimates from different sets of instruments are

consistent with each other; it is not testing whether z is exogenous. Acceptance is consistent with

all of the instruments being endogenous, while failure is consistent with a subset being exogenous.

Passing an overidentification test does not validate instrumentation. In other words, the null

hypothesis of the GMM over-identification test is refutable but nonverifiable as a test of exogeneity

of z (see Breusch (1986)) - if the null is rejected, then we are sure that some (although need not all)

instruments are not exogenous; while even if the null is not rejected, all or some of the instruments

can be endogenous.

The following exercise rigorously shows that the J test does not have power against some

direction of violation of the null.

Exercise 11 We use the same setup and notations as in Exercise 9 except that E[g(w,βn) =

E[z(y − x′βn)] = E [zu] = δ/
√
n. Show the following results.

(i)
√
n
(
β̂ − βn

)
d−→ N

((
G′Ω−1G

)−1
G′Ω−1δ,V

)
, where V =

(
G′Ω−1G

)−1.

(ii) Jn
d−→ χ2

l−k(λ), where λ = δ′Ω−1 (Ω−GVG′) Ω−1δ.

(iii) λ = 0 if and only if δ ∈ span(G).

From this exercise, when δ falls in span(G), a k-dimensional space, the J test does not have

power. Intuitively, when the null (8) holds, δ =
√
nE[g(w,βn)] =

√
n (E[g(w,βn)]− E[g(w,β0)]) =

G
√
n (βn − β0) stays in span (G), a k-dimensional space, where we denote the β under the local

alternative as βn and that under the null as β0. Since for whatever value E [g(w,β)] takes, we

can always find some β such that G′Ω−1E [g(w,β)] = 0 and we actually estimate β using these

moment conditions, the J test obtains power only from the remaining l− k moment conditions not
covered by G′Ω−1E [g(w,β)] = 0. This is why the degree of freedom of Jn is l − k and also why
only when δ falls in a (l − k)-dimensional space, the J test has power. On the other hand, if we

use the inner product 〈x, z〉 = x′Ω−1z, then when δ falls in span(G)⊥, the asymptotic bias of β̂,

2See also Angrist (1991) for the dummy instrument case.
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(
G′Ω−1G

)−1
G′Ω−1δ, is zero. Intuitively, the estimation of β is based on G′Ω−1E [g(w,β)] = 0

as mentioned in Section 1, so only the deviation δ such that G′Ω−1δ 6= 0 would introduce bias to

β̂. In this sense, the bias of β and the power of the J test satisfy some orthogonality property.

The J test is a very useful by-product of the GMM methodology, and it is advisable to report

the statistic Jn whenever GMM is used. When over-identified models are estimated by GMM, it is

customary to report the Jn statistic as a general test of model adequacy.

(**) As reported in the July 1996 issue of the Journal of Business and Economic Statistics, the

J test tends to over-reject in finite samples. On the other hand, Tauchen (1986) reported cases

in which Jn(β) evaluated at the iterative estimator led to underrejection of the overidentifying

restrictions.

When the J test rejects the null, there are two responses, either screening correct moments

based on some moment selection procedure as in Section 6.1 or estimating the misspecified model

directly. We briefly discuss the second response here based on Hall and Inoue (2003). It can be

shown that (i) the probability limit of the GMM estimator depends on the limit of the weighting

matrix; (ii) the limiting distribution of the GMM estimator depends on the limiting distribution

of the elements of the weighting matrix (especially the rate of converence to its limit); (iii) the

iterated estimators are not asymptotically equivalent; (iv) the three asymptotically equivalent tests

discussed in the next subsection are not asymptotically equivalent or asymptotically χ2-distributed

under the null. They propose statistics for testing hypotheses about the pseudo-parameters which

have limiting χ2 distributions under the null. (**)

5.3 Three Asymptotically Equivalent Tests: The Wald, LM and Distance Test

Suppose we want to test

H0 : r(β)
(q×1)

= 0 vs H1 : r(β)
(q×1)

6= 0.

We impose the same regularity conditions, Assumption RLS.1′, as in Section 4 of Chapter 5 on r(·).
Specifically, we assume that r(·) is continuously differentiable at the true value β and R = ∂

∂βr(β)′

has rank q.

We described before how to construct estimates of the asymptotic covariance matrix of the

GMM estimates. These may be used to construct Wald tests of statistical hypotheses. Specifically,

Wn = n · r
(
β̂
)′ [

R̂′V̂R̂
]−1

r
(
β̂
)
,

where β̂ is the unrestricted estimator

β̂ = arg min
β
Jn(β),
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and for a given weight matrix Wn in Section 3, the GMM criterion function

Jn(β) = n · gn (β)′Wngn (β) ,

and R̂ = ∂r
(
β̂
)′
/∂β.

The principal advantage of the Wald test is that it only requires the unconstrained estimator to

compute it. Its principal disadvantage is that it is not invariant to reparametrization as discussed

in Section 10 of Chapter 5. When the hypothesis is non-linear, a better approach is to directly use

the GMM criterion function. This is sometimes called the GMM Distance statistic, and sometimes

called a LR-like statistic. The idea was first put forward by Newey and West (1987a). Define the

restricted estimator β̃ as

β̃ = arg min
r(β)=0

Jn(β).

The two minimizing criterion functions for β̂ and β̃ are Jn(β̂) and Jn(β̃). The GMM distance

statistic is the difference

Dn = Jn(β̃)− Jn(β̂).

As discussed before, if r is non-linear, the Wald statistic can work quite poorly. In contrast, current

evidence suggests that the D statistic appears to have quite good sampling properties, and is the

preferred test statistic; see Hansen (2006) for a comparison of its higher-order properties with the

Wald statistic. Newey and West (1987a) suggested to use the same weight matrix Wn for both null

and alternative, as this ensures that Dn ≥ 0. This reasoning is not compelling, however, and some

current research suggests that this restriction is not necessary for good performance of the test.

This test shares the useful feature of LR tests in that it is a natural by-product of the computation

of alternative models.

Another test is the Lagrange multiplier (LM) or the score test. Its test statistic is constructed

as

LMn = n

[
gn

(
β̃
)′

WnGn

(
β̃
)]

Ṽ

[
Gn

(
β̃
)′

Wngn

(
β̃
)]
,

where

Ṽ =

[
Gn

(
β̃
)′

WnGn

(
β̃
)]−1

,

and Gn

(
β̃
)′

Wngn

(
β̃
)
is the first-order derivative of Jn(·) at β̃ and plays the role of the score

function in the likelihood framework. As the LM test statistic in the likelihood framework, we need

only calculate the restricted estimator β̃, while we need to calculate both β̂ and β̃ in the distance

statistic.

As in Section 11 of Chapter 5, we can also consider the minimum distance (or minimum chi-

square) test. Define

β̂EMD = arg min
r(β)=0

(
β̂ − β

)
V̂−1

(
β̂ − β

)
,

where β̂ is the optimal GMM estimator, and V̂ is an estimator of its asymptotic covariance matrix.
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It can be shown that
√
n
(
β̂EMD − β̃

)
= op(1); see, e.g., Proposition 2 of Newey and West (1987a).

The minimum chi-square statistic is

MCn = n
(
β̂ − β̂EMD

)
V̂−1

(
β̂ − β̂EMD

)
.

Like the distance statistic, it requires two minimizations to compute.

5.3.1 The Trinity in GMM

As in the likelihood case, we can show that the Wald, LM and distance tests are asymptotically

equivalent. Actually, we can show they are asymptotically equivalent even under the local alterna-

tives and when the moment conditions are nonlinear in β. Moreover, they are even asymptotically

equivalent to the minimum chi-square test. This result is rigorously stated in Theorem 2 of Newey

and West (1987a).

Proposition 1 Under some regularity conditions, and the local alternatives βn = β + n−1/2b,

Wn
d−→ χ2

q(λ),

where λ = b′R (R′VR)−1 Rb. In addition, Wn−Dn = op(1), Wn−LMn = op(1), andWn−MCn =

op(1).

It should be emphasized that the optimal weight matrix is used in the construction of Dn;

otherwise, Dn is not asymptotically chi-squared and is not asymptotically equivalent to Wn. This

is parallel to the result in the misspecified likelihood case. Also, the form of the LM statistic would

be more complicated, and would in general involve the Jacobian matrix R of the constraints. So it

is strongly suggested to use the optimal weight matrix in the hypothesis testing of GMM.

We now consider some special cases. The following proposition follows from Proposition 1, 3

and 4 of Newey and West (1987a).

Proposition 2 (i) When the model is just-identified, LMn = Dn. (ii) When g(w,β) = g1(w) −
g2(w)β, Dn = LMn = MCn. (iii) When g(w,β) = g1(w) − g2(w)β and r(β) = R′β − c,

Wn = Dn = LMn = MCn.

Result (i) can be easily proved. In the just-identified case, gn
(
β̂
)

= 0, so Dn = Jn(β̃) =

n · gn
(
β̃
)′

Wngn

(
β̃
)
. On the other hand, given Gn

(
β̃
)
is invertible,

LMn = n

[
gn

(
β̃
)′

WnGn

(
β̃
)]

Ṽ

[
Gn

(
β̃
)′

Wngn

(
β̃
)]

= n · gn
(
β̃
)′

WnGn

(
β̃
)

Gn

(
β̃
)−1

W−1
n Gn

(
β̃
)′−1

Gn

(
β̃
)′

Wngn

(
β̃
)

= n · gn
(
β̃
)′

Wngn

(
β̃
)
.
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The equivalence in (ii) does not includeWn because it involves the Jacobian of the constraints when

r(·) is nonlinear. We will provide some intuition on Dn = LMn at the end of the next subsection.

The following exercise shows Result (iii) in the linear instrumental variables case. The minimum

distance statistic J∗n in Section 11 of Chapter 5 is numerically equivalent to Dn and LMn even if

the restrictions are nonlinear since it can be put in case (ii) of Proposition 2.

Exercise 12 Take the linear model

yi = x′iβ + ui,

E[ziui] = 0,

and consider the unrestricted GMM estimator β̂ and restricted GMM estimator β̃ of β under the

linear constraints R′β = c. Define

Jn(β) = n · gn (β) Ω̂−1gn (β) ,

and then β̂ = arg min
β
Jn(β) and β̃ = arg min

R′β=c
Jn(β). Define the Lagrangian

L(β,λ) =
1

2
Jn(β) + λ′

(
R′β − c

)
.

(i) Show that

β̃ = β̂ −
(
X′ZΩ̂−1Z′X

)−1
R

[
R′
(
X′ZΩ̂−1Z′X

)−1
R

]−1 (
R′β̂ − c

)
,

λ̂ =
1

n

[
R′
(
X′ZΩ̂−1Z′X

)−1
R

]−1 (
R′β̂ − c

)
.

(ii) Derive the asymptotic distribution of β̃ under the null.

(iii) Show that

Jn

(
β̃
)

= Jn

(
β̂
)

+
1

n

(
β̂ − β̃

)′
X′ZΩ̂−1Z′X

(
β̂ − β̃

)
.

(iv) Show that the distance statistic is equal to the Wald statistic.

(**)The numerical equivalence result suggests a convenient way to calculate Dn in the linear

model

yi = x′iβ + ui,

E[ziui] = 0,

Define z∗i = ziûi, and Z∗ = (z∗1, · · · , z∗n)′, y∗i = yi/ûi, y∗ = (y∗1, · · · , y∗n)′, x∗i = xi/ûi and X∗ =

(x∗1, · · · ,x∗n)′. The 2SLS estimator β̂ for a regression of y∗ on X∗ with instruments Z∗ is an effi cient
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estimator of β, whereWn in (6) is used as the effi cient weight matrix (why?). Define û∗i = y∗i −x∗′i β̂,

and û∗ = (û∗1, · · · , û∗n)′. The sum of squares of the predicted values of a regression of û∗i on z∗i is

Ŝn = û∗′Z∗(Z∗′Z∗)−1Z∗′û∗ = (y −Xβ̂)′ZWnZ
′(y −Xβ̂)/n = Jn(β̂).

Substitute out the constraints R′β − c = 0, and repeat the procedure above for the restricted

estimator.3 Let S̃n be the counterpart of Ŝn; then Dn = Ŝn − S̃n.
The numerical equivalence result seems puzzling given the ranking W ≥ LR ≥ LM in the

normal regression model (see Section 5 of Chapter 4). Part of the explanation is that we assume

that all statistics use the same estimate V̂ of V. Also, our objective function uses the FOCs rather

than the log-likelihood itself. (**)

5.3.2 Summary of the Trinity in GMM and the M-estimation (*)

We generally consider the extremum estimator which is defined as

θ̂ = arg max Qn(θ)

s.t. θ ∈ Θ ⊂ Rk

whereQn(·) is a general criterion function. To testH0 : r(θ) = 0, we sometimes need the constrained

estimator, denoted as θ̃ , which solves

max Qn(θ)

s.t. r(θ) = 0

Among extremum estimators, the most popular cases are M-estimators (e.g., the MLE) and

GMM estimators. Their criterion functions are as follows:

1. M-estimators: Qn(θ) = 1
n

n∑
i=1

m (wi;θ), that is, the objective function is a sample average.

2. GMM: Qn(θ) = −1
2gn(θ)′

(1×l)
Wn
(l×l)

gn(θ)
(l×1)

Here, we define Qn(θ) = − 1
2nJn(θ) to give an analog of the average log-likelihood in the ML case.

3When the constraints are nonlinear, we cannot substitute out for the constraints and use the 2SLS calculation to
obtain the residuals for the restricted estimates.
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The following notation will be used throughout this section:

s(wi;θ)
(k×1)

=
∂m(wi;θ)

∂θ
, H(wi;θ)

(k×k)

=
∂s(wi;θ)

∂θ′
=
∂2m(wi;θ)

∂θ∂θ′
,

gn(θ)
(l×1)

=
1

n

n∑
i=1

g(wi;θ),R(θ)
(k×q)

= ∂r (θ)′ /∂θ

Gn(θ)
(l×k)

=
∂gn(wi;θ)

∂θ′
, G

(l×k)
= E

[
∂g(wi;θ0)

∂θ′

]
,

Ωn
(l×l)

(θ) =
1

n

n∑
i=1

g(wi;θ)g(wi;θ)′, Ω
(l×l)

= E[g(wi;θ0)g(wi;θ0)′].

We summarize the asymptotic approximation of these statistics and tests in the following two

tables, which are Tables 7.1 and 7.2 of Hayashi (2000). Table 1 provides the correspondence of

Taylor expansion for the sampling error between M-estimators and GMM estimators. Table 2

gives the components of the three asymptotically equivalent test statistics in the ML and GMM

estimation. Also, Figure 2 provides an intuitive explanation for these three tests. Wn can be

interpreted as twice the difference in the criterion function at the two estimates, using a quadratic

approximation to the criterion function at θ̂; LMn can be interpreted as twice the difference in the

criterion function at the two estimates, using a quadratic approximation to the criterion function

at θ̃; and Dn is precisely twice the difference in the criterion function at the unconstrained and

constrained estimates. Note that the same covariance matrix Ω̂ is used in Qn(θ̂) and Qn(θ̃).

Exercise 13 Suppose θ ∈ R, H0 is θ − c = 0, and the curvature of Qn(θ) at θ̃ is −Σ̃ and at θ̂ is

−Σ̂. Show that (i) Wn is twice the difference in Qn(θ) at θ̃ and θ̂, using a quadratic approximation

to Qn(θ) at θ̂; (ii) LMn is twice the difference in Qn(θ) at θ̃ and θ̂, using a quadratic approximation

to Qn(θ) at θ̃.

√
n
(
θ̂ − θ0

)
= −Ψ−1√n∂Qn(θ0)

∂θ + op(1),
√
n∂Qn(θ0)

∂θ
d−→ N(0,Σ), Avar

(
θ̂
)

= Ψ−1ΣΨ−1

Terms for substitution M-estimators GMM

Qn (θ) 1
n

n∑
i=1

m (wi;θ) −1
2gn(θ)′Wngn(θ)

√
n∂Qn(θ0)

∂θ
1√
n

n∑
i=1

s (wi;θ0) − [Gn(θ0)]′Wn
1√
n

n∑
i=1

g (wi;θ0)

Ψ E [H(wi;θ0)] −G′WG

Σ E [s(wi;θ0)s(wi;θ0)′] G′WΩWG

Table 1: Taylor Expansion for the Sampling Error

17



Figure 2: Trinity

Wald: n · r
(
θ̂
)′ [

R(θ̂)′Σ̂−1R(θ̂)
]−1

r
(
θ̂
)

LM: n
(
∂Qn(θ̃)
∂θ

)′
Σ̃−1

(
∂Qn(θ̃)
∂θ

)
LR: 2n ·

[
Qn(θ̂)−Qn(θ̃)

]
4

Terms for substitution Conditional ML Effi cient GMM

Qn(θ) 1
n

n∑
i=1

log f(yi |xi;θ ) −1
2gn(θ)′Ω̂−1gn(θ)

Σ̂ −∂2Qn(θ̂)
∂θ∂θ′

or 1
n

n∑
i=1

s(wi; θ̂)s(wi; θ̂)′5 Ĝ′Ω̂−1Ĝ, Ĝ
(l×k)

≡ Gn(θ̂), Ω̂
(l×l)

= Ωn

(
θ̂
)

Σ̃ replace θ̂ by θ̃ in above G̃′Ω̃−1G̃, G̃
(l×k)

≡ Gn(θ̃), Ω̃
(l×l)

= Ωn

(
θ̃
)

Table 2: Trinity

From Figure 2, we can understand why Dn = LMn when g(w,β) is linear in β even if r(·) is
nonlinear in Proposition 2(ii). This is because in this case, Qn(β) is exactly quadratic if g(w,β)

is linear in β, so the quadratic approximation of the LM statistic (the lower blue line) coincides

with Qn(β) itself (the red line). As a result, the differences at the two estimates in Qn(β) and the

quadratic approximation are the same.

4 The same weighting matrix is used in Qn(θ̂) and Qn(θ̃) for GMM to guarantee LR is greater than 0 in finite
samples. Also, we can see Dn = Jn(θ̃)− Jn(θ̂).

