Chapter 7. Endogeneity and Instrumental Variables*

This chapter covers endogeniety and the two-stage least squares estimation. Related materials
can be found in Chapter 3 of Hayashi (2000), Chapter 20 of Ruud (2000), Chapter 4 of Cameron
and Trivedi (2005), Chapter 5 of Wooldrige (2010), and Chapter 12 of Hansen (2022).

1 Endogeneity

In linear regression,
yi = X8 + u;, (1)

where y; is the dependent variable, x; € R¥ is a vector of explanatory variables, 3 contains the
unknown coefficients, u; is the unobservable component of y;, and E[u;|x;] = 0. A regression is
designed to carry out statistical inferences on causal effects of x; on y;. But in practice, it often
happens that x; and wu; are correlated. When E[x;u;] # 0, there is endogeneity. In this case, the
LSE will be asymptotically biased. Note here that 3 in is the structural parameter rather
than the linear projection coefficient of y on span (x) since from Chapter 2 we can always find a
B such that E[x;u;] = 0. The analysis of data with endogenous regressors is arguably the main
contribution of econometrics to statistical science. There are five commonly encountered situations

where endogeneity exists.

(i) Simultaneous causality. For example, do higher hotel prices decrease occupancy rates? Do
Cigarette taxes reduce smoking? Does putting criminals in jail reduce crime? Example
1 below shows the simultaneous causality induced by a system of equations. Solutions to
this problem include using instrumental variables (IVS)D and designing and implementing a
randomizied controlled trial (RCT)E| in which the reverse causality channel is nullified (see

references cited in the Introduction). The first solution will be discussed in this chapter.
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'See Stock and Trebbi (2003) for who invented instrumental variable regression. The current evidence shows
that both the father Philip Green Wright and his oldest son Sewall Green Wright contributed to this remarkable
identification idea. Philip Wright (1861-1934) was an American mathematician and economist at Lombard College
(now defunct). He was also a special expert at the United States Tariff Commission. Sewall Wright (1889-1988)
was an American geneticist known for his influential work on evolutionary theory and also for his invention of path
analysis (a key step for causal effects evaluation). He worked at the Department of Zoology at the University of
Chicago until retirement in 1955 and then moved to the University of Wisconsin—-Madison.

?Banerjee, Abhijit (1961-, MIT), Esther Duflo (1972-, MIT) and Michael Kremer (1964-, Harvard) won the Nobel
Prize in 2019 because they successfully applies RCT to improve our ability to fight global poverty.



(ii) Omitted variables. For example, in the model on returns to schooling, ability is an important
variable that is correlated to years of education, but is not observable so is included in the
error term. Solutions to this problem include using IVs, using panel data (see two chapters in
Handbook of Econometris, Chamberlain (1984) and Arellano and Honoré (2001), and some
popular books, Diggle et al. (2002), Arellano (2003), Pesaran (2015), Baltagi (2021), and
Hsiao (2022), for an introduction to panel data analysis), and using RCTs.

(iii) Errors in variables. This term refers to the phenomenon that an otherwise exogenous regressor
becomes endogenous when measured with error. For example, in the returns-to-schooling
model, the records for years of education are fraught with errors owing to lack of recall,
typographical mistakes, or other reasons. The basic solution to this problem is to use IVs (e.g.,
exogenous determinants of the error ridden explanatory variables, or multiple indicators of the
same outcome, i.e., repeated measurements) or auxiliary data-set that contains information
about the conditional distribution of the true variables given the mismeasured variables. See
the chapter in Handbook of Econometrics, Bound et al. (2001), and Chen et al. (2011)
for an introduction to measurement errors in survey data. A review of the commonly used
techniques in statistics can be found in Fuller (1987) and Carroll et al. (2006).

(iv) Sample selection. For example, in the analysis of returns to schooling, only wages for employed
workers are available, but we want to know the effect of education for the general population.
We will discuss how to handle such an endogeneity problem in Chapter 9; see Winship and
Mare (1992), Vella (1998) and Heckman (2008) for an introduction.

(v) Functional form misspecification. E[y|x] may not be linear in x. This problem can be handled
by nonparametric methods. See related chapters in Handbook of Econometrics, Hardle and
Linton (1994) (or its extended version Hirdle (1990)), Chen (2007) and Ichimura and Todd
(2007), for an introduction.

Example 1 (Simultaneous Causality) Philip Wright (1928) considered estimating the elastic-
ity of butter demand, which is critical in the policy decision on the tariff of butter. In the economic
language, he considered a linear Marshallian stochastic demand/supply system. Define p; = In P,

and g; = In Q;, and the demand equation is
g = g + a1p; + uj, (2)

where u; represents other factors besides price that affect demand, such as income and consumer

taste. But the supply equation is in the same form as (@

qi = By + Bypi + vi, (3)

where v; represents the factors that affect supply, such as weather conditions (see, e.g., Angrist et

al. (2000)), factor prices, and union status. So p; and g; are determined "within" the model, and



they are endogenous. Rigorously, note that
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which are not zero. If a1 < 0 and 3; > 0, then Cov(p;,u;) > 0 and Cov(p;,v;) < 0. This is
intuitively correct: if a demand (supply) shifter shifts the demand (supply) curve right or u; > 0
(vi > 0), the price increases (decreases).

If we regress q; on p;, then the slope estimator converges to

Cov(pi,vi)  arVar(v) + B1Var(u;)

Cov(pi, q;) _ Cov(p;, u;) _
Var(p;) Var(v;) + Var(u;)
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=01+ € (a1,54),
where the last equality is from substituting in the formulas of p; and q; in , so the LSE is neither
a1 nor By, but a weighted average of them. Such a bias is called the simultaneous equations bias.
The LSE cannot consistently estimate oy or 31 because both curves are shifted by other factors
besides price, and we cannot tell from data whether the change in price and quantity is due to a
demand shift or a supply shift. If u; = 0 (that is, the demand curve stays still), then the equilibrium
prices and quantities will trace out the demand curve and the LSE is consistent to oq P| Figure
illustrates the discussion above intuitively. The identification problem in simultaneous equations
dates back to Philip Wright (1915) and Working (1927).

From the discussion above, p; has one part correlated with u; (—allfﬁl) and one part uncorre-

lated with u; (allﬁm)' If we can isolate the second part, then we can focus on those variations in

p; that are uncorrelated with u; and disregard the variations in p; that bias the LSE. Take a supply

shifter z; (e.g., weather), which can be considered to be uncorrelated with the demand shifter u; such
as consumer’s tastes; then

Cov(zi,u;) =0, and Cov(z;, p;) # 0.
So Con )
ov(z, q;
Cov(zi,q;) = a1 - Cov(2i,p;) = p = ———22.
( 0 QZ) 1 ( 7 pz) 1 CO’U(Zi,pi)

A natural estimator is -
. Cov(z, q;)
] = —=< )
Cov(zi, pi)
which is the IV estimator implicitly defined in Appendix B of Philip (1928). Another method to

3Note that the supply curve is still not identifiable because essentially, only one point on the supply curve is
observed.
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Figure 1: Endogeneity and Identification by Instrument Variables

estimate a1 as suggested above is to run regression
¢ = ap + c1p; + Ui,
where p; s the predicted value from the following regression:

Di = Yo + V1% + 15

and u; = aq (p; — pi) + ui. It is easy to show that Cov(p;,u;) = 0, so the estimation is consistent.
Such a procedure is called two-stage least squares (2SLS) for an obvious reason. In this case, the

IV estimator and the 25LS estimator are numerically equivalent as shown in Exercise [10 below. O

Example 2 (Omitted Variables) Mundlak (196]/E| considered the production function estima-
tion, where the error term includes factors that are observable to the economic agent under study
but unobservable to the econometrician, and endogeneity arises when regressors are decisions made
by the agent on the basis of such factors.

Suppose that a farmer is producing a product using the Cobb-Douglas technology:

Qi = AZ ' (Li)¢1 : GXp(l/i), 0< ¢1 < 17 (5)

where Q; 1is the output of the ith farm, L; is a variable input (labor), A; represents an input that
is fized over time (e.g., soil quality), and v; represents a stochastic input (e.g., rainfall) which is
not under the farmer’s control. We shall assume that the farmer knows the product price p and

input price w, which do not depend on his decisions, and that he knows A; but econometricians do

4Yair Mundlak (1927-2015) was an agricultural economist at the Economics Department of the University of
Chicago. He contributed significantly to the early literature on the econometrics of panel data. His 1978 Econometrica
paper is cited in all relevant textbooks and in close to 1,000 articles.



not. The factor input decision is made before knowing v;, and so L; is chosen to maximize expected

profits. The factor demand equation is

1
w

L= (p) T 4By T (6)

so a better farm induces more labors on it. We assume that (A;,v;) is i.i.d. over farms, and A;
is independent of v; for each i. Therefore, B = Elexp(v;)| is the same for all i, and the level of
output the farm expects when it chooses L; is A; - (Li)‘bl - B.

Taking logarithm on both sides of (@, we have a log-linear production function:
log Q; = log A; + ¢, - log(L;) + v,

where log A; is an omitted variable. Equivalently, each farm has a different intercept. The LSE of

. Cov(log Q;,log(L; Cov(log A;,log(L;
¢, will converge to éaf(lcgg(fg) D — o1+ V('arg(log(L%g) )

between log A; and log(L;) as shown in (@ Figure @ shows the effect of log A; on ¢, by drawing

, which is not ¢, since there is correlation

E [log Q|log L,log A] for two farms. In Figure @ the OLS regression line passes through points AB

log Q1—log Q2 . D-C D _ log A1—log Ao
log L1 —log Lo ’ but the true ¢1 (&) log L1— logLy ~ logLi—log Lo’

log Lo *
which is the bias introduced by the endogeneity of log A;.
Rigorously, let u; = log(A;) — E[log(4;)], and ¢y = E[log(A;)]; then Elu;] = 0 and A; =
exp (¢g + w;). (@ and (@ can be written as

with slope Their difference is Tog L?:

log Q; = ¢g + ¢y - log(L;) + vi + uy, (7)