5 or let I(θ) = E [s(wi;θ)s(wi;θ)
′], and Σ̂ = I(θ̂).
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5.4 Confidence Regions

By inverting the test statistics, we can construct confidence regions for θ. A straightforward choice

of the test statistic is the Wald statistic. However, as mentioned above, the distance statistic may

perform better in some cases of hypothesis testing. We expect the confidence region by reverting

the distance statistic would inherit its good properties in testing. Suppose we want to construct

confidence region for θ2, where θ = (θ′1,θ
′
2)′ ∈ Rk and θ2 ∈ Rk2 is a subvector of θ. We need to

find θ2 such that

Jn

(
θ̃1 (θ2) ,θ2

)
− Jn

(
θ̂
)
≤ χ2

k2,α,

where θ̃1 (θ2) = arg min θ1Jn (θ1,θ2) for a given θ2, the df of the χ2 limiting distribution is k2

because the df of Jn
(
θ̃1 (θ2) ,θ2

)
is l − k1 and the df of Jn

(
θ̂
)
is l − k so the difference is

(l − k1)− (l− k) = k − k1 = k2. Of course, we can construct confidence region for θ2 by collecting

θ2’s such that Jn
(
θ̃1 (θ2) ,θ2

)
≤ χ2

l−k1,α directly. However, by observing that Jn
(
θ̃1 (θ2) ,θ2

)
=[

Jn

(
θ̃1 (θ2) ,θ2

)
− Jn

(
θ̂
)]

+ Jn

(
θ̂
)
, we can conclude that this confidence region is based on the

joint test of overidentification and θ2 = θ20. If the model is misspecified so that the overidentifying

conditions are invalid, this confidence region can be null.

6 Moment Selection (*)

If the J test rejects the null, we suspect there are some moment conditions which are invalid. Thus,

it may be useful to employ a moment selection procedure to estimate which moments are correct

and which are incorrect. On the other hand, as mentioned in Section 9, we may need to select

moments among many valid ones to improve finite-sample inference. We use Andrews (1999) and

Donald and Newey (2001) to exemplify these two scenarios.

6.1 Andrews (1999)

Andrews (1999) develops parallel information criteria (IC) as in the least squares environment;

he labels these criteria by adding the prefix GMM. He shows that the GMM-version IC is indeed

analogue of the usual IC. To see why, note that for a moment selection vector c (which is a vector

of 0 and 1 with 1 indicating that the corresponding moment equation is included),

J∗n(c) = n inf
θ∈Θ,µ∈Rl−k

(gn(θ)−Dcµ)′Wn (gn(θ)−Dcµ) (11)

is the same as (with a op(1) difference)6

Jn(c) = n inf
θ∈Θ

(gnc(θ))′Wn(c) (gnc(θ)) ,

6Actually, by the results of Back and Brown (1993), the minimizers in these two minimization problems are exactly
the same.
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where Dcµ sets the moment conditions with zeros in c equal to µ (µ ∈ Rl−k corresponds to the
just-identified model, or the smallest model allowed), gnc includes the elements of gn with ones

in c, and Wn and Wn(c) are constructed in the same fashion as in Section 3. The number of

parameters with selection vector c is k + l − |c|, where |c| is the number of moment conditions
selected by c, and l − |c| is the number of excluded moment conditions. Rewrite k + l − |c| as
l − qc, where qc = |c| − k is the number of "over-identifying restrictions". All parameters in J∗n
are (θ′,µ′)′ ∈ Rl. With the selection parameter c, the last qc parameters are set as zero. Thus,

different selection vectors correspond to the setting of different parameters equal to zero in (11), just

as different models correspond to the setting of different parameters equal to zero in the likelihood

environment of Section 4 in Chapter 6. Actually, J∗n(c) (= Jn(c) + op(1)
d−→ χ2

qc under "correct"

selection) plays the role of 2n [`n(M2)− `n(M1)], and qc plays the role of k2 there.

The general moment selection criteria (MSC) is specified as

MSCn(c) = Jn(c)− h(|c|)κn,

where c ∈ C is a moment selection vector, C is the selection set which may not include all possible
selection vectors, h(·) is strictly increasing, κn →∞ and κn = o(n). Take h(x) = x− k, where k is
the number of parameters; then

GMM-BIC: κn = lnn and MSCBIC,n(c) = Jn(c)− (|c| − k) lnn;

GMM-AIC: κn = 2 and MSCAIC,n(c) = Jn(c)− 2 (|c| − k) ;

GMM-HQIC: κn = Q ln lnn for some Q > 2 and MSCHQIC,n(c) = Jn(c)−Q (|c| − k) ln lnn.

The MSC estimator, ĉMSC , is the minimizer of MSCn(c). It is shown that ĉMSC is consistent in

the sense that ĉMSC
p−→ c0, where c0 is the set of moments whose expectation is zero for some

θ ∈ Θ and whose number is largest among all such sets of moments. We assume c0 ∈ C and is
unique; otherwise, ĉMSC will converge to a set that includes all possible selection vectors which

maximize the number of valid moments. ĉMSC determines when there are no over-identification

restrictions. In GMM-AIC, κn = 2 9 ∞, so the GMM-AIC procedure is not consistent. It has
positive probability even asymptotically of selecting too few moments.

A simple method can be used to detect whether an MSC is reliable. In cases where an MSC

performs poorly, there are typically two or more selection vectors that yield MSC values close to

the minimum and that yield parameter estimates differing noticeably from each other. In cases

where a moment selection procedure performs well, the latter typically does not occur.

Andrews also considers two testing procedures to select correct moment conditions: downward

testing (DT) and upward testing (UT) procedures. These procedures are similar to informal meth-

ods based on the J test often employed by empirical researchers to determine which moments to

use. In the DT procedure, we start with c ∈ C for which |c| is the largest, and then test with
progressively smaller |c| until the null cannot be rejected. Let k̂DT be this value of |c|; ĉDT is the

selection vector that minimizes Jn(c) over c ∈ C with |c| = k̂DT . If the critical values used in the
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J test diverge to infinity at a slower rate than n, then ĉDT is consistent. The UT procedure is a

converse procedure of the DT procedure. Under additional restrictions which avoids the procedure

stopping early, ĉUT is also consistent, where ĉUT is similarly defined as ĉDT with k̂UT , the largest

k such that for all |c| ≤ k there is at least one c for which the null is not rejected, replacing k̂DT .

Monte Carlo results show that GMM-BIC, DT, and UT procedures perform best and about

equally well, the GMM-HQIC procedure is next best and the GMM-AIC procedure is worst overall.

Andrews and Lu (2001) extend the results to cover simultaneous moment and model selection;

they apply their procedures to dynamic panel models. Hong et al. (2003) use GEL-statistics to

provide an alternative interpretation of Andrews’MSCs. Chen et al. (2007) propose a nonpara-

metric likelihood ratio testing procedure for choosing between a parametric (likelihood) model and

a moment condition model when both models could be misspecified; their procedure is based on

comparing the Kullback-Leibler Information Criterion (KLIC) between the parametric model and

moment condition model. Hall et al. (2007) propose an entropy-based moment selection procedure

to select relevant moments among valid moment conditions (with possibly weak identification).

DiTraglia (2013) extends the focused information criterion (FIC) of Claeskens and Hjort (2003)

to FMSC and shows that the use of an invalid but highly relevant instrument can substantially

improve inference in finite samples. Caner (2009) studies the LASSO-type GMM estimator and

Liao (2013) extends to the general shrinkage estimator.

6.2 Donald and Newey (2001)

Different from Andrews (1999) who is searching for the largest set of valid instruments, Donald

and Newey (2001) propose a simple method to choose among valid instruments, by minimizing

approximate MSE. Their emphasis is on MSE approximation when the instruments may be weak

and the number of instruments may be large.

The model is

yi = z′1iβ1 + x′2iβ2 + ui = x′iβ + ui, E[ui|zi] = 0,

xi =

(
z1i

x2i

)
= f(zi) + vi =

(
z1i

E [x2i|zi]

)
+

(
0

v2i

)
,

where zi can be a few continuous variables, many dummy variables or even be infinite dimensional,

and (ui,v
′
2i) is homoskedastic (see Donald, Imbens and Newey (2009) for extensions). Let

ψKi = ψK(zi) = (ψ1K(zi), · · · , ψKK(zi))

be a vector of instruments, where ψKi includes z1i. Because E[ui|zi] = 0, E
[
ψKi ui

]
= 0. Different

values of K correspond to different instrument sets. Usually, we specify ψKi such that the earliest

terms have the biggest impact on the reduced form. Given that ψKi depends on K, the instrument

sets need not form a nested sequence. K cannot be too large to avoid too variable estimator due

to the selection process.
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Define ΨK =
(
ψK1 , · · · ,ψKn

)′
, and PK = ΨK

(
ΨK′ΨK

)−
ΨK′, where A− denotes a generalized

inverse.7 y,X2,Z1,X are defined by stacking the corresponding vectors. Λ̂ is the minimum of

(y −Xβ)′PK(y −Xβ)/(y −Xβ)′(y −Xβ), and Λ = (K − l1 − 2)/n. The estimators considered

are

2SLS: β̂ = (X′PKX)−1X′PKy,

LIML: β̂ = (X′PKX− Λ̂X′X)−1
(
X′PKy − Λ̂X′y

)
,

B2SLS: β̂ = (X′PKX− ΛX′X)−1
(
X′PKy − ΛX′y

)
,

where B2SLS is a bias adjusted version of 2SLS (see Nagar (1959) and Rothenberg (1984)), it is a K-

estimator with κ̂ = n
n−(K−l1)+2 and is shown to be unbiased to second order in the fixed-instrument,

normal-error model in Rothenberg (1984). The instrument selection is based on minimizing the

approximate MSE of a linear combination λ̂
′
β̂ of the IV estimator, where λ̂ is some vector of

estimated linear combination coeffi cients.

Estimating the MSE requires preliminary estimates of some of the parameters of the model

and a goodness of fit criterion for estimation of the (first stage) reduced form using the instrument

ψKi . The preliminary estimator can be either an IV estimator with only as many instruments as

right-hand side variables or an IV estimator where instruments are chosen to minimize one of the

first stage goodness of fit criteria below. Note that the preliminary estimator does not depend on

K. Given some preliminary estimator of β, say β̃, define

σ̂2
u = ũ′ũ/n, σ̂2

λ = ṽ′λṽλ/n, σ̂λu = ṽ′λũ/n,

where ũ = y −Xβ̃, ṽλ = ṼH̃−1λ̃, Ṽ = (I − PK)X, and H̃ = X′PKX/n for some fixed K is an

estimator of f ′f/n with f = [f(z1), · · · , f(zn)]′. As to goodness of fit criterion, cross-validation and

Mallows (1973) reduced form goodness of fit criteria are considered. The cross-validation criterion

is

R̂cvλ (K) =
1

n

n∑
i=1

(
v̂Kλi
)2(

1−PK
ii

)2 .
The Mallows criterion is

R̂mλ (K) =
v̂K′λ v̂Kλ
n

+ σ̂2
λ

2K

n
,

where v̂Kλ = V̂KH̃−1λ̂ with V̂K = (I−PK)X, and Aij denotes the i, jth element of a matrix A.

7The generalized inverse of A is defined in Appendix C of Chapter 2.
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Given these preparations, the approximate MSE of the estimators are

2SLS: Ŝλ(K) = σ̂2
λu

K2

n
+ σ̂2

u

(
R̂λ(K)− σ̂2

λ

K

n

)
,

LIML: Ŝλ(K) = σ̂2
u

(
R̂λ(K)− σ̂2

λu

σ̂2
u

K

n

)
,

B2SLS: Ŝλ(K) = σ̂2
u

(
R̂λ(K) +

σ̂2
λu

σ̂2
u

K

n

)
,

where the approach to calculating the approximate MSE is similar to Nagar’s (1959). 2SLS includes

a bias term σ̂2
λu

K2

n , while LIML and B2SLS include only variance terms. The first variance term

σ̂2
uR̂λ(K) is common and comes from approximating the reduced form f(z) by linear combinations

of ψK(z). The second variance term comes from the FOCs of the three estimators:

2SLS: X′PK(y −Xβ̂) = 0,

LIML:
(
X− ûα̂′

)′
PK(y −Xβ̂) = 0, α̂ = X′û/û′û,

B2SLS: X′PK(y −Xβ̂)− (K − l1 − 2)X′û = 0,

where û = y − X′β̂ for each estimator β̂, ûα̂′ in LIML eliminates an important source of 2SLS

bias arising from the correlation between X and u, and the bias correction for B2SLS subtracts an

estimate of the bias from 2SLS FOCs. The first variance term decreases with K while the second

increases with K. For each estimator, the K̂ that minimizes the corresponding Ŝλ(K) will result

in λ̂
′
β̂ that has relatively small MSE asymptotically. For 2SLS, K̂ accounts for a trade-off between

bias and variance, while for LIML and B2SLS, K̂ accounts for a trade-off only between variance

terms. When dim(x2) = 1, the value of K that minimizes these criteria will not depend on λ̂.

Donald and Newey show that their method can improve the finite sample properties of the three

IV estimators in the sense that
Sλ(K̂)

minK Sλ(K)

p−→ 1,

where Sλ(·) is the true dominant term of the exact MSE. They also compare the approximate MSE
of these estimators, and find the LIML is best.

Their results also apply to the choice of nonlinear functions to use in the effi cient semiparamet-

ric instrumental variables estimator of Newey (1990b). In this case instrument choice is analogous

to choosing the smoothing parameter in semiparametric estimation. In Donald and Newey’s frame-

work, Kuersteiner and Okui (2010) extend the model averaging of Hansen (2007b) to the 2SLS

estimation.

7 Extensions to GMM (*)

Note that for the asymptotic arguments in the previous sections to go through, we need some

critical assumptions on the data generating process. Relaxing these assumptions is the task of
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current econometric practices. We will overview some extensions in the literature. These extensions

are interacted with each other and also with the alternative inference methods mentioned above.

From Appendix A, the asymptotic approximation in (7) requires at least the following six

assumptions. We list these assumptions and the relevant literature to relax them.

(i) wi, i = 1, · · · , n, is a random sample. If wi, i = 1, · · · , n, are time series wt, t = 1, · · · , T , such
that g(wt,θ) are correlated, then the optimal

Ω = TE
[
gT (θ0)gT (θ0)′

]
=

∞∑
v=−∞

E
[
g(wt,θ0)g(wt−v,θ0)′

]
≡

∞∑
v=−∞

Ωv.

A consistent estimator ofΩ is often called the heteroskedasticity and autocorrelation consistent

(HAC) estimator. Reading starts from Newey and West (1987b, 1994), Andrews (1991),

Andrews and Monahan (1992) and Phillips (2005).

(ii) g(w,θ) is smooth in θ. When g is nondifferentiable and/or discontinuous in θ (e.g., the

moment conditions in quantile regression), the asymptotic arguments in Section 4 and the

usual calculation algorithm for the GMM estimator may be problematic; see Pakes and Pollard

(1989), Andrews (1997a) and Chernozhukov and Hong (2003) for classical references.8

(iii) G is full column rank. When this assumption fails, there is the weak or partial identification

problem as mentioned in Chapter 1. Especially, whenG ≈ n−1/2C, the instruments are weak,

and θ cannot be consistently estimated.9 The 2SLS estimator is close to the LSE so suffers a

serious bias problem. This strand of literature starts from Nelson and Startz (1990a,b) and

Bound et al. (1995). Classical references include Staiger and Stock (1997) and Stock and

Wright (2000) on estimation and Wang and Zivot (1998) [LR and LM tests], Moreira (2003)

[two conditional tests] and Kleibergen (2002, 2005) [K-test] on inference. See Stock et al.

(2002), Dufour (2003), Hahn and Hausman (2003), Andrews and Stocks (2007), Mikusheva

(2013), Andrews et al. (2019) and Keane and Neal (2024) for summaries.

(iv) l is fixed. When l can go to infinity, there are many moment conditions which will increase
the bias of the GMM estimator and deteriorates the estimation of Ω. Reading starts from

Bekker (1994), Chao and Swanson (2005), Han and Phillips (2006), Newey and Windmeijer

(2009) and Mikusheva and Sun (2022). See Anatolyev (2019) for a summary.

(v) k is fixed. When k can go to infinity, there are nonparametric parameters in the moment
conditions. For identification, we need infinite moment conditions. Reading starts from

Newey and Powell (2003), Ai and Chen (2003), Blundell and Powell (2003), Hall and Horowitz

(2005) and Darolles et al. (2011). See Chen (2007) for a summary.
8Especially, Andrews (1997a) discusses the asymptotic properties of the J statistic while Pakes and Pollard (1989)

do not.
9 If G ≈ Cn−1/2, then E[g(wi,β)] ≈ G (β − β0) ≈ n−1/2C (β − β0). As a result, Jn (β) /n ≈ 0 even for β 6= β0,

and the identification fails.
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(vi) There are only moment equalities. If there are moment inequalities, θ can only be partially
identified. Reading starts from Chernozhukov et al. (2007), Beresteanu and Molinari (2008),

Pakes et al. (2015). See Molchanov and Molinari (2014, 2018), Bontemps and Magnac (2017),

Canay and Shaikh (2017), Ho and Rosen (2017) and Molinari (2020) for summaries.

In the following, we illustrate the diffi culties introduced by (iii) and (iv), i.e., weak instruments

and many instruments, and we also show how to test whether the instruments are weak and how

to conduct inference with weak instruments. Our discussions follow Sections 12.35-12.39 of Hansen

(2022).

7.1 Identification Failure

Recall the reduced form equation

x2 = Γ′12z1 + Γ′22z2 + v2.

The parameter β fails to be identified if Γ22 has deficient rank. The consequences of identification

failure for inference are quite severe.

Take the simplest case where k1 = 0 and k2 = l2 = 1. Then the model may be written as

y = xβ + u. (12)

x = zγ + v,

and Γ22 = γ = E [zx] /E
[
z2
]
. We see that β is identified if and only if γ 6= 0, which occurs

when E [zx] 6= 0. Thus identification hinges on the existence of correlation between the excluded

exogenous variable and the included endogenous variable.

Suppose this condition fails. In this case γ = 0 and E [zx] = 0. We now analyze the distribution

of the least squares and IV estimators of β. For simplicity we assume conditional homoskedasticity

and normalize the variances of u, v and z to unity. Thus

V ar

((
u

v

)∣∣∣∣∣ z
)

=

(
1 ρ

ρ 1

)
. (13)

The errors have non-zero correlation ρ 6= 0 when the variables are endogenous.

By the CLT we have the joint convergence

1√
n

n∑
i=1

(
ziui

zivi

)
d−→
(
ξ1

ξ2

)
∼ N

(
0,

(
1 ρ

ρ 1

))
.

It is convenient to define ξ0 = ξ1 − ρξ2 which is normal and independent of ξ2.
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As a benchmark it is useful to observe that the least squares estimator of β satisfies

β̂OLS − β =
n−1

∑n
i=1 viui

n−1
∑n

i=1 u
2
i

p−→ ρ 6= 0,

so endogeneity causes β̂OLS to be inconsistent for β. Under identification failure γ = 0 the asymp-

totic distribution of the IV estimator is

β̂IV − β =
n−1/2

∑n
i=1 ziui

n−1/2
∑n

i=1 zixi

d−→ ξ1

ξ2

= ρ+
ξ0

ξ2

.

This asymptotic convergence result uses the continuous mapping theorem which applies since the

function ξ1/ξ2 is continuous everywhere except at ξ2 = 0, which occurs with probability equal to

zero.

This limiting distribution has several notable features. First, β̂IV does not converge in proba-

bility to a limit, rather it converges in distribution to a random variable. Thus the IV estimator is

inconsistent. Indeed, it is not possible to consistently estimate an unidentified parameter and β is

not identified when γ = 0. Second, the ratio ξ0/ξ2 is symmetrically distributed about zero so the

median of the limiting distribution of β̂IV is β + ρ. This means that the IV estimator is median

biased under endogeneity. Thus under identification failure the IV estimator does not correct the

centering (median bias) of least squares. Third, the ratio ξ0/ξ2 of two independent normal random

variables is Cauchy distributed. This is particularly nasty as the Cauchy distribution does not have

a finite mean. The distribution has thick tails, meaning that extreme values occur with higher

frequency than the normal. Inferences based on the normal distribution can be quite incorrect.

Together, these results show that γ = 0 renders the IV estimator particularly poorly behaved —it

is inconsistent, median biased, and non-normally distributed.

We can also examine the behavior of the t-statistic. For simplicity consider the classical (ho-

moskedastic) t-statistic. The error variance estimate has the asymptotic distribution

σ̂2 =
1

n

n∑
i=1

(
yi − xiβ̂IV

)2

=
1

n

n∑
i=1

u2
i −

2

n

n∑
i=1

uixi

(
β̂IV − β

)
+

1

n

n∑
i=1

x2
i

(
β̂IV − β

)2

d−→ 1− 2ρ
ξ1

ξ2

+

(
ξ1

ξ2

)2

.

Thus the t-statistic has the asymptotic distribution

tn =
β̂IV − β√

σ̂2 1
n

∑n
i=1 z

2
i /
∣∣∣ 1√

n

∑n
i=1 zixi

∣∣∣ d−→ ξ1/ξ2√
1− 2ρ ξ1ξ2

+
(
ξ1
ξ2

)2
/ |ξ2|

= sign (ξ2)
ξ1√

1− 2ρ ξ1ξ2
+
(
ξ1
ξ2

)2
.

The limiting distribution is non-normal, meaning that inference using the normal distribution will
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be (considerably) incorrect. This distribution depends on the correlation ρ. The distortion is

increasing in ρ. Indeed as ρ → 1 we have ξ1/ξ2
p−→ 1 and the unexpected finding σ̂2 p−→ 0. The

latter means that the conventional standard error s
(
β̂IV

)
for β̂IV also converges in probability to

zero. This implies that the t-statistic diverges in the sense |tn|
p−→∞. In this situations users may

incorrectly interpret estimates as precise despite the fact that they are highly imprecise.

7.2 Weak Instruments

In the previous subsection we examined the extreme consequences of full identification failure.

Similar problems occur when identification is weak in the sense that the reduced form coeffi cients

are of small magnitude. In this section we derive the asymptotic distribution of the OLS, 2SLS,

and LIML estimators when the reduced form coeffi cients are treated as weak. We show that the

estimators are inconsistent and the 2SLS and LIML estimators remain random in large samples.

To simplify the exposition we assume that there are no included exogenous variables (no x1) so

we write x2, z2, and β2 simply as x, z, and β. The model is

y = x′β + u,

x = Γ′z + v2.
(14)

Recall the reduced form error vector f = (e,v′2)′ and asume its covariance matrix

E
[
ff ′|z

]
= Σ =

(
Σ11 Σ12

Σ21 Σ22

)
. (15)

Recall that the structural error is u = e− β′v2 = γ ′f , which has variance E
[
u2|z

]
= γ ′Σγ, where

γ =
(
1,−β′

)′. Also define the covariance Σ2u = E [v2u|z] = Σ21 −Σ22β.

In the last subsection we assumed complete identification failure in the sense that Γ = 0. We

now want to assume that identification does not completely fail but is weak in the sense that Γ

is small. A rich asymptotic distribution theory has been developed to understand this setting by

modeling Γ as “local-to-zero”. The seminal contribution is Staiger and Stock (1997). The theory

was extended to nonlinear GMM estimation by Stock and Wright (2000).

The technical device introduced by Staiger and Stock (1997) is to assume that the reduced form

parameter is local-to-zero, specifically

Γ = n−1/2C. (16)

where C is a free matrix. The n−1/2 scaling is picked because it provides just the right balance

to allow a useful distribution theory. The local-to-zero assumption (16) is not meant to be taken

literally but rather is meant to be a useful distributional approximation. The parameter C indexes

the degree of identification. Larger ‖C‖ implies stronger identification; smaller ‖C‖ implies weaker
identification.

We now derive the asymptotic distribution of the least squares, 2SLS, and LIML estimators
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under the local-to-unity assumption (16). The least squares estimator satisfies

β̂OLS − β =
(
n−1X′X

)−1 (
n−1X′u

)
=
(
n−1V′2V2

)−1 (
n−1V′2u

)
+ op (1)

p−→ Σ−1
22 Σ2u.

Thus the least squares estimator is inconsistent for β.

To examine the 2SLS estimator, by the central limit theorem

1√
n

n∑
i=1

zif
′
i

d−→ ξ = (ξ1, ξ2) ,

where vec(ξ) ∼ N
(
0, E

[
ff ′ ⊗ zz′

])
. This implies

1√
n

Z′u
d−→ ξu = ξ′γ.

We also find that
1√
n

Z′X =
1

n
Z′ZC +

1√
n

Z′V2
d−→ QzC + ξ2.

Thus

X′PZX =

(
1√
n

X′Z

)(
1

n
Z′Z

)−1( 1√
n

Z′X

)
d−→ (QzC + ξ2)′Q−1

z (QzC + ξ2)

and

X′PZu =

(
1√
n

X′Z

)(
1

n
Z′Z

)−1( 1√
n

Z′u

)
d−→ (QzC + ξ2)′Q−1

z ξu.

We find that the 2SLS estimator has the asymptotic distribution

β̂2SLS − β =
(
X′PZX

)−1 (
X′PZu

) d−→
[
(QzC + ξ2)′Q−1

z (QzC + ξ2)
]−1

(QzC + ξ2)′Q−1
z ξu.

(17)

As in the case of complete identification failure we find that β̂2SLS is inconsistent for β, it is

asymptotically random, and its asymptotic distribution is non-normal. The distortion is affected

by the coeffi cient C. As ‖C‖ → ∞, the distribution in (17) converges in probability to zero
suggesting that β̂2SLS is consistent for β. This corresponds to the classic “strong identification”

context.

Now consider the LIML estimator. The reduced form is Y = ZΠ + V. This implies MZY =

MZV and by standard asymptotic theory

1

n
Y′MZY =

1

n
V′MZV

p−→ Σ = E
[
vv′
]
.

Define β = (β, Ik) so that the reduced form coeffi cients equal Π = (Γβ,Γ) = n−1/2Cβ. Then

1√
n

Z′Y =
1

n
Z′ZCβ +

1√
n

Z′V
d−→ QzCβ + ξ
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and

Y′Z
(
Z′Z

)−1
Z′Y

d−→
(
QzCβ + ξ

)′
Q−1

z

(
QzCβ + ξ

)
.

This allows us to calculate that by the continuous mapping theorem

nµ̂ = min
γ

γ ′Y′Z (Z′Z)−1 Z′Yγ

γ ′Y′MZYγ

d−→ min
γ

γ ′
(
QzCβ + ξ

)′
Q−1

z

(
QzCβ + ξ

)
γ

γ ′Σγ
≡ µ∗,

which is function of ξ and thus random. We deduce that the asymptotic distribution of the LIML

estimator is

β̂LIML − β =

(
X′PZX− nµ̂ 1

n
X′MZX

)−1(
X′PZu− nµ̂ 1

n
X′MZu

)
d−→
[
(QzC + ξ2)′Q−1

z (QzC + ξ2)− µ∗Σ22

]−1 [
(QzC + ξ2)′Q−1

z ξu − µ∗Σ22Σ2u

]
.

Similarly to 2SLS, the LIML estimator is inconsistent for β, is asymptotically random, and non-

normally distributed.

We summarize

Theorem 1 Under (16),

β̂OLS − β
p−→ Σ−1

22 Σ2u,

β̂2SLS − β
d−→
[
(QzC + ξ2)′Q−1

z (QzC + ξ2)
]−1

(QzC + ξ2)′Q−1
z ξu,

and

β̂LIML − β
d−→
[
(QzC + ξ2)′Q−1

z (QzC + ξ2)− µ∗Σ22

]−1 [
(QzC + ξ2)′Q−1

z ξu − µ∗Σ22Σ2u

]
,

where

µ∗ = min
γ

γ ′
(
QzCβ + ξ

)′
Q−1

z

(
QzCβ + ξ

)
γ

γ ′Σγ

and β = (β, Ik).

All three estimators are inconsistent. The 2SLS and LIML estimators are asymptotically random

with non-standard distributions, similar to the asymptotic distribution of the IV estimator under

complete identification failure explored in the previous subsection. The difference under weak

identification is the presence of the coeffi cient matrix C.

7.3 Many Instruments

Some applications have available a large number l of instruments. If they are all valid, using a

large number should reduce the asymptotic variance relative to estimation with a smaller number

of instruments. Is it then good practice to use many instruments? Or is there a cost to this

practice? Bekker (1994) initiated a large literature investigating this question by formalizing the
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idea of “many instruments”. Bekker proposed an asymptotic approximation which treats the

number of instruments l as proportional to the sample size, that is, l = αn, or equivalently that

l/n → α ∈ [0, 1). The distributional theory obtained is similar in many respects to the weak

instrument theory outlined in the previous subsection. Consequently the impact of “weak” and

“many”instruments is similar.

Again for simplicity we assume that there are no included exogenous regressors so that the model

is (14). We also make the simplifying assumption that the reduced form errors are conditionally

homoskedastic, i.e., (15). In addition we assume that the conditional fourth moments are bounded

E
[
‖f‖4 |z

]
≤ B <∞. (18)

The idea that there are “many instruments” is formalized by the assumption that the number of

instruments is increasing proportionately with the sample size

l

n
→ α. (19)

The best way to think about this is to view α as the ratio of l to n in a given sample. Thus if an

application has n = 100 observations and l = 10 instruments, then we should treat α = 0.10.

Suppose that there is a single endogenous regressor x. Calculate its variance using the reduced

form: V ar (x) = V ar (z′Γ)+V ar (v). Suppose as well that V ar (x) and V ar (u) are unchanging as l

increases. This implies that V ar (z′Γ) is unchanging even though the dimension l is increasing. This

is a useful assumption as it implies that the population R2 of the reduced form is not changing with

l. We don’t need this exact condition, rather we simply assume that the sample version converges

in probability to a fixed constant. Specifically, we assume that

1

n

n∑
i=1

Γ′ziz
′
iΓ

p−→ H > 0. (20)

Again, this essentially implies that the R2 of the reduced form regressions for each component of

x converge to constants.

As a baseline it is useful to examine the behavior of the least squares estimator of β. First,

observe that the variance of vec
(
n−1

∑n
i=1 Γ′zif ′i

)
conditional on Z, is

Σ⊗ n−2
n∑
i=1

Γ′ziz
′
iΓ

p−→ 0

by (20). Thus it converges in probability to zero:

n−1
n∑
i=1

Γ′zif
′
i

p−→ 0. (21)
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Combined with (20) and the WLLN we find

1

n

n∑
i=1

xiui =
1

n

n∑
i=1

Γ′ziui +
1

n

n∑
i=1

v2iui
p−→ Σ2u

and

1

n

n∑
i=1

xix
′
i =

1

n

n∑
i=1

Γ′ziz
′
iΓ +

1

n

n∑
i=1

Γ′ziv
′
2i +

1

n

n∑
i=1

v2iz
′
iΓ +

1

n

n∑
i=1

v2iv
′
2i

p−→ H + Σ22.

Hence

β̂ols − β =

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiui

)
p−→ (H + Σ22)−1 Σ2u,

i.e., the LSE is inconsistent for β.

Now consider the 2SLS estimator:

β̂2SLS − β =

(
1

n
X′PZX

)−1( 1

n
X′PZu

)
=

(
1

n
Γ′Z′ZΓ +

1

n
Γ′Z′V2 +

1

n
V′2ZΓ +

1

n
V′2PZV2

)−1( 1

n
Γ′Z′u +

1

n
V′2PZu

)
, (22)

In the expression on the right-side of (22) several of the components have been examined in (20)

and (21). We now examine the remaining components 1
nV′2PZV2 and 1

nV′2PZu which are sub-

components of the matrix 1
nV′PZV. Take the jkth element 1

nV′jPZVk.

First, take its expectation. We have (given under the conditional homoskedasticity assumption

(15))

E

[
1

n
V′jPZVk

∣∣∣∣Z] =
1

n
tr
(
E
[
PZVkV

′
j

∣∣Z]) =
1

n
tr (PZ) Σjk =

l

n
Σjk → αΣjk (23)

using tr(PZ) = l.

Second, we calculate its variance which is a more cumbersome exercise. Let Pim = Z′i (Z′Z)−1 Zm

be the imth element of PZ. Then V′jPZVk =
∑n

i=1

∑n
m=1 ujiukmPim. The matrix PZ is idem-

potent. It therefore has the properties
∑n

i=1 Pii =tr(PZ) = l and 0 ≤ Pii ≤ 1. The property
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PZPZ = PZ also implies
∑n

m=1 P
2
im = Pii. Then

V ar

(
1

n
V′jPZVk

∣∣∣∣Z) =
1

n2
E

( n∑
i=1

n∑
m=1

(ujiukm − E [ujiukm] 1 {i = m})Pim

)2
∣∣∣∣∣∣Z


=
1

n2
E

 n∑
i=1

n∑
m=1

n∑
q=1

n∑
r=1

(ujiukm −Σjk1 {i = m})Pim (ujqukr −Σjk1 {q = r})Pqr


=

1

n2

n∑
i=1

(ujiuki −Σjk)
2 P 2

ii

+
1

n2

n∑
i=1

∑
m6=i

E
[
u2
jiu

2
km

]
P 2
im +

1

n2

n∑
i=1

∑
m6=i

E [ujiukmujmuki]P
2
im

≤ B

n2

(
n∑
i=1

P 2
ii + 2

n∑
i=1

n∑
m=1

P 2
im

)

≤ 3B

n2

n∑
i=1

Pii = 3B
l

n2
→ 0.

The third equality holds because the remaining cross-products have zero expectation as the obser-

vations are independent and the errors have zero mean. The first inequality is (18). The second

uses
∑n

i=1 P
2
ii ≤

∑n
i=1 Pii and

∑n
m=1 P

2
im = Pii. The final equality is

∑n
i=1 Pii = l.

Using (19), (23), Markov’s inequality, and combining across all j and k we deduce that

1

n
V′PZV→ αΣ. (24)

Returning to the 2SLS estimator (22) and combining (20), (21), and (24), we find

β̂2SLS − β
p−→ (H + αΣ22)−1 αΣ2u.

Thus 2SLS is also inconsistent for β. The limit, however, depends on the magnitude of α.

We finally examine the LIML estimator. (24) implies

1

n
Y′MZY =

1

n
V′V − 1

n
V′PZV

p−→ (1− α) Σ.

Similarly,

1

n
Y′Z

(
Z′Z

)−1
Z′Y = β

′
Γ′
(

1

n
Z′Z

)
Γβ + β

′
Γ′
(

1

n
Z′V

)
+

(
1

n
V′Z

)
Γβ +

1

n
V′PZV

p−→ β
′
Hβ

′
+ αΣ.

Hence

µ̂ = min
γ

γ ′Y′Z (Z′Z)−1 Z′Yγ

γ ′Y′MZYγ

p−→ min
γ

γ ′
(
β
′
Hβ

′
+ αΣ

)
γ

γ ′ (1− α) Σγ
=

α

1− α
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and

β̂LIML − β =

(
1

n
X′PZX− µ̂ 1

n
X′MZX

)−1( 1

n
X′PZu− µ̂ 1

n
X′MZu

)
p−→
(

H + αΣ22 −
α

1− α (1− α) Σ22

)−1(
αΣ2u −

α

1− α (1− α) Σ2u

)
= H−10 = 0.

Thus LIML is consistent for β unlike 2SLS.

We state these results formally.

Theorem 2 In model (14), under assumptions (15), (18) and (19), then as n→∞,

β̂OLS − β
p−→ (H + Σ22)−1 Σ2u,

β̂2SLS − β
p−→ (H + αΣ22)−1 αΣ2u,

β̂LIML − β
p−→ 0.

This result is quite insightful. It shows that while endogeneity (Σ2u 6= 0) renders the least

squares estimator inconsistent, the 2SLS estimator is also inconsistent if the number of instruments

diverges proportionately with n. The limit in Theorem 2 shows a continuity between least squares

and 2SLS. The probability limit of the 2SLS estimator is continuous in α with the extreme case

(α = 1) implying that 2SLS and least squares have the same probability limit. The general

implication is that the inconsistency of 2SLS is increasing in α. The theorem also shows that unlike

2SLS the LIML estimator is consistent under the many instruments assumption. Effectively, LIML

makes a bias-correction.