1
L=

where By = ﬁ (d)o + log(B¢;) — log (%)) is a constant for all farms. Now, it is obvious that

log L; = By +

u;, (8)

log L; is correlated with (v; + u;). Thus, the LSE of ¢, in the estimation of log-linear production

function confounds the contribution of u; with the contribution of labor. Actually,

51,01:5 51,
because substituting (@ mto (@, we get
log Qi = ¢g — (1 — ¢1)By + 1 - log(L;) + v;.
The lesson from this example is that a variable chosen by the agent taking into account some

information unobservable to the econometrician can induce endogeneity. [

Exercise 1 Suppose the farmer could observe v; as well as A; before deciding on labor input,
how does the demand equation for labor (@ change? Show that log Q; and log(L;) are perfectly

correlated.
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Figure 2: Effect of Soil Quality on Labor Input

Example 3 (Errors in Variables) The cross-section version of M. Friedman’s (1957) Perma-
nent Income Hypothesis can be formulated as an errors-in-variables problem. The hypothesis states

that "permanent consumption” C} for household i is proportional to "permanent income” Y;*:
Cy = kY] with 0 <k < 1.
Assume both measured consumption C; and income Y; are contaminated by measurement error:
Ci=Cl+c¢ andY; =Y + y,
where ¢; and y; are independent of C; and Y;* and are independent of each other; then

C; = kY; 4+ u; with u; = ¢; — ky;. (9)

2
‘ 1 2 Byic) B[]
It is easy to see that E [Yiu;] = —kE [yz] < 0, so the LSE of k converges to BN = E[(Yi*)Q]+E[’y?]

k, that is, the OLS using measured data underestimates k. Fssentially, the effect of the measurement

error in the covariate ends up being "netted out” in the error term, so the mismeasured covariate
is negatively correlated with the error term, which makes the OLS underestimate the slope. More
intuitively, with measurement error, the covariate is more spreading, which makes the OLS estimate
of slope smaller. Taking expectation on both sides of (9), we have E[C;] = kE[Y;]+ Elu;). Soz=1
is a valid 1V if Ely;] = El¢;] = 0 and E[Y*] = E[Y;] # 0.. The IV estimation using z as the



lof

mstrument s which is how Friedman estimated k.

?7

Actually, measurement errors are embodied in regression analysis from the beginning. Galton
(1889/E| analyzed the relationship between the height of sons and the height of fathers. Specifically,
suppose the true model is

S; = a+ BF +uy, (10)

where S} and F;* are the heights of sons and fathers, respectively. Even if S should perfectly match
F* (that is, ag = 0, By = 1 and u; = 0), the OLS estimator would be smaller than 1 if there are
environmental factors or measurement errors that affect S} and F;. Suppose the observables are
Si = S +si, and F; = F + f;, where s; and f; are the mean-zero environmental factors; then our
regression becomes

Si=a+ [ (Fi— fi)+si=a+ BF + s — Bfi.

; ; Cov(F;,S;) _ Var(Fy) Var(Fy) .
The OLS estimator of 8 will converge to ‘O/ZT(Fi) = VarF ) Var() < 1, where Var (T Var(z) = P

is called the reliability coefficient or Heritability coefﬁcientﬂ In Galton’s analysis, this coefficient is
about 2/3. Similarly, the OLS estimator of a converges to (1 — p) E[F;] # 0 (why?). The regression
line and the true line intersect at E[F;], and both are shown in Figure @ Galton wrote "the average
regression of the offspring is a constant fraction of their respective mid-parental deviations" and
termed this phenomenon as "regression towards mediocrity".

Finally, note from Ezxercise 2 in Chapter 5 that measure errors in y; will not affect the consis-

tency of the LSE but may affect its asymptotic distribution. [

2 Instrumental Variables

We call the structural equation or primary equation. In matrix notation, it can be written as
y=Xg8+u. (11)

Any solution to the problem of endogeneity requires additional information which we call instru-
mental variables (or simply instruments). The label “instrumental variables” was introduced by
Reiersgl (1945). The [ x 1 random vector z; is an instrument for (1)) if £ [z;u;] = 0. This condition
cannot be tested in practice since u; cannot be observed.

In a typical set-up, some regressors in x; will be uncorrelated with u; (for example, at least the

5Sir Francis Galton (1822-1911) was an English statistician. In addition to inventing the concept of regression, he
is credited with introducing the concepts of correlation, the standard deviation, and the bivariate normal distribution.
He was Charles Darwin (1809-1882)’s half-cousin, sharing the common grandparent Erasmus Darwin, and was also
the advisor of Karl Pearson and the inventor of fingerprinting.