Theorem 1 (weak instruments) and 2 (many instruments) tell a cautionary tale. They show

that when instruments are weak and/or many, the 2SLS estimator is inconsistent. The degree

of inconsistency depends on the weakness of the instruments (the magnitude of the matrix C in

Theorem 1) and the degree of overidentification (the ratio α in Theorem 2). The theorems also

show that the LIML estimator is inconsistent under the weak instrument assumption but with a

bias-correction, and is consistent under the many instrument assumption. This suggests that LIML

is more robust than 2SLS to weak and many instruments.

An important limitation of the results in Theorem 2 is the assumption of conditional ho-

moskedasticity. It appears likely that the consistency of LIML fails in the many instrument setting

if the errors are heteroskedastic.

In applications users should be aware of the potential consequences of the many instrument

framework. It is useful to calculate the “many instrument ratio” α = l/n. While there is no

specific rule-of thumb for α which leads to acceptable inference a minimum criterion is that if

α ≥ 0.05 you should be seriously concerned about the many-instrument problem. In general, when

α is large it seems preferable to use LIML instead of 2SLS.
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7.4 Testing for Weak Instruments

In the previous subsections we found that weak instruments results in non-standard asymptotic

distributions for the 2SLS and LIML estimators. In practice how do we know if this is a problem?

Is there a way to check if the instruments are weak?

This question was addressed in an influential paper by Stock and Yogo (2005) as an extension of

Staiger and Stock (1997). Stock-Yogo focus on two implications of weak instruments: (1) estimation

bias and (2) inference distortion. They show how to test the hypothesis that these distortions are

not “too big”. They propose F -tests for the excluded instruments in the reduced form regressions

with non-standard critical values. In particular, when there is one endogenous regressor and a single

instrument the Stock-Yogo test rejects the null of weak instruments when this F -statistic exceeds

10. While Stock and Yogo explore two types of distortions, we focus exclusively on inference as

that is the more challenging problem. In this subsection we describe the Stock-Yogo theory and

tests for the case of a single endogenous regressor (k2 = 1). In the following subsection we describe

their method for the case of multiple endogeneous regressors.

While the theory in Stock and Yogo allows for an arbitrary number of exogenous regressors

and instruments, for the sake of clear exposition we will focus on the very simple case of no

included exogenous variables (k1 = 0) and just one exogenous instrument (l2 = 1) which is model

(12). Furthermore, as in Section 7.1 we assume conditional homoskedasticity and normalize the

variances as in (13). Since the model is just-identified the 2SLS, LIML, and IV estimators are all

equivalent.

The question of primary interest is to determine conditions on the reduced form under which

the IV estimator of the structural equation is well behaved, and secondly, what statistical tests can

be used to learn if these conditions are satisfied. As in Section 7.2 we assume that the reduced

form coeffi cient Γ is local-to-zero, specifically Γ = n−1/2µ. The asymptotic distribution of the IV

estimator is presented in Theorem 1. Given the simplifying assumptions the result is

β̂IV − β
d−→ ξu

µ+ ξ2

,

where (ξu, ξ2) are bivariate normal, and ξu = ξ1 in Section 7.1. For inference we also examine the

behavior of the classical (homoskedastic) t-statistic for the IV estimator. Note

σ̂2 =
1

n

n∑
i=1

(
yi − xiβ̂IV

)2

=
1

n

n∑
i=1

u2
i −

2

n

n∑
i=1

uixi

(
β̂IV − β

)
+

1

n

n∑
i=1

x2
i

(
β̂IV − β

)2

d−→ 1− 2ρ
ξu

µ+ ξ2

+

(
ξu

µ+ ξ2

)2

.
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Thus

tn =
β̂IV − β√

σ̂2 1
n

∑n
i=1 z

2
i /
∣∣∣ 1√

n

∑n
i=1 zixi

∣∣∣ d−→ ξu/ (µ+ ξ2)√
1− 2ρ ξu

µ+ξ2
+
(

ξu
µ+ξ2

)2
/ |µ+ ξ2|

= sign (µ+ ξ2)
ξu√

1− 2ρ ξu
µ+ξ2

+
(

ξu
µ+ξ2

)2
≡ S. (25)

In general, S is non-normal and its distribution depends on the parameters ρ and µ.

Can we use the distribution S for inference on β? The distribution depends on two unknown

parameters and neither is consistently estimable. This means we cannot use the distribution in (25)

with ρ and µ replaced with estimates. To eliminate the dependence on ρ one possibility is to use

the “worst case”value which turns out to be ρ = 1. By worst-case we mean the value which causes

the greatest distortion away from normal critical values. Setting ρ = 1 we have the considerable

simplification

S = S1 = ξ

(
1 +

ξ

µ

)
sign (µ) , (26)

where ξ ∼ N (0, 1). When the model is strongly identified (so |µ| is very large) then S1
d≈ ξ is

standard normal, consistent with classical theory. However when µ is very small (but non-zero)

|S1| ≈ ξ2/ |µ| (in the sense that this term dominates), which is a scaled χ2 and quite far from

normal. As |µ| → 0 we find the extreme case |S1|
p−→∞.

While (26) is a convenient simplification it does not yield a useful approximation for inference

as the distribution in (26) is highly dependent on the unknown µ. If we take the worst-case value

of µ, which is µ = 0, we find that |S1| diverges and all distributional approximations fail.
To break this impasse Stock and Yogo (2005) recommended a constructive alternative. Rather

than using the worst-case µ they suggested finding a threshold such that if µ exceeds this threshold

then the distribution (26) is not “too badly”distorted from the normal distribution.

Specifically, the Stock-Yogo recommendation can be summarized by two steps. First, the distri-

bution result (26) can be used to find a threshold value τ2 such that if µ2 ≥ τ2 then the size of the

nominal 5% test “Reject if |tn| ≥ 1.96”has asymptotic size P (|S1| ≥ 1.96) ≤ 0.15. This means that

while the goal is to obtain a test with size 5%, we recognize that there may be size distortion due

to weak instruments and are willing to tolerate a specific distortion. For example, a 10% distortion

means we allow the actual size to be up to 15%. Second, they use the asymptotic distribution

of the reduced-form (first stage) F -statistic to test if the actual unknown value of µ2 exceeds the

threshold τ2. These two steps together give rise to the rule-of-thumb that the first-stage F -statistic

should exceed 10 in order to achieve reliable IV inference. (This is for the case of one instrumental

variable. If there is more than one instrument then the rule-of-thumb changes.) We now describe

the steps behind this reasoning in more detail.

The first step is to use the distribution (25) to determine the threshold τ2. Formally, the goal

is to find the value of τ2 = µ2 at which the asymptotic size of a nominal 5% test is actually a given
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r (e.g., r = 0.15), thus P (|S1| ≥ 1.96) ≤ r . By some algebra and the quadratic formula the event∣∣∣ξ (1 + ξ
µ

)∣∣∣ < x is the same as

µ2

4
− xµ <

(
ξ +

µ

2

)2
<
µ2

4
+ xµ

as µ > 0. The random variable between the inequalities is distributed χ2
1

(
µ2/4

)
, a noncentral

chi-square with one degree of freedom and noncentrality parameter µ2/4. Thus

P (|S1| ≥ x) = P

(
χ2

1

(
µ2/4

)
≥ µ2

4
+ xµ

)
+ P

(
χ2

1

(
µ2/4

)
≤ µ2

4
− xµ

)
= 1−G

(
µ2

4
+ xµ,

µ2

4

)
+G

(
µ2

4
− xµ, µ

2

4

)
, (27)

where G (u, λ) is the distribution function of χ2
1 (λ). Hence the desired threshold τ2 solves

1−G
(
τ2

4
+ 1.96τ ,

τ2

4

)
+G

(
τ2

4
− 1.96τ ,

τ2

4

)
= r

or effectively

G

(
τ2

4
+ 1.96τ ,

τ2

4

)
= 1− r

because τ2

4 − 1.96τ < 0 for relevant values of τ . The numerical solution (computed with the non-

central chi-square distribution function, e.g. ncx2cdf in MATLAB) is τ2 = 1.70 when r = 0.15.

(That is, the command

ncx2cdf (1.7/4 + 1.96 ∗ sqrt(1.7), 1, 1.7/4)

yields the answer 0.85. Stock and Yogo (2005) approximate the same calculation using simulation

methods and report τ2 = 1.82.) This calculation means that if the reduced form satisfies µ2 > 1.7,

or equivalently if Γ2 ≥ 1.7/n, then the asymptotic size of a nominal 5% test on the structural

parameter is no larger than 15%.

To summarize the Stock-Yogo first step, we calculate the minimum value τ2 for µ2 suffi cient to

ensure that the asymptotic size of a nominal 5% t-test does not exceed r, and find that τ2 = 1.70

for r = 0.15.

The Stock-Yogo second step is to find a critical value for the first-stage F -statistic suffi cient to

reject the hypothesis that H0 : µ2 = τ2 against H1 : µ2 > τ2. We now describe this procedure.

They suggest testing H0 : µ2 = τ2 at the 5% size using the first stage F -statistic. If the F -

statistic is small so that the test does not reject then we should be worried that the true value of

µ2 is small and there is a weak instrument problem. On the other hand if the F -statistic is large

so that the test rejects then we can have some confidence that the true value of µ2 is suffi ciently

large that the weak instrument problem is not too severe.

To implement the test we need to calculate an appropriate critical value. It should be calculated

under the null hypothesis H0 : µ2 = τ2. This is different from a conventional F -test which is
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calculated under H0 : µ2 = 0.

We start by calculating the asymptotic distribution of F . Since there is one regressor and one

instrument in our simplified setting the first-stage F -statistic is the squared t-statistic from the

reduced form. Given our previous calculations it has the asymptotic distribution

F =
γ̂2

s (γ̂)2 =
(
∑n

i=1 zixi)
2(∑n

i=1 z
2
i

)
σ̂2
v

d−→ (µ+ ξ2)2 ∼ χ2
1

(
µ2
)
. (28)

This is a non-central chi-square distribution G
(
u, µ2

)
with one degree of freedom and non-centrality

parameter µ2.

To test H0 : µ2 = τ2 against H1 : µ2 > τ2 we reject for F ≥ c where c is selected so that the

asymptotic rejection probability satisfies

P
(
F ≥ c|µ2 = τ2

)
→ P

(
χ2

1

(
τ2
)
≥ c
)

= 1−G
(
c, τ2

)
= 0.05

for τ2 = 1.70, equivalently G (c, 1.7) = 0.95. This is found by inverting the non-central chi-

square quantile function, e.g. the function Q (p, d) which solves G(Q(p, d), d) = p. We find that

c = Q(0.95, 1.7) = 8.7. In MATLAB, this can be computed by ncx2inv(.95, 1.7). Stock and Yogo

(2005) report c = 9.0 because they used τ2 = 1.82.

This means that if F > 8.7 we can reject H0 : µ2 = 1.7 against H1 : µ2 > 1.7 with an asymptotic

5% test. In this context we should expect the IV estimator and tests to be reasonably well behaved.

However, if F < 8.7 then we should be cautious about the IV estimator, confidence intervals, and

tests. This finding led Staiger and Stock (1997) to propose the informal “rule of thumb”that the

first stage F statistic should exceed 10. Notice that F exceeding 8.7 (or 10) is equivalent to the

reduced form t-statistic exceeding 2.94 (or 3.16), which is considerably larger than a conventional

check if the t-statistic is “significant”. Equivalently, the recommended rule-of-thumb for the case

of a single instrument is to estimate the reduced form and verify that the t-statistic for exclusion

of the instrumental variable exceeds 3 in absolute value.

Does the proposed procedure control the asymptotic size of a 2SLS test? The first step has

asymptotic size bounded below r (e.g., 15%). The second step has asymptotic size 5%. By the

Bonferroni bound the two steps together have asymptotic size bounded below r+ 0.05 (e.g., 20%).

We can thus call the Stock-Yogo procedure a rigorous test with asymptotic size r + 0.05 (or 20%).

Our analysis has been confined to the case k2 = l2 = 1. Stock and Yogo (2005) also examine the

case l2 > 1 (which requires numerical simulation to solve) and both the 2SLS and LIML estimators.

They show that the F -statistic critical values depend on the number of instruments l2 as well as

the estimator. Their critical values (calculated by simulation) are in their paper and posted on

Motohiro Yogo’s webpage. We report a subset in Table 1.
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Maximal Size r

2SLS LIML

l2 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25

1 16.4 9.0 6.7 5.5 16.4 9.0 6.7 5.5

2 19.9 11.6 8.7 7.2 8.7 5.3 4.4 3.9

3 22.3 12.8 9.5 7.8 6.5 4.4 3.7 3.3

4 24.6 14.0 10.3 8.3 5.4 3.9 3.3 3.0

5 26.9 15.1 11.0 8.8 4.8 3.6 3.0 2.8

6 29.2 16.2 11.7 9.4 4.4 3.3 2.9 2.6

7 31.5 17.4 12.5 9.9 4.2 3.2 2.7 2.5

8 33.8 18.5 13.2 10.5 4.0 3.0 2.6 2.4

9 36.2 19.7 14.0 11.1 3.8 2.9 2.5 2.3

10 38.5 20.9 14.8 11.6 3.7 2.8 2.5 2.2

15 50.4 26.8 18.7 12.2 3.3 2.5 2.2 2.0

20 62.3 32.8 22.7 17.6 3.2 2.3 2.1 1.9

25 74.2 38.8 26.7 20.6 3.8 2.2 2.0 1.8

30 86.2 44.8 30.7 23.6 3.9 2.2 1.9 1.7

Table 1: 5% Critical Value for Weak Instruments, k2 = 1

One striking feature about these critical values is that those for the 2SLS estimator are strongly

increasing in l2 while those for the LIML estimator are decreasing in l2 (except for r = 0.10 where

the critical values are increasing for large l2). This means that when the number of instruments

l2 is large, 2SLS requires a much stronger reduced form (larger µ2) in order for inference of β2 to

be reliable, but this is not the case for LIML. This is direct evidence that LIML inference is less

sensitive to weak instruments than 2SLS. This makes a strong case for LIML over 2SLS, especially

when l2 is large or the instruments are potentially weak.

We now summarize the recommended Staiger-Stock/Stock-Yogo procedure for k1 ≥ 1, k2 = 1,

and l2 ≥ 1. The structural equation and reduced form equations are

y1 = z′1β1 + y2β2 + u,

y2 = z′1γ1 + z′2γ2 + v,

where following the literature, the endogenous variable x2 is denoted as y2. The structural equation

is estimated by either 2SLS or LIML. Let F be the F -statistic for H0 : γ2 = 0 in the reduced form

equation. Let s
(
β̂2

)
be a standard error for β2 in the structural equation. The procedure is:

1. Compare F with the critical values c in Table 1 with the row selected to match the number

of excluded instruments l2 and the columns to match the estimation method (2SLS or LIML)

and the desired size r.

2. If F > c then report the 2SLS or LIML estimates with conventional inference.
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There are possible extensions to the Stock-Yogo procedure.

One modest extension is to use the information to convey the degree of confidence in the

accuracy of a confidence interval. Suppose in an application you have l2 = 5 excluded instruments

and have estimated your equation by 2SLS. Now suppose that your reduced form F -statistic equals

12. You check Table 1 and find that F = 12 is significant with r = 0.20. Thus we can interpret the

conventional 2SLS confidence interval as having coverage of 80% (or 75% if we make the Bonferroni

correction). On the other hand if F = 27 we would conclude that the test for weak instruments is

significant with r = 0.10, meaning that the conventional 2SLS confidence interval can be interpreted

as having coverage of 90% (or 85% after Bonferroni correction). Thus the value of the F -statistic

can be used to calibrate the coverage accuracy.

A more substantive extension, which we now discuss, reverses the steps. Unfortunately this

discussion will be limited to the case l2 = 1. First, use the reduced form F -statistic to find

a one-sided confidence interval for µ2 of the form [µ2
L,∞). Second, use the lower bound µ2

L to

calculate a critical value c for S1 such that the 2SLS test has asymptotic size bounded below 0.05.

This produces better size control than the Stock-Yogo procedure and produces more informative

confidence intervals for β2. We now describe the steps in detail.

The first goal is to find a one-sided confidence interval for µ2. This is found by test inversion.

As we described earlier, for any τ2 we reject H0 : µ2 = τ2 in favor of H0 : µ2 > τ2 if F > c

where G(c, τ2) = 0.95. Equivalently, we reject if G(F, τ2) > 0.95. By the test inversion principle

an asymptotic 95% confidence interval [µ2
L,∞) is the set of all values of τ2 which are not rejected.

Since G(F, τ2) ≤ 0.95 for all τ2 in this set, the lower bound µ2
L satisfies G(F, τ2) = 0.95, and is

found numerically. In MATLAB, the solution is mu2 when ncx2cdf(F,1,mu2) returns 0.95.

The second goal is to find the critical value c such that P (|S1| ≥ c) = 0.05 when µ2 = µ2
L. From

(27) this is achieved when

1−G
(
µ2
L

4
+ cµL,

µ2
L

4

)
+G

(
µ2
L

4
− cµL,

µ2
L

4

)
= 0.05. (29)

This an be solved as

G

(
µ2
L

4
+ cµL,

µ2
L

4

)
= 0.95.

(The third term on the left-hand-side of (29) is zero for all solutions so can be ignored.) Using the

non-central chi-square quantile function Q(p, d), this c equals

c =
Q(0.95,

µ2L
4 )− µ2L

4

µL
.