6Since S; and F; have the same distribution, the LSE converges to S25ofi) — Cov(Si,Fy)

Var(Fy)  — \/Var(F;)Var(s;) which is the

correlation between S; and F; and is less than 1.



——Regression

E[F

(1 - p)E[F]

E[F] F

Figure 3: Relationship Between the Height of Sons and Fathers

intercept). Thus we make the partition

; k
X; = X1 1 , (12)
x2; | ko
where F [x1;u;] = 0 yet E [x2;u;] # 0. We call x1; exogenous and xo; endogenous. By the above

definition, x1; is an instrumental variable for , so should be included in z;, giving the partition

i = ( . ) " (13)
Z2; la

where x1; = z1; are the included exogenous variables, and z9; are the excluded erogenous variables.
In other words, zy; are variables which could be included in the equation for y; (in the sense that
they are uncorrelated with u;) yet can be excluded, as they would have true zero coefficients in the
equation which means that certain directions of causation are ruled out a priori.

The model is just-identified if | = k (i.e., if Iy = ko) and over-identified if | > k (i.e., if Iy > ko).
We have noted that any solution to the problem of endogeneity requires instruments. This does

not mean that valid instruments actually exist.

3 Reduced Form

The reduced form relationship between the variables or "regressors" x; and the instruments z; is

found by linear projection. Let

'=F [ziz;]f E [zix']

1



be the [ x k matrix of coefficients from a projection of x; on z;, and define
V; = X; — I‘/ZZ'

as the projection error. Then the reduced form linear relationship between x; and z; is the instru-

mental equation

X; = F,Zi + v;. (14)
In matrix notation,

X=ZI'+V, (15)
where V is a n x k matrix. By construction, F [z;v]] = 0, so is a projection and can be
estimated by OLS:

X = ZT +V,
r = (zz) ' (ZX).

Substituting into (11]), we find

y=ZT'+V)B+u=Z\x+e (16)
where A =T'3 and e = u+ V3. Observe that

E[ze] = E [zv'] B+ E [zu] = 0. (17)
Thus is a projection equation and may be estimated by OLS. This is

y = ZX—{—/é,
A = (Zz)7H ().

The equation (|16) is the reduced form for y. and together are the reduced form equations

for the system

y = ZX+e,
X = ZI'+V.

As we showed above, OLS yields the reduced-form estimates (3\, f‘)

The system of equations

y = XB+u,
X = ZI'+V,

are called triangular (or recursive) simultaneous equations because the second part of equations



do not depend on y. This system of equations rules out full simultaneity and includes the same

information as an "incomplete" linear system
y=XB+u,E|[Z'u] =0.

However, in a nonlinear system, they are not equivalent in general.

To see how a recursive model can originate in practice, consider the return-to-schooling example
again. Our statement of the example follows from Imbens and Newey (2009). Let Y denote
individual lifetime earnings and X denote level of education, where we use the capital letters
such as X to denote random variables and the corresponding lower case letters such as x denote
the potential values they may take. The value of X is chosen first, as a function of expected
but not of realized Y. The value of Y is determined next, as a function of X, as well as of other
observable and unobservable variables. In the simple version of such a model, the typical individual’s
lifetime earnings are a function of the level of education and productivity (or ability), U. Although
productivity is unobserved to the agent at the time of deciding the length of education, the value
of a signal, V', correlated with productivity, U, is known to the agent at such time. A measure,
Z, determining the cost of a unit of education is observed as well. Denote the cost of education
by the value of a function ¢ (X, Z). The agent chooses X to maximize expected lifetime earnings

given the signal, V', and the cost of education:
X =argmax {E[my (z,U)|Z,V] —c(x,2)}.
xT
The solution is then a function, ms, of Z and V. The recursive model becomes

Y:ml(X,U),

X =ms(Z,V). (18)

If m1 and mo are linear, then we obtain the recursive linear model above. If X is an input and
Y is output, then this example is related to Example [2| in Section |1} see Mundlak (1963) for more

discussion.

Exercise 2 (i) Show that E [viu;] # 0. (i) Suppose k = ko = | = 1, and all variables are

demeaned. Can the correlation between u; and v; be 17

Exercise 3 Suppose y = XB +u and X = ZI' + V, where E[u|Z] = 0 and E[V|Z] = 0 but
E[V'u] # 0. Derive the plim of E’OLS- When T = 0, what will plim(,@OLS> degenerate to?

Exercise 4 In the reduced form between the regressors X; and instruments z; , the parameter

T is defined by the population moment condition
) [ziv;] =0.
Show that the MoM estimator for T is T' = (Z'Z) " Z'X.

10



4 Identification

The structural parameter 3 in triangular simultaneous equations relates to (A, I') by A = I'3. This
relation can be derived directly by using the orthogonal condition F [z; (y; — x;3)] = 0 which is
equivalent to

E[zy:] = E [z:x}] B. (19)

Multiplying each side by an invertible matrix E [ziz;]fl, we have A = I'3. The parameter is

identified, meaning that it can be uniquely recovered from the reduced form, if the rank condz’tz’mﬂ
rank (T') = k (20)

holds. Intuitively, the rank condition requires that z can perturb x in all directions. This condition
can be tested (think about the case k = 1); see, e.g., Cragg and Donald (1993, 1996, 1997), Robin
and Smith (2000), Kleibergen and Paap (2006) and Chen and Fang (2019). If rank(FE [z;z}]) = !
(this is trivial), and rank(E [z;x}]) = k (this is crucial), this condition is satisfied. Assume that
holds. If I = k, then 8 = T~!A. If | > k, then for any A > 0, 8 = (I'AT) 'TVAX. If
is not satisfied, then 3 cannot be uniquely recovered from (A, T'). Note that a necessary (although
not sufficient) condition for is the order condition | > k. Since Z and X have the common
variables X, we can rewrite some of the expressions. Using and to make the matrix
partitions Z = [Z1, Zs] and X = [Z1, X3], we can partition T as

r— T T ) I T2 \ k1
I'yp Tao 0 Ty la
k1 ko

(15) can be rewritten as

X1 = 7y
Xo = ZhI'g + ZoIl'9s + Vo

B is identified if rank(I') = k, which is true if and only if rank(I's2) = ko (by the upper-diagonal
structure of I'). Thus the key to identification of the model rests on the ls x ko matrix Tgo.
Alternatively, rewrite (16]) as

Yy =X1A1 +Za X2 + €,

where A1 = B + I'1285 and Ay = T'923,. So B, can be identified if and only if rank(I'y2) = ko.
If B, can be identified, then 3; can be identified as 3; = A — I'1235. Thus the key identification

condition is indeed rank(I'a2) = ko.

"The precise condition should be rank([A,I']) =rank(T") = k. The first equality guarantees the existence, and the
second guarantees the uniqueness. Usually, the existence is assumed, so we only write out the second equality.

11



Exercise 5 In the structural model

y = XB+u,
X = ZI'+V,

with T' I X k, | > k, we claim that B is identified (can be recovered from the reduced form) if
rank(I') = k. Ezplain why this is true. That is, show that if rank(T') < k then B cannot be
identified.

Example 4 (What Variable Is Qualified to Be An IV?) It is often suggested to select an in-

strumental variable that is
(1) uncorrelated with wu; (ii) correlated with endogenous varz’ablesﬁ (21)

(i) is the instrument exogeneity condition, which says that the instruments can correlate with the
dependent variable only indirectly through the endogenous variable. (ii) intends to repeat the in-
strument relevance condition which says that X1 and the predicted value of Xa (from the regression
of Xg on Zy and X1) are not perfectly multicollinear; in other words, there must be "enough" extra
variation in X9 that can not be explained by x1. Such a condition is required in the second stage
regression. Scrutinizing 18 1mportant to practioners.

Check the following example with only one endogenous variable:

y = x1f+x2fs +u,
E[ziu] = 0, El[zou] # 0, Cov(xy1,z2) # 0.

One may suggest the following instrument for xo, say, z = x1 + €, where € is some computer-
generated random variable independent of the systemﬂ Now, E [zu] = 0 and Cov (z, x2) = Cov(z1,x2) #
0. It seems that z is a valid instrument, but intuition tells us that it is NOT, since it includes the
same useful information as x1. What is missing? We know the right conditions for a random

variable to be a valid instrument are

Ezu] = 0, (22)
To = X171+ 2Y9 + v with v # 0.
In this example, xo = 217, + 272 +v = 1 (V1 + 72) + (€72 +v), Vg is not identified! Actually, from
Ezercise [0, v can be identified as 0.

The arguments above indicate that 1s not sufficient. Is it necessary? The answer is still
NO! The question can be formulated as follows: in (@, can we find some z such that

Yo # 0 but Cov(z,x2) =07

80Of course, we also require the instrument to be excluded from the outcome equation.
YSWLOG, assume F [z1] = E [¢] = 0 so that E [zu] = Cov (z,u).

12



Observe that Cov(z,x2) = Cov(z, 171+ 279+ v) = Cov(z,x1)y; + Var(z)y,, so @f%z(:)l) = —1—?,
this could happen. That is, although z is not correlated with xs, it is correlated with 1, and x1 is
correlated with xo. In mathematical language, Cov(z,x1) # 0, v; # 0. In such a case, z is related
to xo only indirectly through 1. If we assume Cov(z,x1) = 0, or v; = 0, then the assumption
Cov(z,xz2) # 0 is the right condition for z to be a valid instrument. So the right condition should
be that z is partially correlated with xo after netting out the effect of 1.

In general, a necessary condition for a set of qualified instruments is that at least one (need not
be the same one) instrument appears in each of the first-stage regression. Here "appear” means the
coefficient of the variable is not zero. When k = 1, each instrument must appear in at least one

endogenous regression. [
Exercise 6 Show that the true value of 9 in (@ is zero.