For example, in MATLAB this is found as c=(ncx2inv(.95,1,mu2/4)-mu2/4)/sqrt(mu2). 95% confi-

dence intervals for β2 are then calculated as β̂2 ± c · s
(
β̂2

)
.
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We can also calculate a p-value for the t-statistic tn for β2. This is

p = 1−G
(
µ2
L

4
+ |tn|µL,

µ2
L

4

)
+G

(
µ2
L

4
− |tn|µL,

µ2
L

4

)
,

where the third term equals zero if |tn| > µL/4. In MATLAB, for example, this can be calculated

by the commands

T1= mu2/4+abs(T) *sqrt(mu2);

T2= mu2/4-abs(T) *sqrt(mu2);

p= -ncx2cdf(T1,1,mu2/4) +ncx2cdf(T2,1,mu2/4);

These confidence intervals and p-values will be larger than the conventional intervals and p-

values, reflecting the incorporation of information about the strength of the instruments through

the first-stage F -statistic. Also, by the Bonferroni bound these tests have asymptotic size bounded

below 10% and the confidence intervals have asymptotic converage exceeding 90%, unlike the Stock-

Yogo method which has size of 20% and coverage of 80%.

We have described an extension to the Stock-Yogo procedure for the case of one instrumental

variable l2 = 1. This restriction was due to the use of the analytic formula (29) for the asymptotic

distribution which is only available when l2 = 1. In principle the procedure could be extended

using simulation or bootstrap methods but this has not been done to my knowledge.

The weak instrument methods described here are important for applied econometrics as they

discipline researchers to assess the quality of their reduced form relationships before reporting struc-

tural estimates. The theory, however, has limitations and shortcomings, in particular the strong

assumption of conditional homoskedasticity. Despite this limitation, in practice researchers apply

the Stock-Yogo recommendations to estimates computed with heteroskedasticity-robust standard

errors. This is an active area of research so the recommended methods may change in the years

ahead.

7.5 Weak Instruments with k2 > 1

When there is more than one endogenous regressor (k2 > 1) it is better to examine the reduced

form as a system. Staiger and Stock (1997) and Stock and Yogo (2005) provided an analysis of

this case and constructed a test for weak instruments. The theory is considerably more involved

than the k2 = 1 case so we briefly summarize it here excluding many details, emphasizing their

suggested methods.

The structural equation and reduced form equations are

y1 = z′1β1 + y′2β2 + u,

y2 = Γ′12z1 + Γ′22z2 + v2,

where following the literature, the endogenous variables x2 is denoted as y2. As in the previous

subsection we assume that the errors are conditionally homoskedastic.
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Identification of β2 requires the matrix Γ22 to be full rank. A necessary condition is that each

row of Γ22 is non-zero but this is not suffi cient.

We focus on the size performance of the homoskedastic Wald statistic for the 2SLS estimator

of β2. For simplicity assume that the variance of u is known and normalized to one. Using

representation in Exercise 15 of Chapter 7, the Wald statistic can be written as

Wn = u′Z̃2

(
Z̃′2Z̃2

)−1
Z̃′2Y2

(
Y′2Z̃2

(
Z̃′2Z̃2

)−1
Z̃′2Y2

)−1(
Y′2Z̃2

(
Z̃′2Z̃2

)−1
Z̃′2u

)
,

where Z̃2 = MZ1Z2.

Recall from Section 7.2 that Stock and Staiger model the excluded instruments z2 as weak by

setting Γ22 = n−1/2C for some matrix C. In this framework we have the asymptotic distribution

results
1

n
Z̃′2Z̃2

p−→ Q = E
[
z2z
′
2

]
− E

[
z2z
′
1

] (
E
[
z1z
′
1

])−1
E
[
z1z
′
2

]
and

1√
n

Z̃′2u
d−→ Q1/2ξ0,

where ξ0 ∼ N(0, I). Furthermore, setting Σ = E [v2v
′
2] and C = Q1/2CΣ−1/2,

1√
n

Z̃′2Y2 =
1

n
Z̃′2Z̃2C +

1√
n

Z̃′2V2
d−→ Q1/2CΣ1/2 + Q1/2ξ2Σ

1/2,

where ξ2 is a matrix normal variate whose columns are independent N(0, I). The variables ξ0 and

ξ2 are correlated. Together we obtain the asymptotic distribution of the Wald statistic

Wn
d−→ S = ξ′0

(
C + ξ2

) [(
C + ξ2

)′ (
C + ξ2

)]−1 (
C + ξ2

)′
ξ0.

Note that C
′
ξ0 ∼ N

(
0,C

′
C
)
, vec

(
C
′
ξ2

)
∼ N

(
0, Ik2 ⊗

(
C
′
C
))
, and by the spectral decompo-

sition, C
′
C = H′ΛH with H′H = I and Λ diagonal. So the asymptotic distribution of the Wald

statistic is non-standard and a function of the model parameters only through the eigenvalues of

C
′
C and the correlations between the normal variates ξ0 and ξ2.

10 The worst-case can be summa-

rized by the maximal correlation between ξ0 and ξ2 and the smallest eigenvalue of C
′
C. To mimic

the F -statistic, we rescale the latter by dividing by the number of excluded instruments l2. Define

G = C
′
C/l2 = Σ−1/2C′QCΣ−1/2/l2

and

g = λmin (G) = λmin

(
Σ−1/2C′QCΣ−1/2

)
/l2,

where C
′
C is the matrix counterpart of the concentration parameter Γ′ZZΓ/σ2

v as l1 = k1 = 0 and

k2 = 1.
10Rigorously, this result is shown in the many instruments framework with l42/n→ 0.
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This can be estimated from the reduced-form regression

y2 = Γ̂′12z1 + Γ̂′22z2 + v̂2.

The estimator is

Ĝ = Σ̂−1/2Γ̂′22

(
Z̃′2Z̃2

)
Γ̂22Σ̂

−1/2/l2 = Σ̂−1/2
(
Y′2Z̃2

)(
Z̃′2Z̃2

)−1 (
Z̃2Y2

)
Σ̂−1/2/l2,

Σ̂ =
1

n− l

n∑
i=1

v̂2iv̂
′
2i =

1

n− lY
′
2MZY2 =

1

n− lỸ
′
2MZ̃2

Ỹ2,

ĝ = λmin

(
Ĝ
)
.

Ĝ is a matrix F -type statistic for the coeffi cient matrix Γ̂22, and has the limiting distribution(
C + ξ2

)′ (
C + ξ2

)
/l2. In summary, the asymptotic distribution of l2Ĝ is a noncentral Wishart

distribution of dimension k2 with degree of freedom l2 and noncentrality matrix C
′
C. Here, the

noncentral Wishart distribution is a multiple dimensional generalization of the noncentral chi-square

distribution; comparing to χ2
1

(
µ2
)
in (28), we can see C

′
C plays the role of µ2 in the k2 = 1 case.

By the CMT, ĝ converges to the minimum eigenvalue of a noncentral Wishart distribution, divided

by l2.

The statistic ĝ was proposed by Cragg and Donald (1993) as a test for underidentification. Stock

and Yogo (2005) use it as a test for weak instruments. Using simulation methods they determined

critical values for ĝ similar to those for k2 = 1. For given size r > 0.05 there is a critical value c

(reported in the table below) such that if ĝ > c then the 2SLS (or LIML) Wald statistic Wn for

β̂2 has asymptotic size bounded below r. On the other hand, if ĝ ≤ c then we cannot bound the

asymptotic size below r and we cannot reject the hypothesis of weak instruments.

Critical values (calculated by simulation) are reported in their paper and posted on Motohiro

Yogo’s webpage. We report a subset for the case k2 = 2 in Table 2. The methods and theory

applies to the cases k2 > 2 as well but those critical values have not been calculated. As for the

k2 = 1 case the critical values for 2SLS are dramatically increasing in l2. Thus when the model is

over-identified, we need a large value of ĝ to reject the hypothesis of weak instruments. This is a

strong cautionary message to check the ĝ statistic in applications. Furthermore, the critical values

for LIML are generally decreasing in l2 (except for r = 0.10 where the critical values are increasing

for large l2). This means that for over-identified models LIML inference is less sensitive to weak

instruments than 2SLS and may be the preferred estimation method.
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Maximal Size r

2SLS LIML

l2 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25

2 7.0 4.6 3.9 3.6 7.0 4.6 3.9 3.6

3 13.4 8.2 6.4 5.4 5.4 3.8 3.3 3.1

4 16.9 9.9 7.5 6.3 4.7 3.4 3.0 2.8

5 19.4 11.2 8.4 6.9 4.3 3.1 2.8 2.6

6 21.7 12.3 9.1 7.4 4.1 2.9 2.6 2.5

7 23.7 13.3 9.8 7.9 3.9 2.8 2.5 2.4

8 25.6 14.3 10.4 8.4 3.8 2.7 2.4 2.3

9 27.5 15.2 11.0 8.8 3.7 2.7 2.4 2.2

10 29.3 16.2 11.6 9.3 3.6 2.6 2.3 2.1

15 38.0 20.6 14.6 11.6 3.5 2.4 2.1 2.0

20 46.6 25.0 17.6 13.8 3.6 2.4 2.0 1.9

25 55.1 29.3 20.6 16.1 3.6 2.4 1.97 1.8

30 63.5 33.6 23.5 18.3 4.1 2.4 1.95 1.7

Table 2: 5% Critical Value for Weak Instruments, k2 = 2

Exercise 14 When σ2
u ≡ E

[
u2
]
6= 1, what is the form of the Wald statistic, and what is its

asymptotic distribution?

Exercise 15 In the LIML estimator, what is the asymptotic distribution of n (κ̂− 1) when Γ22 =

n−1/2C?

7.6 Tests with Nonhomoskedatic Errors

The results of Stock and Yogo (2005) rely heavily on the assumption of homoskedasticity, i.e., the

data are independent, and (15) holds. When k2 = 1 (for simplicity, assume k1 = 0), the asymptotic

variance of
(
λ̂, γ̂

)
can be written as the Kronecker product of a 2× 2 matrix with a l × l matrix.

In the nonhomoskedastic case (e.g., heteroskedastic f , and/or data dependency across i due to

clustering or time-series correlation), this is not the case such that Stock and Yogo’s procedure

cannot be applied. As a robust alternative, Monteil Olea and Pflueger (2013) propose the effective

F -statistic, which adds a multiplicative correction to the conventional first-stage F -statistic for

testing γ = 0 in models with homoskedastic errors.

The nonhomoskedasticity-robust F -statistics

FR =
1

l
γ̂ ′Σ̂−1

γγ γ̂

for Σ̂γγ a robust estimator for the variance of γ̂, and the traditional nonrobust F -statistics

FN =
1

l
γ̂ ′Σ̂−1

γγ,N γ̂ =
n

kσ̂2
v

γ̂ ′Q̂zγ̂
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for Σ̂γγ,N = σ̂2v
n Q̂−1

z with Q̂z = 1
nZ′Z and σ̂2

v = 1
n

∑n
i=1 v̂

2
i . There is no theoretical justification

for the use of either FN or FR to gauge instrument strength in nonhomoskedastic settings. As an

alternative, the effective F -statistic of Monteil Olea and Pflueger (2013) is

FEff =
γ̂ ′Q̂zγ̂

tr
(
Σ̂γγQ̂z

) =
kσ̂2

v/n

tr
(
Σ̂γγQ̂z

)FN =
tr
(
Σ̂γγ,NQ̂z

)
tr
(
Σ̂γγQ̂z

) FN .

In cases with homoskedastic errors, FEff reduces to FN , while in cases with nonhomoskedastic errors

it incorporates a multiplicative correction that depends on the robust variance estimate. Likewise,

in the just-identified case, FEff reduces the FR, while in the nonhomoskedastic case, it weights γ̂

by Q̂z rather than Σ̂−1
γγ .

It is easy to see that

β̂2SLS =
(
γ̂ ′Q̂zγ̂

)−1
γ̂ ′Q̂zλ̂,

which behaves badly when its denominator, γ̂ ′Q̂zγ̂, is close to zero. The statistic FN measures the

same object, but it gets the standard error wrong and so does not have a noncentral χ2 distribution;

in the nonhomoskedastic case, FN can be extremely large with high probability even when γ̂ ′Q̂zγ̂

is small. By contrast, the statistic FR measures the wrong population object, γ ′Σ−1
γγγ rather than

γ ′Qzγ, so while it has a noncentral χ2 distribution, its noncentrality parameter does not correspond

to the distribution of β̂2SLS. Finally, FEff measures the right object and gets the standard errors

right on average. More precisely, FEff is distributed as a weighted average of noncentral χ2 variables

where the weights, given by the eigenvalues of Σ̂
1/2
γγ Q̂zΣ̂

1/2
γγ /tr

(
Σ̂γγQ̂z

)
, are positive and sum to

one. Monteil Olea and Pflueger (2013) show that the distribution of FEff can be approximated by a

noncentral χ2 distribution and formulate tests for weak instruments as defined based on the Nagar

(1959) approximation to the bias of two-stage least squares and LIML. Their test rejects when the

effective FEff exceeds a critical value as listed in Table 1 of Monteil Olea and Pflueger (2013). It

seems that conventional asymptotic approximations appear reasonable in specifications where FEff
exceeds 10, so 10 is a good rule-of-thumb critical value when l > 1.

In conclusion, FEff, not FR or FN , is the preferred statistic for detecting weak instruments in

overidentified, nonhomoskedastic settings with one endogenous variable where one uses 2SLS or

LIML.11 When l = 1, FEff (= FR) can be compared to Stock and Yogo (2005) critical values based

on t-test size (the mean of the IV estimator does not exist when l = 1 so the critical values cannot

be based on its bias).

7.7 Valid Inference with Weak IVs

In this subsection, we review four valid inference methods for β with weak IVs. The first three are

the AR test of Anderson and Rubin (1949), the LM test of Kleibergen (2002) and Moreira (2009),

and the conditional LR (CLR) test of Moreira (2003). The fourth is the tF method of Lee et al.

11There is no analog of FEff when k2 > 1.
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(2022).

We follow the notations commonly used in this literature. Suppose

y1 = y2β +Xγ1 + u,

y2 = Zπ +Xξ + v2,

where β ∈ R is the parameter of interest, y2 ∈ Rn is the observations for the only endogenous
regressor, X ∈ Rn×k1 and Z ∈ Rn×l2 include observations for k2 included IVs and l2 excluded IVs,

respectively, and u, v2 ∈ Rn are unobserved errors. We assume Z ′X = 0, so that Z is orthogonal

to X; otherwise, Z denotes the residual matrix after projecting Z onto X. The reduced-form

equations are

y1 = Zπβ +Xγ + v1,

y2 = Zπ +Xξ + v2,

where γ = γ1 + ξβ, and v1 = u+ v2β, or in matrix form

Y = Zπa′ +Xη + V,

where Y = (y1, y2) ∈ Rn×2, V = (v1, v2) ∈ Rn×2, a = (β, 1)′, and η = (γ, ξ). Denote the ith row of

a matrix by a subscript i. We assume (
v1i

v2i

)
∼ N (0,Ω) ,

and we first assume Ω =

(
ω11 ω12

ω12 ω22

)
to be known for simplicity. This assumption implies a

simple asymptotic variance structure of n−1/2Z ′v1 and n−1/2Z ′v2; specifically,

lim
n→∞

V ar

(
n−1/2Z ′v1

n−1/2Z ′v2

)
= Ω⊗ E

[
ZiZ

′
i

]
.

Our hypotheses are

H0 : β = β0 vs. H1 : β 6= β0.
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7.7.1 AR, LM and CLR

Notice that Z ′Y ∈ Rl2×2 is the suffi cient statistic for (β, π′)′, so the test can be based on Z ′Y . The

nuisance parameter π remains. To eliminate the dependence on π, decompose Z ′Y into

S =
(
Z ′Z

)−1/2
Z ′Y b0 ·

(
b′0Ωb0

)−1/2
,

T =
(
Z ′Z

)−1/2
Z ′Y Ω−1a0 ·

(
a′0Ω−1a0

)−1/2
,

b0 = (1,−β0)′ , a0 = (β0, 1)′ ,

where Z ′Y b0 = Z ′ (y1 − y2β0) in S appears also in the AR test statistic, and a′0b0 = 0. Then

S ∼ N (cβµπ, Il2) ,

T ∼ N (dβµπ, Il2) ,

and S and T are independent, where

µπ =
(
Z ′Z

)−1/2
π ∈ Rl2 ,

cβ = (β − β0) ·
(
b′0Ωb0

)−1/2 ∈ R,

dβ = a′Ω−1a0 ·
(
a′0Ω−1a0

)−1/2 ∈ R.

S has a null distribution not dependent on π, and T has a null distribution dependent on π. That

is, we decompose the information in Z ′Y into two parts, where under the null, the second part T

is a suffi cient statistic for π, and the first part S is independent of π.

The AR, LM and CLR test statistics are functions of

Q = (S, T )′ (S, T ) =

(
S′S S′T

T ′S T ′T

)
=

(
QS QST

QST QT

)
.

The distribution of Q depends on π only through λ = π′Z ′Zπ ≥ 0, where λ1/2 plays the role of

n1/2 in the strong IV case. Specifically,

AR =
QS
l2

=
S′S

l2
,

LM =
Q2
ST

QT
= S′T

(
T ′T

)−1
T ′S = S′PTS,

LR =
1

2

(
QS −QT +

√
(QS −QT )2 + 4Q2

ST

)
,

where PT is the projection matrix on T . Under the null, AR ∼ χ2
l2
/l2 and LM ∼ χ2

1 are pivotal.

On the other hand, LR depends on QT under the null, so the corresponding test cannot be similar

(i.e., the type-I error rate is invariant to π) if a fixed critical value is used. The CLR test uses

critical values that depend on QT (which is suffi cient for π under the null), i.e., it rejects the null
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when

LR > cα (QT ) ,

where cα (QT ) satisfies

Pβ0 (LR > cα (QT ) |QT = qT ) = α

for any qT , and note that the conditional distribution of LR given QT depends only on the con-

ditional distribution of Q1 = (QS , QST )′ given QT which does not depend on π under the null. It

turns out that cα (qT )→ χ2
1,α (the critical value of LM) as qT →∞ (strong IV) and cα (qT )→ χ2

l2,α

(the critical value of AR times l2) as qT → 0 (weak IV).

When Ω is unkown, we can estimate it by

Ω̂ =
1

n− l V̂
′V̂ ,

where V̂ = Y − PZY − PXY .
The AR test is ineffi cient under strong identification in over-identified models, so Kleibergen

(2002) and Moreira (2009) propose the LM test or the K test which is effi cient under strong

identification. Kleibergen (2005) generalizes this statistic (and also the CLR test) to GMM. As

shown in Kleibergen (2005), his K test is a score test based on the CUE objective function.12

However, the power function of the LM test is not monotone. The LM test fails to reject some

nonlocal alternatives. Kleibergen (2002) explains that this is because the LM statistic equals zero

at two points, both satisfying the quadratic (in β0) expression:

a′0Ω̂−1Y ′PZY b0 = 0.

AMS mention that this is due to the switch of the sign of dβ ad β moves through the value βAR,

where βAR = (ω11 − ω12β0) / (ω12 − ω22β0), provided ω12 − ω22β0 6= 0, satisfies dβAR = 0. For a

deeper explanation, see Example I on page 2166 of Andrews (2016).

AMS determine a two-sided power envelope for invariant similar tests, where an invariant test

φ (S, T ) satisfies φ (S, T ) = φ (FS, FT ) for all l2 × l2 orthogonal matrices F , and F constitutes the

group of transformation G on (S, T ). Actually, Q is a maximal invarint for G, which is why all

the three test statistics are only functions of Q. They find that the power curve of the CLR test

is quite close to this power envelope. This power envelope is also the power envelope under weak

IV asymptotics. Under the strong IV asymptoics, the CLR test is asymptotically equivalent (same

asymptotic distribution and same asymptotic critical value) to the LM test, so is also asymptotically

effi cient.

When l2 = 1, i.e., the model is just-identified, LR = LM = AR. Actually, the AR test is a

uniformly most powerful (UMP) two-sided invariant similar test, so are the LM and CLR tests.

Moreira (2009) also shows that these tests are UMP unbiased.

12The estimation counterpart of the CLR test is the LIML in the homoskedastic case and the CUE in the het-
erskedastic case.
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7.7.2 tF

The subsection reviews the valid t-ratio inference in Lee et al. (2022). In their setup, k2 = l2 = 1

(a common case for applied work), so we consider the simple model (12) in this subsection (with

included IVs being allowed). The motivation is that practitioners often use the rule-of-thumb F -

statistic threshold of 10 in the first stage and if F > 10 then claim the interval β̂ ± 1.96 · s
(
β̂
)
as

the 95% CI (which is actually only a 80% CI). Rather than relying on a fixed pretesting threshold

value, they show how to smoothly adjust 2SLS t-ratio inference based on the first-stage F -statistic

to achieve the target coverage (not the reduced coverage like 80%), where the 2SLS instead of the

LIML is employed because practitioners seem prefer the former. In its simplest form, this amounts

to applying an adjustment factor to 2SLS standard errors based on the first-stage F with the

adjustment factors provided in Table 3. They refer to this procedure as the tF procedure, and this

procedure is robust to nonhomoskedastic errors.

Stock and Yogo’s procedure implies a "step function" critical value function in

P
(
t2 > c∗, F > F ∗

)
≤ α,

where we understand t and F as the limit random variables of tn and the F statistic above;

specifically, if F < F ∗, set c∗ =∞ (accept the null), and otherwise, use the value c∗ as the critical

value for t2n. For example, setting F
∗ = 16.4 and c∗ = 1.962 achieves α = 15%. Equivalently,

this implies a CI procedure that sets the CI to the entire real line if F < F ∗, and otherwise uses

±
√
c∗ · s

(
β̂
)
for the CI. As a "smooth" alternative, the tF critical value function cα (F ) satisfies

P
(
t2 > cα (F )

)
≤ α

for a prespecified significance level α, say, 5%, where cα (F ) is a smooth function of F .

Table 3: Selected values of tF critical values,
√
c0.05 (F ), and tF s.e. adjustments,

√
c0.05 (F )/1.96

Table 3 reports c0.05 (F ) as a function of F . c0.05 (F ) tends to infinity as F tends to 1.962

from above, and it is strictly decreasing in F until reaching a minimum, 1.962, when F reaches

around 104.7. The unreported values of c0.05 (F ) can be calculated by linear interpolation, which

is conservative as c0.05 (F ) is a convex function of F . In practice, the 95% CI can be constructed

as β̂ ± 1.96·"0.05 tF s.e.", where the 0.05 tF s.e. is s
(
β̂
)
·
√
c0.05 (F )/1.96, and the adjustment

factor
√
c0.05 (F )/1.96 is reported in the third row of Table 3. For a different α value, cα (F ) is

a different function of F . For example, c0.01 (F ) ends at 2.7262 rather than the chi-square critical

value 2.5762.

The tF inference has significant power advantages over inference using constant thresholds c∗

and F ∗. Also, the tF and Anderson-Rubin (AR) tests have similar power, but neither uniformly

dominates the other.13 To compare them, we consider the expected length of these two CIs con-

ditional on F > 1.962, where we condition on the event F > 1.962 because when F ≤ 1.962 the
13Although AR has known power optimality among unbiased tests, tF is not unbiased.
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expected length of both CIs is infinite (see Dufour (1997)). It turns out that the conditional ex-

pected length of the AR CI is infinite, while that of the tF CI is finite. In other words, conditional

on the event that they produce bounded intervals, the expected length of the tF CI will always be

shorter than that of the AR CI.

(**) We provide more details on the results above. We first connect tn in (25) with the AR test

statistic. For a hypothesized value β0,

tn =
β̂ − β0

s
(
β̂
)

with β̂ being the IV estimator, and the first-stage t test statistic is

fn =
π̂

s (π̂)
,

and F = f2
n. Recall that the AR test is to test whether π (β − β0) = 0, so the corresponding t test

statistic is

tARn (β0) =
π̂
(
β̂ − β0

)
s
(
π̂
(
β̂ − β0

)) .
It turns out that in this special case, the AR F -statistic F (β0) = tARn (β0)2. It can be shown that

t2n =
tARn (β0)2

1− 2ρ̂ (β0) t
AR
n (β0)
fn

+ tARn (β0)2

f2n

,

where ρ̂ (β0) is the sample analog of ρ (β0) = Corr (ze∗, zv) with e∗ being the AR error (i.e., the

error in regressing y − xβ0 on z, which is equal to u under the null). Under the assumption that

π = n−1/2µ,

t2n
d−→ t2 = t2 (tAR (β0) , f, ρ (β0)) :=

tAR (β0)2

1− 2ρ (β0) tAR(β0)
f + tAR(β0)2

f2

,

where (
tAR (β0)

f

)
∼ N

 f0
∆(β0)√

1+2ρ·∆(β0)+∆(β0)2

f0

 ,

(
1 ρ (β0)

ρ (β0) 1

)
with f0 = π/

√
AV ar (π̂), ∆ (β0) =

√
V ar(zv)√
V ar(zu)

(β − β0), ρ = Corr (zu, zv) (which is equal to

Corr (u, v) in the homoskedastic case), and ρ (β0) = ρ+∆(β0)√
1+2ρ·∆(β0)+∆(β0)2

. As a result, for the

critical value function κ (F ), the rejection probability

P∆(β0),ρ,f0

(
t2 > k (F )

)
=

∫ ∫
1
(
t2 (x, y, ρ (β0)) > κ

(
y2
))
ϕ

x− f0
∆ (β0)√

1 + 2ρ ·∆ (β0) + ∆ (β0)
2
, y − f0; ρ (β0)

 dxdy,

(30)
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where ϕ (·, ·; r) is the bivariate normal density with means zero, unit variances, and correlation r.
To obtain the tF critical value function cα (F ), we need to find a decreasing function cα (·) for

F ∈ (q1−α, F ], followed by a flat function beyond F for some F (e.g., 104.67 in Table 3), such that

P∆(β0)=0,ρ,f0

(
t2 > cα (F )

)
≤ α

for all ρ and f0 6= 0, where q1−α is the (1− α)th quantile of χ2
1. Because ρ = ±1 is the least

favorable case, we need only to obtain a function cα (F ) such that

P∆(β0)=0,|ρ|=1,f0

(
t2 > cα (F )

)
= α

for some set of small values of f0. For simplicity, take ρ = 1 and f0 > 0 as an example, and ρ = −1

and/or f0 < 0 can be symmetrically addressed. When ρ = 1, tAR (β0) is a linear function f which

follows N (f0, 1), so

t2 =
f2 (f − f0)2

f2
0

,

which is a quartic function, uniquely indexed by f0. This quartic function has the shape of a

“W”, with one trough located at f = 0, the other trough at f = f0, and an interior peak at

f = f0/2. Furthermore, the magnitude of the location and height of the interior peak of the

“W”function is monotonically increasing in |f0|. This greatly simplifies the expression of the null
rejection probability for any critical value function; the null rejection probability is the probability

that f takes on a value for which the quartic t2 curve is above the critical value function. For any

continuous and decreasing (in f2) critical value function (that eventually plateaus), there exists an

interval of values of f0 for which the "W" curve and the critical value function intersect only twice.

The acceptance probability is then simply Φ
(
f (f0)− f0

)
−Φ

(
f (f0)− f0

)
, where the intersections

between the two curves are denoted by f (f0) and f (f0); see Figure 7 of Lee et al. for an illustration.

As a result, the function cα (F ) satisfies the following system of equations:

f (f0)2 (f (f0)− f0

)2
f2

0

= cα
(
f (f0)

)
,

Φ
(
f (f0)− f0

)
− Φ

(
f (f0)− f0

)
= 1− α,

f (f0)2 (f (f0)− f0

)2
f2

0

= cα
(
f (f0)

)
for a set of small values of f0. They prove the existence of the cα (·) function, and develop an
interative algorithm to solve the system of equations. The remaining question is the determination

of F ; they suggest the lowest possible plateau because a lower plateau will lead to a more powerful

test. To determine F and verify size control for all ρ and f0 values (the construction of cα (F )

above considers only small values of f0), they employ numerical integration of (30) to compute

these rejection probabilities.
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To understand why

E [LAR|F > q1−α] =∞ and E [LtF |F > q1−α] <∞,

they show that conditional on F > q1−α,

LAR =

√
F
√
F − q1−α

(
1− ρ̃2

)
F − q1−α

LIV , and LtF =

√
cα (F )

q1−α
LIV

are both inflated versions of LIV , where LAR is the limit random variable of CI length based on

the AR test, LIV and LtF are similarly defined, and

ρ̃2 =
(−tAR (β) + ρf)2(

f2 − 2ρtAR (β) f + tAR (β)2
) .

It turns out that the LAR inflation factor explodes as F approaches q1−α from above, and even

accounting for the other parts of the inflation factor, the denominator F − q1−α leads to an infinite

conditional expected length. As for LtF , the inflation factor does not grow as quickly as F ap-

proaches q1−α from above, and in particular grows slowly enough that conditional expected length

is finite. The key to this result is

lim
F↓q1−α

cα (F ) (F − q1−α) = q3
1−α

such that √
cα (F ) =

√
cα (F ) (F − q1−α)

F − q1−α
≤ M√

F − q1−α

and in a neighborhood of q1−α, 1/
√
F − q1−α is integrable (although 1/ (F − q1−α) in LAR is not).

(**)

7.8 Many Weak Instruments

We still focus on the case with only one endogenous regressor. In the homoskedastic case, Chao

and Swanson (2005) show that LIML and B2SLS are consistent when rn/
√
Kn →∞, while 2SLS is

consistent only rn/Kn →∞, where rn is the rate of growth of concentration parameter π′Z ′Zπ/σ2
v,

and Kn is the number of instruments. Hansen, Hausman, and Newey (2008) argue that the 2SLS

estimator should not be used in applications with many instruments as it becomes very biased.

They also argue that a low first-stage F statistic is not always indicative of a weak identification

issue, and t-statistics inferences based on more appropriate estimators other than 2SLS, along with

corrected standard errors, such as LIML and Fuller’s estimator under Bekker asymptotics with

nonnormal errors, may still be reliable.

In a heteroskedastic model, Chao et al. (2012) show that the consistency of 2SLS, B2SLS and

LIML require rn/Kn → ∞, while JIVE remains consistent when rn/
√
Kn → ∞. Mikusheva and
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Sun (2022) show that the condition of rn/
√
Kn →∞ is also necessary for consistency. They develop

a jackknife AR test statistic which is valid under heteroskedasticity and weak identification:

AR (β0) =
1

√
Kn

√
Φ̂

n∑
i=1

∑
j 6=i

Pijui (β0)uj (β0) ,

where Pij is the (i, j) element of PZ , ui (β0) = yi − xiβ0, and Φ̂ is a consistent estimator of

the asymptotic variance of 1√
Kn

∑n
i=1

∑
j 6=i Pijui (β0)uj (β0). The new test uses an asymptotic

approximation based on a Central Limit Theorem (CLT) for quadratic forms in Chao et al. (2012).

It has uniformly correct size and good power properties due to the novel cross-fit variance etimator

Φ̂:

Φ̂ =
2

Kn

n∑
i=1

∑
j 6=i

P 2
ij

MiiMjj +M2
ij

[ui (β0)Miu (β0)] [uj (β0)Mju (β0)] ,

whereMij is the (i, j) element ofMZ = I−PZ ,Mi is the ith row ofMZ , and u (β0) is the column vec-

tor collecting ui (β0). Different from the naive estimator of Φ, say Φ̂1 = 2
Kn

∑n
i=1

∑
j 6=i P

2
iju

2
i (β0)u2

j (β0),

Φ̂ is consistent under both the null and the alterantive. In the spirit of Stock and Yogo (2005), they

develop a pre-test for weak identification, that can help to assess the reliability of the JIVE-Wald

test. Specifically, this is a two-step procedure: accept the null β = β0 if the pre-test F statistic,

F̃ =
1

√
Kn

√
Υ̂

n∑
i=1

∑
j 6=i

Pijxixj ,

is greater than 4.14 and the JIVE-Wald test statistic

W (β0) =

(
β̂JIVE − β0

)2

V̂

is greater than 3.84 or if F̃ < 4.14 and AR (β0) < 1.96, where

β̂JIVE =

∑n
i=1

∑
j 6=i Pijyixj∑n

i=1

∑
j 6=i Pijxixj

is β̂JIVE2 in Chapter 7, Υ̂ is a consistent variance etimator of F = 1√
Kn

∑n
i=1

∑
j 6=i Pijxixj , and V̂

is a consistent variance estimator of β̂JIVE. Note that F
d−→ N

(
µ2√
Kn
,Υ
)
, where µ2 = π′Z ′Zπ −∑n

i=1 Pii (π′zi)
2 ∼ π′Z ′Zπ, i.e., F indeed includes the information of identification in the first stage.

This procedure has an asymptotic size smaller than 15%.

Besides JIVE, Hausman et al. (2012) show that heteroscedasticity-robust Fuller is also a good

choice under strong identification. For overidentification tests under homoskedasticity, see Ana-

tolyev and Gospodinov (2011), and under heteroskedasticity, see Chao et al. (2014).
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8 Alternative Inference Procedures (*)

Monte Carlo studies have shown that estimated asymptotic standard errors of the effi cient two-step

GMM estimator can be severely downward biased in small samples. A key observation for the source

of this bias is that the weight matrix used in the calculation of the effi cient two-step GMM estimator

is based on initial consistent parameter estimates whose variation is not embodied in the asymptotic

covariance matrix estimation. Windemeijer (2005) shows that when the moment conditions used

are linear in the parameters, the extra variation due to the presence of these estimated parameters

in the weight matrix accounts for much of the difference between the finite sample and the usual

asymptotic variance of the two-step GMM estimator.

To this problem, there are a few reactions in the literature. First, nonlinear procedures, es-

pecially the generalized empirical likelihood (GEL) estimation, are proposed. Inferences based on

these nonlinear procedures are more accurate because they circumvent the estimation of the opti-

mal weight matrix.14 Second, linear procedures are proposed to incorporate the variation in the

first-stage estimator explicitly. Third, bootstrap procedures are put forward to refine the inferences

based on the two-step GMM estimator.

In this section, we will concentrate on two GEL estimators, the continuously-updated estimator

and the empirical likelihood estimator; we will also briefly discuss the inferences based on the

"general" GEL approach.

8.1 Continuously-Updated Estimator

There is an important alternative to the two-step GMM estimator. Specifically, we can let the

weight matrix be considered as a function of θ. The criterion function is then

Jn(θ) = n · gn (θ)′
(

1

n

n∑
i=1

g∗i (θ)g∗i (θ)′

)−1

gn (θ) ,

where

g∗i (θ) = gi(θ)− gn (θ) .

The θ̂ which minimizes this function is called the continuously-updated estimator (CUE) of
GMM, and was introduced by Hansen et al. (1996). An advantage of this estimator relative to

the two-step estimator is that it is invariant to how the moment conditions are scaled even when

parameter-dependent scale factors are introduced. This estimator appears to have some better

properties (e.g., smaller bias) than traditional GMM, but can be numerically tricky to obtain in

some cases, e.g., its objetive function may possess multiple local minima and may produce extreme

estimates (i.e., its distribution has a fat tail); see Section 4 of Hansen et al. (1996) for more details.

Donald and Newey (2000) interpret the CUE as a jackknife estimator to explain why the CUE is

less biased. Essentially, the CUE makes the estimator of Jacobian G asymptotically uncorrelated

14Actually, the bias is also smaller.
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with gn

(
θ̂
)
, which eliminates an important source of nonzero expectations for the FOCs, and

hence of bias. Another way to look at the CUE is that it is the heteroskedasticity-robust version

of the LIML estimator.

Exercise 16 (i) Write out the objective function of the CUE in the linear homoskedastic endoge-
nous model. (ii) Show that this CUE is equivalent to the LIML estimator. (iii) Show that if g∗i (θ)

is replaced by gi(θ) in Jn(θ), then the new objective function J̃n(θ) = Jn(θ)/(1 + Jn(θ)).

8.2 EL Estimator

The idea of empirical likelihood (EL) is due to Owen (1988, 1990); see also Qin and Lawless
(1994) and Imbens (1997) for its GMM extension. It is a non-parametric analog of likelihood

estimation.