Given the cautions in the above example, how to select instruments? Generally speaking, good
instruments are not selected based on mathematics, but based on economic theorym In the return
to schooling example, the usual practice in the literature is to seek instruments which proxy, or are
correlated with, costs of schooling. For example, Angrist and Krueger (1991) propose using quarter
of birth as an IV for education in the analysis of returns to schooling because of a mechanical
interaction between compulsory school attendance laws and age at school entryE Butcher and
Case (1994) use the sex of siblings, in particular whether a girl has any sisters, as an IV to estimate
the schooling return to women because the gender of siblings may affect the cost of investing in a
child’s human capital through the existence of borrowing constraints if there are exogenous gender
differences in the return to human capital;lz Card (1995) uses college proximity as an instrument to
identify the returns to schooling, noting that living close to a college during childhood may induce
some children to go to college but is unlikely to directly affect the wages earned in their adulthood;
Blundell et al. (2005) use three instruments - a dummy variable for whether the parents reported
an adverse financial shock at either age 11 or age 16 of the child, a dummy variable for whether the

child’s teacher ranked the parent’s "interest in education" high or low when the child was 7, and

"Murray (2006) provides nine strategies to justify the validity of an instrument.

L Children born earlier in the year enter school at an older age (children turning six by January 1 can enter the
primary school on September 1) and are therefore allowed to drop out (on their 16th or 17th birthday) after having
completed less schooling than children born later in the year. The exclusion condition may fail because children
born in the first quarter are a few months older than other children, and at vey young ages a difference of a few
months might be an advantage in performance in school. This indicates that the estimator based on this IV may
underestimate the return to schooling.

12 According to Butcher and Case, in the presence of borrowing constraints and assuming that boys receive a higher
return to each level of schooling, "we should expect to see not only that boys receive more education, but also that
the presence of sons reduces the educational attainment of daughters." They also considered other justifications of
this IV, e.g., the costs of raising girls are different from boys. On the contrary, they find that girls who have any
sisters, conditional on the number of siblings, have lower school attainment than do girls with no sisters; on the other
hand, the school attainment of boys is found to be unrelated to gender composition. This may be because parents
prefer a "gender mix".
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the number of older siblings of the childEHﬂ In development economics, Acemoglu et al. (2001)
use the mortality rates (of soldiers, bishops, and sailors) as an IV to estimate the effect of property
rights and institutions on economic development. In political economics, Levitt (1997) uses the
timing of mayoral and gubernatorial elections as an IV to identify the causal effect of police on
crime by arguing that after controlling some economic variables such as state unemployment rates
and spending on public welfare or education this IV does not affect the crime rate but will affect
the number of police officers.

As emphasized in Deaton (2010 exogeneity is different from externality. Exogeneity of a
variable means that it is orthogonal to the error term, while externality of a variable means that
it is not set or caused by the variables in the model. The former is not guaranteed by the latter.

The instruments mentioned above are external, but their exogeneity still need careful arguments.

Exercise 7 Consider the linear demand and supply system:

Demand: ¢i = Qo + Q1p; + 2y + U,
Supply: ¢ = By + Bipi + Baw; + v;.

where income (y) and wage (w) are determined outside the market. In this model, are the parameters
identified?

5 Estimation: Two-Stage Least Squares

If | = k, then the moment condition is F [z; (y; — x;3)] = 0, and the corresponding IV estimator is

a MoM estimator:
Brv = (Z’X)il (Z'y).

Another interpretation stems from the fact that since 8 = I'"'A, we can construct the Indirect
Least Squares (ILS) estimator of Tinbergen"| (1930) and Haavelmd'"| (1943):

~ o~

B=T"2=((z2)" z’x)f1 ((zz)"'zy) = (2%) " (2y).

!3This variable can take three values in the sample, 0, 1 and 2. It is argued that number of older siblings is more
relevant to schooling than number of total siblings.

" Other popular instruments in the return to schooling analysis include the local unemployment rate at age 18, a
state-level tuition variable, the dummy for residence in an urban area at age 18, parental education (e.g., dummies
for attending college or not), etc.

15 Angus Deaton (1945-) is a British-American economist, Dwight D. Eisenhower professor at Princeton University,
and 2015 Nobel Prize winner. He is best known for his work on consumption theory, welfare and inequality. In the
consumption theory, Deaton and Muellbauer (1980) developed the Almost Ideal Demand System (AIDS).

16 Jan Tinbergen (1903-1994) was a Dutch economist who shared the first Nobel Prize in Economics with Ragnar
Frisch in 1969. He is widely considered to be one of the most influential economists of the 20th century and one of
the founding fathers of econometrics. It has been argued that the development of the first macro econometric models,
the solution of the identification problem, and the understanding of dynamic models are his three most important
legacies to econometrics.

"Trygve M. Haavelmo (1911-1999) was a Professor at the University of Oslo. He won the Nobel prize in 1989
"for his clarification of the probability theory foundations of econometrics and his analyses of simultaneous economic
structures" especially in Haavelmo (1943, 1944)
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Exercise 8 In the linear model,

yi = xB+u;,
Suppose 0? = E[u?|x;] is known. Show that the GLS estimator of B with the weight matriz
diag{al_Z, e ,O’T_LQ} can be written as an IV estimator using some instrument z;. (Find an ex-

pression for z;.)