The idea is to construct a multinomial distribution F (p1, · · · , pn) which places probability pi
at each observation. To be a valid multinomial distribution, these probabilities must satisfy the

requirements that pi ≥ 0 and
n∑
i=1

pi = 1. (31)

Since each observation is observed once in the sample, the log-likelihood function for this multino-

mial distribution is

logL (p1, · · · , pn) =

n∑
i=1

log (pi) . (32)

First let us consider a just-identified model. In this case the moment condition places no

additional restrictions on the multinomial distribution. The maximum likelihood estimators of the

probabilities (p1, · · · , pn) are those which maximize the log-likelihood subject to the constraint (31).

This is equivalent to maximizing

n∑
i=1

log (pi)− µ
(

n∑
i=1

pi − 1

)
,

where µ is a Lagrange multiplier. The n FOCs are 0 = p−1
i −µ. Combined with the constraint (31)

we find that the MLE is pi = n−1 yielding the log-likelihood −n log (n).

Now consider the case of an over-identified model with moment condition E [g(wi,θ0)] ≡
E [gi(θ0)] = 0. The multinomial distribution which places probability pi at each observation wi

will satisfy this condition if and only if

n∑
i=1

pigi(θ) = 0. (33)

The EL estimator is the value of θ which maximizes the multinomial log-likelihood (32) subject to

the restrictions (31) and (33).
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The Lagrangian for this maximization problem is

L (θ, p1, · · · , pn,λ, µ) =

n∑
i=1

log (pi)− µ
(

n∑
i=1

pi − 1

)
− nλ′

n∑
i=1

pigi(θ),

where λ and µ are Lagrange multipliers. The FOCs of L with respect to pi, µ and λ are

1

pi
= µ+ nλ′gi(θ),

n∑
i=1

pi = 1 and
n∑
i=1

pigi(θ) = 0.

Multiplying the first equation by pi, summing over i and using the second and third equations, we

find µ = n and

pi =
1

n
(
1 + λ′gi(θ)

) .
Substituting into L we find

R (θ,λ) = −n log (n)−
n∑
i=1

log
(
1 + λ′gi(θ)

)
.

For given θ the Lagrange multiplier λ (θ) minimizes R (θ,λ):

λ (θ) = arg min
λ

R (θ,λ) .

This minimization problem is the dual of the constrained maximization problem. The solution

(when it exists) is well defined since R (θ,λ) is a convex function of λ. The solution cannot

be obtained explicitly, but must be obtained numerically. This yields the (profile) empirical log-

likelihood function for θ:

R (θ) = R (θ,λ (θ)) = −n log (n)−
n∑
i=1

log
(
1 + λ (θ)′ gi(θ)

)
.

The EL estimate θ̂ is the value which maximizes R (θ), or equivalently minimizes its negative

θ̂ = arg min
θ

[−R (θ)] .

Numerical methods are required for calculation of θ̂.

As a by-product of estimation, we also obtain the Lagrange multiplier λ̂ = λ
(
θ̂
)
, probabilities

p̂i =
1

n
(

1 + λ̂
′
gi(θ̂)

) ,
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and maximized empirical likelihood

R
(
θ̂
)

=

n∑
i=1

p̂i. (34)

In Appendix B, we show that θ̂ has the same asymptotic distribution as the usual GMM

estimator in Section 4, so the EL estimator is asymptotically effi cient (without estimating the

optimal weight matrix). Also,
√
nλ̂

d−→ Ω−1N (0,Vλ) ,

where Vλ = Ω−G
(
G′Ω−1G

)−1
G′. Furthermore, θ̂ and λ̂ are asymptotically independent.

In a parametric likelihood context, tests are based on the difference in the log likelihood func-

tions. The same statistic can be constructed for empirical likelihood. In this case, the unrestricted

and restricted empirical log-likelihoods are

Lrn =

n∑
i=1

ln(π̂i) = −n log n−
n∑
i=1

log
(

1 + λ̂
′
gi(θ̂)

)
,

Lurn = −n log n,

so twice the difference between these two log-likelihoods is

LRn = 2 (Lurn − Lrn) = 2
n∑
i=1

log
(

1 + λ̂
′
gi(θ̂)

)
.

Under the null (8), LRn
d−→ χ2

l−k, which is shown in Appendix B. Kitamura (2001) shows that this

empirical likelihood ratio test of the overidentifying restrictions satisfies the optimal criterion of

Hoeffding (1965). The EL overidentification test is similar to the GMM overidentification test. They

are asymptotically first-order equivalent, and have the same interpretation. The overidentification

test is a very useful by-product of EL estimation, and it is advisable to report the statistic LRn
whenever EL is the estimation method.

8.3 GEL Estimators

Both the CUE and the EL estimator are special cases of the GEL estimator of Smith (1997);

see Newey and Smith (2004) and Smith (2011) for further discussions on the GEL estimator. To

describe GEL let the carrier function ρ(v) be a function of a scalar v that is concave on its domain,

an open interval V containing 0. Let Λ̂n (θ) =
{
λ|λ′gi(θ) ∈ V, i = 1, · · · , n

}
. The estimator is the

solution to a saddle point problem

θ̂GEL = arg min
θ∈Θ

sup
λ∈Λ̂n(θ)

n∑
i=1

ρ
(
λ′gi(θ)

)
= arg min

θ∈Θ
R(θ), (35)

where Θ denotes the parameter space. The EL estimator is a special case with ρ(v) = log(1 − v)

and V = (−∞, 1). The exponential tilting (ET) estimator of Kitamura and Stutzer (1997) and
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Imbens, Spady and Johnson (1998) is a special case with ρ(v) = −ev which has the computational
advantage, relative to EL, of having an unrestricted domain, although the restricted domain of

EL is usually not a problem in practice.15 The CUE is a special case with ρ(v) = −(1 + v)2/2.16

Associated with each GEL estimator are empirical probabilities for observations. Specifically,

π̂i = ρ1(λ̂
′
ĝi)/

∑n

j=1
ρ1(λ̂

′
ĝj),

where ρ1 is the first derivative of ρ, ĝi = gi(θ̂), and

λ̂ = arg max
λ∈Λ̂n(θ̂)

n∑
i=1

ρ
(
λ′ĝi

)
/n. (36)

For EL and ET,

π̂i =
1

n(1− λ̂′ĝi)
and

eλ̂
′
ĝi∑n

j=1 e
λ̂
′
ĝj
,

respectively. These empirical probabilities π̂i sum to one by construction, satisfy the sample moment

condition
∑n

i=1 π̂iĝi = 0 when the FOCs for λ̂ hold, and are positive when λ̂
′
ĝi is small uniformly

in i.

Another formulation of these estimators is through the minimum discrepancy (MD) estimator

of Corcoran (1998). The MD estimator is defined as

θ = arg min
θ∈Θ, π

n∑
i=1

h(πi) (37)

s.t.
n∑
i=1

πigi(θ) = 0,
n∑
i=1

πi = 1,

where π = (π1, · · · , πn). When h(π) = − ln(π), π ln(π) (the Kullback-Leibler information crite-

rion), and π2 we get the EL, ET and CUE, respectively. For each MD estimator there is a dual

GEL estimator when h(π) is a member of the Cressie and Read (1984) family of discrepancies in

which h(π) = [γ(γ + 1)]−1 [(nπ)γ+1 − 1
]
/n.17 The corresponding ρ(v) = −(1 + γv)(γ+1)/γ/(γ+ 1).

When γ = −1, 0 and 1, we get the h functions for the EL, ET and CUE, respectively. λ in (35)

is proportional to the Lagrange multipliers for the first (moment) constraint in (37). The maxi-

mization problem for λ in (36) is considerably easier than the MD problem, having much smaller

dimension (l versus n) and being a simple concave programming problem. For γ = −1 and 0, there

15Another GEL estimator is the minimum Hellinger distance estimator (MHDE) of Kitamura et al. (2013).
16Note that for EL, ET and CUE, their ρ satisfies ρ1(0) = ρ2(0) = −1, which can be a general normalization for

any ρ, where ρj is the jth derivative of ρ. Also, to normalize ρ such that ρ(0) = 0, sometimes let ρ(v) = 1− ev in ET
and ρ(v) = 1/2− (1 + v)2/2 in CUE.
17For two discrete distributions with common support p = (p1, · · · , pn) and q = (q1, · · · , qn), the Cressie-Read

power-divergence statistic is defined as Iγ(p, q) = 1
γ(γ+1)

n∑
i=1

pi

[(
pi
qi

)γ+1
− 1
]
.
∑n
i=1 h(πi) measures the distance

between π and the empirical distribution πunif . γ = 0 defines the Kullback-Leibler distance from πunif to π; γ = −1
defines the Kullback-Leibler distance from π to πunif ; γ = −1/2 defines the Hellinger distance between π and πunif .
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are no explicit solutions for λ̂ and π̂. When γ = 1, explicit formulae for λ̂ and π̂ are possible,

but they usually involve one or more of the π̂i’s being negative and so give rise to problems of

interpretation.

Although the first-order properties of all GEL estimators are the same as the effi cient GMM

estimator, their higher-order properties are quite different. For example, Newey and Smith (2004)

show that EL generally exhibits a smaller O
(
n−1

)
bias than any other member of GEL unless the

centered third moments of the distribution of gi ≡ gi(θ0) happen to all vanish, in which case all

GEL estimators have the same O
(
n−1

)
bias. The intuition for this result is that the GEL FOCs

are [
n∑
i=1

π̂iGi

(
θ̂
)][ n∑

i=1

k̂igi

(
θ̂
)
gi

(
θ̂
)′]−1

gn

(
θ̂
)

= 0

where Gi(θ) = ∂gi (θ) /∂θ′, k̂i = k (v̂i) /
∑n

j=1 k (v̂j) with k (v) = [ρ1(v) + 1] /v when v 6= 0

and k(0) = −1, and v̂i = λ̂
′
ĝi. For EL, k̂i = π̂i while for CUE, k̂i = 1/n. The bias of θ̂

includes three parts: BI = H (−a + E [GiHgi]) /n is the asymptotic bias from the estimator based

on the optimal linear combination G′Ω−1g(w,θ) = 0, BG = −ΣE [GiPgi] /n comes from the

correlation between the Jacobian G estimator with gn
(
θ̂
)
, and BΩ = HE [gig

′
iPgi] comes from the

correlation between the outer product matrix Ω estimator with gn
(
θ̂
)
, where Σ =

(
G′Ω−1G

)−1,

H = ΣG′Ω−1, P = Ω−1 −Ω−1GΣG′Ω−1, aj =tr
(
ΣE

[
∂2gij (θ0) /∂θ∂θ′

])
/2 represents the bias

from the nonlinearity of gij (θ) = gj (wi,θ), and Gi = Gi(θ0). The CUE effectively eliminates

BG by using the weights π̂i in the Jacobian estimation but not BΩ because k̂i = 1/n, while the

EL eliminates both by using "effective" weights π̂i and k̂i (that are different from 1/n). For a

general GEL estimator, the bias is BI + (1 + ρ3/2)BΩ. EL can eliminate BΩ because its ρ3 = −2.

If ρ3 6= −2, but BΩ = 0 (or equivalently, E [gig
′
igij ] = 0), then this source of bias can still be

eliminated. For example, in the linear IV setting of Section 1, when disturbances are symmetrically

distributed, this can happen. They also show that the bias-corrected EL is higher-order effi cient,

possessing an O
(
n−2

)
variance that is no greater than that of any other bias-corrected method of

moments estimators. The proof of this result combines the arguments of Chamberlain (1987), as

explained in Section 9, and the third-order effi ciency of the parametric MLE (see Rao (1963) and

Pfanzagl and Wefelmeyer (1978)).

If we want to test H0: r(θ) = 0, we can use the LR statistic

LRn = 2
[
R
(
θ̃
)
−R

(
θ̂
)]
,

which follows χ2
q under the null, where R(·) is defined in (35), and

θ̃ = arg min
r(θ)=0

R(θ).
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As a result, the (1− α) confidence region for θ2, a k2-subvector of θ, is

2
[
R
(
θ̃1 (θ2) ,θ2

)
−R

(
θ̂
)]
≤ χ2

k2,α,

where θ̃1 (θ2) = arg min θ1R (θ1,θ2) for a given θ2. This Wilks’s phenomenon is invariant to the

choice of ρ (·) (or equivalently, h(·)), but second-order results depend intimately on the choice of
ρ. For example, the GEL is Bartlett correctable if and only if ρ(v) = log(1 − v). Also, such a

confidence region has the advantages of having natural shape and respects the range of θ2.

We can also use the LR statistic to test the overidentifying restrictions as in the EL case; all such

GEL tests are asymptotically first-order equivalent, but may have different higher-order properties

depending on h. Smith (1997) puts forward an alternative overidentifiction test based on ρ rather

than h. Specifically, he shows

2n

[
n∑
i=1

ρ
(
λ̂
′
gi(θ̂)

)
/n− ρ (0)

]
d−→ χ2

l−k,

under the null that the model is correctly specified, where note that the true value of λ̂ is zero,

which explains the presence of ρ (0).

8.4 Other Inference Procedures

Windmeijer (2005) proposes a finite-sample correction for the variance of linear effi cient two-step

GMM estimators. His correction explicitly incorporates the variation in the first-stage estimator.

Details are included in Appendix C. Chao and Swanson (2001) derive the bias and MSE of 2SLS

under weak-instrument asymptotics, modified to allow the number of instruments to increase with

the sample size. They report improvements in Monte Carlo simulations by incorporating bias

adjustments. As to the bootstrap inference, there are basically two methods attributed to Hall

and Horowitz (1996) and Brown and Newey (2002) respectively; see also Lee (2014). Bond and

Windmeijer (2002) report problems with the bootstrap procedures when the weight matrix is a

poor estimate of the covariance matrix of the moment conditions, which occurs for example when

there are a large number of overidentifying restrictions.

9 Conditional Moment Restrictions

In many cases, the model may imply conditional moment restrictions

E[u (w,β0) |x] = 0,

where u (w,β) is some s×1 function of the observation and the parameters. For example, in linear

regression, u (w,β) = y − x′β, w = (y,x′)′, and s = 1; in a joint model of conditional mean and
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variance,

u (w,β) =

(
y − x′β1

(y − x′β1)2 − f(x)′β2

)

for a specification V ar(y|x) = f(x)′β2, where β =
(
β′1,β

′
2

)′, so s = 2.

Conditional moment restrictions imply infinite unconditional moment conditions, since for any

function of x, say φ(x), E[φ(x)u (w,β0)] = 0. So a natural question is which instruments are

optimal, or what is the semiparametric effi ciency (or variance) bound for β0. Chamberlain (1987)

derived this bound by approximating the CDF F (x) and the conditional CDF F (w|x) with multi-

nomial distributions; see Appendix D. It turns out that the optimal instruments are

A(x) = G(x)′Ω(x)−1,

where G(x) = E
[
∂u (w,β0) /∂β′

∣∣x], and Ω(x) = E
[
u (w,β0)u (w,β0)′

∣∣x]. A(x) is similar to

the optimal linear combination B in the unconditional moment case, but now we condition every

random variable on x. Using the optimal instruments, the unconditional moment conditions are

E [m (w,β0)] = E [A(x)u (w,β0)] = 0.

Applying the formula of the asymptotic variance for the MoM estimator, we have the semipara-

metric effi ciency bound for β0

E
[
A(x)∂u (w,β0) /∂β′

]−1
E
[
A(x)u (w,β0)u (w,β0)′A(x)′

]
E
[
A(x)∂u (w,β0) /∂β′

]′−1

= E
[
G(x)′Ω(x)−1G(x)

]−1
.

In the linear regression case, G(x) = x′, and Ω(x) = σ2(x), so the optimal instrument is x/σ2(x),

which corresponds to the generalized least squares estimator, and the semiparametric effi ciency

bound for β0 is E
[
xx′/σ2(x)

]
.

The optimal instruments involve the conditional mean estimation. This will use nonparametric

estimation techniques which are not covered by this course; see Newey (1990b) for such estimations.

In practice, we may only want to select a group of instruments that need not be (asymptotically)

optimal. But given an infinite list of potential instruments, which should be used? This is essentially

a model selection problem, and will be briefly discussed in Section 6.2.

(*) Kitamura et al. (2004) study the empirical likelihood-based inference in conditional moment

restrictions models. Andrews and Shi (2013) and Chernozhukov et al. (2013) study inference based

on conditional moment inequalities.

Exercise 17 (Empirical) Continue the empirical exercise in the last chapter.

(d) Re-estimate the model by effi cient GMM. I suggest that you use the 2SLS estimates as the
first-step to get the weight matrix, and then calculate the GMM estimator from this weight

matrix without further iteration. Report the estimates and standard errors.
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(e) Calculate and report the J statistic for overidentification.

(f) Discuss your findings.

Appendix A: Asymptotics for the Nonlinear GMM

The following two theorems show that the GMM estimator is CAN.

Theorem 3 Suppose that wi, i = 1, 2, · · · , are i.i.d., Wn
p−→W, and (i)W ≥ 0 andWE[g(w,θ)] =

0 only if θ = θ0; (ii) θ0 ∈ Θ, which is compact; (iii) g(w,θ) is continuous at each θ ∈ Θ with

probability one; (iv) E[supθ∈Θ ‖g(w,θ)‖] <∞. Then θ̂ p−→ θ0.

Proof. We prove this theorem similarly as in the proof of the consistency of the MLE. Let Qn (θ)

be −gn(θ)′Wngn(θ); we need to verify the four conditions at the end of Section 3.1 of Chapter

4. Condition (I): Let R be such that R′R = W. If θ 6= θ0, then 0 6= Wg(θ) = R′Rg(θ)

implies Rg(θ) 6= 0 and hence Q(θ) = − (Rg(θ)])′ (Rg(θ)]) < Q(θ0) = 0 for θ 6= θ0, where

g(θ) = E[g(w,θ)]. Condition (II) is (ii) of the theorem. Given (ii), (iii) and (iv), Mickey’s

Theorem implies g(θ) is continuous and supθ∈Θ ‖gn(θ)− g(θ)‖ p−→ 0. Thus condition (III) holds

by Q(θ) = −g(θ)′Wg(θ) continuous. By Θ compact, g(θ) is bounded on Θ, and by the triangle

and Cauchy-Schwartz inequalities,

|Qn (θ)−Q (θ)|
≤

∣∣[gn(θ)− g(θ)]′Wn [gn(θ)− g(θ)]
∣∣+
∣∣g(θ)′

(
Wn + W′

n

)
[gn(θ)− g(θ)]

∣∣+
∣∣g(θ)′ (Wn −W) g(θ)

∣∣
≤ ‖gn(θ)− g(θ)‖2 ‖Wn‖+ 2 ‖g(θ)‖ ‖gn(θ)− g(θ)‖ ‖Wn‖+ ‖g(θ)‖2 ‖Wn −W‖ ,

so that supθ∈Θ |Qn (θ)−Q (θ)| p−→ 0, and condition (IV) holds.