Exercise 9 Suppose y = zf+u, x =+ A"tu, and z = v+ e, where €,u and v are independent.
Find the probability limits of BOLS and Blv' Show that if v =0, %Z?:l vig; = 0, and o2 is large,

the two probability limits are the same.

When [ > k, the two-stage least squares (2SLS) estimator can be used. It was originally
proposed by Theil (1953) and Basmann (1957), and is the classic estimator for linear equations
with instruments. Given any k instruments out of z or its linear combinations can be used to
identify 3, the 2SLS chooses those that are most highly (linearly) correlated with x. Namely, it is

the sample analog of the following implication of E[zu] = 0:
0=F[E*[x|z]u] = E [I'zu| = E [I"z(y — x'8)] , (23)

where E* [x|z] is the linear projection of x on z. Replacing population expectations with sample
averages in yields

~ ~ -1

Basrs = (X/X> X'y,
where X = ZT' = PX with T' = (Z'Z) * (Z'X) and P = Py = Z (Z'Z) ' Z'. In other words, the
2SLS estimator is an IV estimator with the IVs being X;.

Exercise 10 Show that if | = k, then BQSLS = BIV, that s, no matter we use X; or z; as IVs, we

get the same results.

The source of the name "two-stage" is from Theil (1953)’s formulation of 2SLS. From (17)),
0 = FE [E*[x|z](u+V'8)] = E[(Tz) (y — 2TB)],

i.e., B is the least squares regression coefficients of the regression of y on fitted values of Iz, so
this method is often called the fitted-value method. The sample analogue is the following two-step

procedure:
o First, regress X on Z to get X.

e Second, regress y on X to get

-1

Bosis = (X'X) X'y = (X'PX) ' (X'Py). (24)
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Exercise 11 Show that B2SLS satisfies

j— ~ 1
(S — Aele’l) ~ =0,
—Basis
where e; = (1,0,---,0) is the first (k + 1) x 1 unit vector, S = (y,X)'P(y,X), and X\ =
(1, —B;SLS)g(l, —BQSLS)'. Further show that when the model is just identified, X = 0 and S is

singular.

Another closely related formulation of 2SLS is Basmann (1957)’s version of 2SLSE It is moti-
vated by observing that F[zu] = 0 implies

0= E* [ulz] = E* [yl] - E*[x|2) B, (25)

SO

~ ~,~\ 1 ~

Basrs = (XIX) X'y.
Equivalently, B2SLS = argming (y — X3)' Pz (y — X3), which is a GLS estimator. Intuitively,
Pz (y — X3) should converge in probability to zero because E[zu] = 0, so we try to find some 3
value such that the length of Pz (y — X3) is as close to zero as possible. Another algebraically
equivalent formulation of 2SLS is the control function formulation of Telser (1964)@

3 N1
?2SLS _ (W'W) W'y, (26)
PasLs

where W = [X,V]. This estimator is the OLS estimator of y on x and v. This construction

exploits another implication of F[zu] = 0:
E*lulx, 2] = E*[ul"z + v, 2] = E" [u|v,2] = E*[ulv] = v'p

for some coefficient vector p, where the third equality follows from the orthogonality of both error

terms u and v with z. So
E*lylx,z] = E*[xX'B + u|x,z] = X'8 + E*[u|x,z] = X'B + v/p.

Thus, this particular linear combination of the first-stage errors v is a function that controls for

the endogeneity of the regressors x; one can think of v as proxying for the factors in u that are

"SRobert L. Basmann (1926-) is an American econometrician. He earned a Ph.D. in economics from Iowa State
University in 1955, and was a Professor of Econometrics at Texas A&M University until his retirement. He served
as a lecturer at Binghamton University after his retirement.

1t is difficult to locate a definitive reference to the control function version of 2SLS. Dhrymes (1970, equation
4.3.57) formally discussed this formulation. Heckman (1978) attributed it to Telser (1964). Lester G. Telser (1931-)
is an American economist and Professor Emeritus in Economics at the University of Chicago. He received his Ph.D.
from the University of Chicago in 1956 under the supervision of Milton Friedman. His first name is an anagram of
his surname.
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correlated with x. From the FWL theorem, BZSLS is the effect of the net variation in x on y
after excluding the variation in v, while the net variation in x comes from z because x = I’z + .
Basmann (1957)’s formulation and the control function formulation of 2SLS can be extended
to more general (especially nonlinear) models discussed in Chapter 1, but the fitted-value method
seems hard to extend; see Blundell and Powell (2003).

Exercise 12 (i) Show that E* [u|v,z] = E*[u|v] if E[zu] = 0 and E[zv'| = 0. (ii) Show that (26)
generates the same formula of B2SLS as ,

Exercise 13 Take the linear model
yi = ;8 + ug, Elug|a;] = 0,
where x; and (B are scalars.