Theorem 4 Suppose that the conditions in the above theorem hold, Wn
p−→W, and (i) θ0 ∈interior

of Θ; (ii) g(w,θ) is continuously differentiable in a neighborhood of N of θ0, with probability ap-

proaching one; (iii) E[g(w,θ0)] = 0 and E
[
‖g(w,θ0)‖2

]
<∞; (iv) E[supθ∈N ‖∇θg(w,θ)‖] <∞,

where ∇θg(w,θ) = ∂
∂θ′
g(w,θ) ; (v) G′WG is nonsingular for G = E [∇θg(w,θ0)]. Then for Ω =

E [g(w,θ0)g(w,θ0)′],
√
n
(
θ̂ − θ0

)
d−→ N (0,V), where V = (G′WG)−1 G′WΩWG (G′WG)−1.

Proof. By (i), (ii) and (iii), the FOC 2Gn

(
θ̂
)′

Wngn

(
θ̂
)

= 0 is satisfied with probability

approaching one, where Gn (θ) = ∇θgn(θ). Expanding gn(θ̂) around θ0, multiplying through by√
n, and solving gives

√
n
(
θ̂ − θ0

)
= −

[
Gn

(
θ̂
)′

WnGn

(
θ
)]

Gn

(
θ̂
)′

Wn

√
ngn (θ0) ,
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where θ is the mean value. By (iv), Gn

(
θ̂
)

p−→ G and Gn

(
θ
) p−→ G, so that by (v),

[
Gn

(
θ̂
)′

WnGn

(
θ
)]

Gn

(
θ̂
)′

Wn
p−→
(
G′WG

)−1
G′W.

The conclusion then follows by Slutsky’s theorem.

The complicated asymptotic variance formula simplifies to
(
G′Ω−1G

)−1 when W = Ω−1. As

shown in Hansen (1982), this value for W is optimal in the sense that it minimizes the asymptotic

variance matrix of the GMM estimator. V can be consistently estimated by its sample analog,

V̂ =
(
Ĝ′WnĜ

)−1
Ĝ′WnΩ̂WnĜ

(
Ĝ′WnĜ

)−1
,

where Ĝ = Gn

(
θ̂
)
, and Ω̂ = n−1

∑n
i=1 g(wi, θ̂)g(wi, θ̂)′. To prove the consistency of V̂, we first

prove the following lemma, which is Lemma 4.3 of Newey and McFadden (1994).

Lemma 1 If wi is i.i.d., a(w,θ) is continuous at θ0 with probability one, and there is a neighbor-

hood N of θ0 such that E [supθ∈N ‖a(w,θ)‖] <∞, then for any θ̂ p−→ θ0, n−1
∑n

i=1 a
(
wi, θ̂

)
p−→

E [a (w,θ0)] .

Proof. By consistency of θ̂ there is δn → 0 such that
∥∥∥θ̂ − θ0

∥∥∥ ≤ δn with probability ap-

proaching one. Let ∆n(w) = sup‖θ−θ0‖≤δn ‖a (w,θ)− a (w,θ0)‖. By continuity of a (w,θ) at

θ0, ∆n(w) → 0 with probability one, while by the dominance condition, for n large enough

∆n(w) ≤ 2 supθ∈N ‖a(w,θ)‖. Then by the dominated convergence theorem,18 E [∆n(w)] → 0,

so by the Markov inequality,19 P
(∣∣n−1

∑n
i=1 ∆n(wi)

∣∣ > ε
)
≤ E [∆n(w)] /ε→ 0 for all ε > 0, giving

n−1
∑n

i=1 ∆n(wi)
p−→ 0. By the LLN, n−1

∑n
i=1 a (wi,θ0)

p−→ E [a (w,θ0)]. Also, with probability

approaching one,∥∥∥n−1
∑n

i=1
a
(
wi, θ̂

)
− n−1

∑n

i=1
a (wi,θ0)

∥∥∥ ≤ n−1
∑n

i=1

∥∥∥a(wi, θ̂
)
− a (wi,θ0)

∥∥∥ ≤ n−1
∑n

i=1
∆n(wi)

p−→ 0,

so the conclusion follows by the triangle inequality.

The conditions in this lemma are weaker than those of Mickey’s theorem, because the conclusion

is simply uniform convergence at the true parameter. In particular, the function is only required

to be continuous at the true parameter.

Theorem 5 If the assumptions in the last theorem are satisfied, and for neighborhood N of θ0,

E[supθ∈N ‖g(w,θ)‖2] <∞, then V̂
p−→ V.

Proof. Applying the above lemma to a(w,θ) = g(w,θ)g(w,θ)′, we get Ω̂
p−→ Ω, and applying to

a(w,θ) = ∇θg(w,θ), we get Ĝ
p−→ G. The conclusion follows from the CMT and continuity of

matrix inversion and multiplication.

18Dominated convergence theorem: If Xn
p−→ X and for any n, |Xn| ≤ Y with E [Y ] <∞, then E[Xn]→ E[X].

19Markov’s inequality: For any nonnegative random variable X and a > 0, P (X > a) ≤ E [X] /a.

63



Appendix B: Asymptotics for EL

We first show the asymptotic distribution of θ̂ and λ̂. Note that
(
θ̂, λ̂

)
jointly solve

0 =
∂

∂λ
R
(
θ̂, λ̂

)
= −

n∑
i=1

gi(θ̂)

1 + λ̂
′
gi(θ̂)

(38)

and

0 =
∂

∂θ
R
(
θ̂, λ̂

)
= −

n∑
i=1

Gi(θ̂)′λ̂

1 + λ̂
′
gi(θ̂)

, (39)

where Gi(θ) = ∂gi (θ) /∂θ′. Let Gn = n−1
∑n

i=1 Gi(θ0) = Gn (θ0), gn = n−1
∑n

i=1 gi (θ0) =

gn (θ0) and Ωn = n−1
∑n

i=1 gi (θ0) gi (θ0)′ = Ωn (θ0).

Expanding (39) around θ = θ0 and λ = λ0 = 0 yields

0 ≈ G′n

(
λ̂− λ0

)
= G′nλ̂. (40)

Expanding (38) around θ = θ0 and λ = λ0 = 0 yields

0 ≈ −gn −Gn

(
θ̂ − θ0

)
+ Ωnλ̂. (41)

Premultiplying by G′nΩ
−1
n and using (40) yields

0 ≈ −G′nΩ
−1
n gn −G′nΩ

−1
n Gn

(
θ̂ − θ0

)
+ G′nΩ

−1
n Ωnλ̂

= −G′nΩ
−1
n gn −G′nΩ

−1
n Gn

(
θ̂ − θ0

)
.

Solving for θ̂ and using the WLLN and CLT yields

√
n
(
θ̂ − θ0

)
≈ −

(
G′nΩ

−1
n Gn

)−1
G′nΩ

−1
n gn

d−→
(
G′Ω−1G

)−1
G′Ω−1N (0,Ω) = N (0,V) . (42)

Solving (41) for λ̂ and using (42) yields

√
nλ̂ ≈ Ω−1

n

(
I−Gn

(
G′nΩ

−1
n Gn

)−1
G′nΩ

−1
n

)√
ngn (43)

d−→ Ω−1
(
I−G

(
G′Ω−1G

)−1
G′Ω−1

)
N (0,Ω)

= Ω−1N (0,Vλ)

Furthermore, since

Ω−1
(
I−G

(
G′Ω−1G

)−1
G′Ω−1

)
ΩΩ−1G

(
G′Ω−1G

)−1
= 0,

θ̂ and λ̂ are asymptotically uncorrelated and hence independent.

We now show the asymptotic null distribution of LRn. First, by a Taylor expansion, (42), and
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(43),

1√
n

n∑
i=1

gn

(
θ̂
)

≈
√
n
(
gn + Gn

(
θ̂ − θ0

))
≈

(
I−Gn

(
G′nΩ

−1
n Gn

)−1
G′nΩ

−1
n

)√
ngn

≈ Ωn

√
nλ̂.

Second, since log (1 + u) ≈ u− u2/2 for u small,

LRn =
n∑
i=1

2 log
(

1 + λ̂
′
gi(θ̂)

)
≈ 2λ̂

′
n∑
i=1

ĝi − λ̂
′
n∑
i=1

gi(θ̂)gi(θ̂)′λ̂

≈ nλ̂
′
Ωnλ̂

d−→ N (0,Vλ)′Ω−1N (0,Vλ) = χ2
l−k.

Exercise 18 Show that N (0,Vλ)′Ω−1N (0,Vλ) = χ2
l−k.

Appendix C: Linear Procedure of Windmeijer (2005)

Consider only the linear-in-parameter model. Suppose the step-one estimator is θ̂1, and Wn de-

pends on θ̂1 through

Wn

(
θ̂1

)
=

1

n

n∑
i=1

gi

(
θ̂1

)
gi

(
θ̂1

)′
.

The step-two estimator satisfies

θ̂2 − θ0 = −
(
G′nW

−1
n

(
θ̂1

)
Gn

)−1
G′nW

−1
n

(
θ̂1

)
gn (θ0)

= −
(
G′nW

−1
n (θ0) Gn

)−1
G′nW

−1
n (θ0) gn (θ0) + Dθ0,Wn(θ0)

(
θ̂1 − θ0

)
+ op

(
n−1

)
,

where Gn = ∂gn (θ) /∂θ′ does not depend on θ, and the jth column of Dθ0,Wn(θ0) is given by

Dθ0,Wn(θ0)[·, j] = −
(
G′nW

−1
n (θ0) Gn

)−1

[
G′nW

−1
n (θ0)

∂Wn (θ)

∂θj

∣∣∣∣
θ0

W−1
n (θ0) Gn

]
·
(
G′nW

−1
n (θ0) Gn

)−1
G′nW

−1
n (θ0) gn (θ0)

+
(
G′nW

−1
n (θ0) Gn

)−1
G′nW

−1
n (θ0)

∂Wn (θ)

∂θj

∣∣∣∣
θ0

W−1
n (θ0) gn (θ0) .

Dθ0,Wn(θ0)

(
θ̂1 − θ0

)
= Op(n

−1), so taking account of this term will result in a more accurate

approximation of the variance of θ̂2 in finite samples. Note that when the model is just identified,

the correction disappears.
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A step-one linear estimator satisfies

θ̂1 − θ0 = −
(
G′nW

−1
n Gn

)−1
G′nW

−1
n gn (θ0)

and the finite sample corrected estimate of the variance of θ̂2 can be obtained as

V̂ ar
(
θ̂2

)
=

1

n

(
G′nW

−1
n

(
θ̂1

)
Gn

)−1
+ D

θ̂2,Wn(θ̂1)V̂ ar
(
θ̂1

)
D′
θ̂2,Wn(θ̂1)

+
1

n

[
D
θ̂2,Wn(θ̂1)

(
G′nW

−1
n

(
θ̂1

)
Gn

)−1
+
(
G′nW

−1
n

(
θ̂1

)
Gn

)−1
D′
θ̂2,Wn(θ̂1)

]
,

where the first term is the conventional estimate of the asymptotic variance; the first term of

D
θ̂2,Wn(θ̂1) is zero since

(
G′nW

−1
n

(
θ̂1

)
Gn

)−1
G′nW

−1
n

(
θ̂1

)
gn

(
θ̂2

)
= 0 from the FOCs, so

D
θ̂2,Wn(θ̂1) =

(
G′nW

−1
n

(
θ̂1

)
Gn

)−1
G′nW

−1
n

(
θ̂1

) ∂Wn (θ)

∂θj

∣∣∣∣
θ̂1

W−1
n

(
θ̂1

)
gn

(
θ̂2

)
and

V̂ ar
(
θ̂1

)
=

1

n

(
G′nW

−1
n Gn

)−1
G′nW

−1
n Wn

(
θ̂1

)
W−1

n Gn

(
G′nW

−1
n Gn

)−1
.

V̂ ar
(
θ̂2

)
will provide a better finite sample estimate of V ar

(
θ̂2

)
by taking into account the finite

sample variation of θ̂1.

Appendix D: Semiparametric Effi ciency Bound

Recall from Section 3.3 of Chapter 4, there are two criteria of effi ciency. Chamberlain (1986) uses the

first criterion, i.e., best among regular estimators, while Chamberlain (1987, 1992) use the second

criterion, i.e., local asymptotic minimaxity (LAM) among all estimators. We will concentrate on

Chamberlain (1987) in this appendix. A key advantage of Chamberlain (1987)’s method is that it

provides a conjecture for the form of the semiparametric effi ciency bound (and thus the form of

the effi cient influence function) so sidesteps the need to directly calculate a complicated projection

problem in using the first criterion. More discussions on the first criterion can be found in Newey

(1990a) and Bickel et al. (1998).

Following the notations in the main text, suppose we have the following conditional moment

conditions in hand,

E[u (w,β0) |x] = 0.

First (without loss of generality) transform the moments so they have unit conditional variances

and are uncorrelated conditional on x,

u∗ (w,β) = Ω−1/2(x)u (w,β) ,

where Ω(x) = E
[
u (w,β0)u (w,β0)′

∣∣x]. Then we ask how to choose A∗(x) = A(x)Ω1/2(x) such
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that the moment conditions E [m (w,β)] = E [A∗(x)u∗ (w,β)] is optimal, where note that each

moment in u∗ is on an "equal footing".

From the intuition in Section 2 of Chapter 4, the larger ∂
∂βu

∗
j (w,β0), j = 1, · · · , s, is, the more

informative is the jth mometn for estimating β0. So one might choose weights for each u
∗
j (w,β0)

to be proportional to ∂
∂βu

∗
j (w,β0). Thus one might consider

m (w,β) =
∂

∂β′
u∗ (w,β0)′ u∗ (w,β) .

But then we might have E [m (w,β0)] 6= 0 and so GMM would not necessarily be consistent. To

ensure consistency, use a function of x "close" to ∂
∂β′

u∗ (w,β0), i.e.,

A∗(x) = E

[
∂

∂β′
u∗ (w,β0)

∣∣∣∣x]′ = G(x)′,

so that m (w,β) = A∗(x)u∗ (w,β) and E [m (w,β0)] = 0. This implies

A(x) = A∗(x)Ω−1/2(x) = E

[
∂

∂β′
u∗ (w,β0)

∣∣∣∣x]′Ω−1/2(x)

= E

[
∂

∂β′
u (w,β0)

∣∣∣∣x]′Ω−1/2(x)Ω−1/2(x) = G(x)′Ω−1(x),

and

m (w,β) = G(x)′Ω−1(x)u (w,β) .

Chamberlain (1987) assumes that x has a multinomial (finite discrete) distribution. Then the

conditional moment restrictions are equivalent to a set of unconditional moment conditions. Using

the optimal weight matrix choice, we can then derive the asymptotic lower bound for the GMM

estimator using these unconditional moment conditions. We then argue that this bound applies to

the conditional moment restriction case since an arbitrary distribution for x can be approximated

as well as desired by a multinomial distribution.

Suppose {τ1, · · · , τJ} is the support for x, where πj = P (x = τ j) for j = 1, · · · , J . Note that

E [1 (x = τ j)u (w,β)] = E [1 (x = τ j)E [u (w,β) |x]]

= P (x = τ j)E [u (w,β) |x = τ j ]

= πjE [u (w,β) |x = τ j ] .

So E [u (w,β0) |x] = 0 iff E [u (w,β) |x = τ j ] = 0 for j = 1, · · · , J iff E [1 (x = τ j)u (w,β)] = 0

for j = 1, · · · , J , where iff means "if and only if".
If h (x) = (1 (x = τ1) , · · · , 1 (x = τJ))′, then let m (w,β) = h (x)⊗ u (w,β) (so E [m (w,β)] =

0), where ⊗ is the Kronecker product which is defined for two matrices AM×N = (aij) and BK×L =
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(bij) as

A⊗B =


a11B · · · a1NB
...

. . .
...

aM1B · · · aMNB

 .

Using the optimal weight matrix, the best asymptotic variance for the GMM estimator using these

(unconditional) moments is
(
G′Ω−1G

)−1, where

G =
∂

∂β′
E [m (w,β0)] = E

[
h (x)⊗ ∂

∂β′
u (w,β0)

]
=


π1E

[
∂
∂β′

u (w,β0)
∣∣∣x = τ1

]
...

πJE
[

∂
∂β′

u (w,β0)
∣∣∣x = τJ

]

Js×k

and

Ω = E
[
m (w,β0)m (w,β0)′

]
= E

[
h (x)h (x)′ ⊗ u (w,β)u (w,β0)′

]
= E

[
diag (h (x))⊗ u (w,β0)u (w,β0)′

]
= diag

(
π1E

[
u (w,β0)u (w,β0)′

∣∣x = τ1

]
, · · · , πJE

[
u (w,β0)u (w,β0)′

∣∣x = τJ
])
.

So

(
G′Ω−1G

)−1

=


J∑
j=1

πjE

[
∂

∂β′
u (w,β0)

∣∣∣∣x = τ j

]′
E
[
u (w,β0)u (w,β0)′

∣∣x = τ j
]−1

E

[
∂

∂β′
u (w,β0)

∣∣∣∣x = τ j

]
−1

= E

{
E

[
∂

∂β′
u (w,β0)

∣∣∣∣x]′E [u (w,β0)u (w,β0)′
∣∣x]−1

E

[
∂

∂β′
u (w,β0)

∣∣∣∣x]}−1

= E
[
G(x)′Ω(x)−1G(x)′

]−1
.

Since the multinomial distribution can closely approximate any distribution for x, this is the bound

for the conditional moment restriction model. Hence A(x) is in fact optimal as given above.
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