(i) Show that Elz;u;] = 0 and E[:U?ul] =0. Isz; = (:ri,x%)’ a valid instrumental variable for

estimation of 3¢

(ii) Define the 2SLS estimator of B, using z; as an instrument for x;. How does this differ from
OLS?

Exercise 14 Suppose y = m(x) + u, E[xu] # 0 and E[zu| = 0.
(i) Derive the probability limit of BQSLS.

(ii) Is BQSLS is the best linear predictor of m(x) in the sense that

plim (BQSLS) = arg mﬁinE [(m(x) — X/B)2:| ?

It is useful to scrutinize the projection X and . First, X. Recall that Z = [X1,Zs] and
X = [X1,X2], so
X = [PX;, PXs] = [X1, PXs] = | X1, %],
since X; lies in the span of Z. Thus in the second stage, we regress y on X; and XQ. So only the

endogenous variables Xo are replaced by their fitted values:
Xy = Z1T1s + ZoT'a.

Note that as a linear combination of z, X5 is not correlated with « and it is often interpreted as the
part of x5 that is uncorrelated with u. Second, v. In the control function formulation of 2SLS, only
vV = X2 — Xo should be added to the regression since vi = x; — X; = x1 — x1; = 0 (otherwise, the
multicollinearity problem would happen). xg = I'|52z1 +I')529 + vy implies vo = xo —IVj5z1 — o2,
so the rank condition that rank(I'a2) = ko guarantees that there is separate variation in vg from

! - .
x = (z),%})" in the regression of y on x and vj.
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Exercise 15 In the structural model

y = Xi168;+ X285+,
Xy = XyI'ig+ZoT92 +V,

~ -1
(i) show that By 9515 = (X'ZPZQLXQ) X’ZPZQLy, where Zy = Mx, Zo; (i) Given that x1; are the
included exogenous variables with E[x1;u;] = 0, does X U equal 07 where u =y — XB25LS; (i13)

Does B4 9515 equal B1 o157

Example 5 (Wald Estimator) The Wald estimator is a special IV estimator when the single

instrument z is binary. Suppose we have the model

Yy = 60+Blm+u) COU($7U)7£07
T = Yot+Y12+0.

The identification conditions are
Cov(z,z) #0,Cov(z,u) = OH (27)

From Ezxercise the IV estimator is

If z is binary that takes the value 1 for my of the n observations and 0 for the remaining ng

observations, then Bl 18 equivalent to

Y1 — Yo
T1 —fo7

/BWald =

where Yy, is mean of y across the ny observations with z = 1, Yy, is the mean of y across the ny

observations with z = 0, and analogously for x. Why?

n
Svizi — vz 2 Wiz —0z) + Y (Yizi — Y%)
=

g - = zi=1 2;=0
1 B S B 3 ;— T ¥ . . .
2 Tz — TZ zi2=1 (wizi — Tz;) + ZZZ:O (wi2; — Tz;)
1=
SN iz —yz) /o1
= = _ 7Y _ Y%7 Y
Z («Tizi — EZZ‘) /nl T —T T — 507
zi=1

2Tn view of Example 4, why is Cov(z,x) # 0 the right identification condition? This is because 21 = 1 in this
example so that v, = Cov(z,z)/Var(z); as a result, Cov(z,z) # 0 is not only necessary but also sufficient for
identification.
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Figure 4: Intuition for the Wald Estimator in the Linear Demand/Supply System

where the last equality is from y = %. This estimator is called the Wald estimator first

proposed in Wald (1940) and converges in probability to

Elylz=1] - Elylz = 0]
Elz|z=1] - Ez|z =0]

(28)

Note that the numerator and denomator of (@ are exactly the slope coefficients in the reduced

form equations:

Yy = d+Az+te,
T = Yot+712+0v,

so the form of ﬁwald 18 a direct application of ILS. A simple interpretation of this estimator is to
take the effect of z on y and divide by the effect of z on x. Figure[{] provides some intuition for the
identification scheme of the Wald estimator in the linear demand/supply system - the shift in p by

z devided by the shift in q by z is indeed a reasonable slope estimator of the demand curve. [J

The Wald estimator has many applications. In Card (1995), y is the log weekly wage, x is years
of schooling S, and z is a dummy which equals 1 if born in the neighborhood of an university and 0
otherwise. In studying the returns to schooling in China, Giles et al. (2003) used a dummy indicator
of living through the Cultural Revolution or not as z. Angrist and Evans (1998) use the dummy of
whether the sexes of the first two children are the same, which indicates the parental preferences
for a mixed sibling-sex composition, (and also a twin second birth) as the instrument to study the
effect of a third child on employment, hours worked and labor income. Hearst et al. (1986) and

Angrist (1990) use the Vietnam era draft lottery as an instrument for veteran status to identify the
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effects of mandatory military conscription on subsequent civilian mortality and earnings@ Imbens
et al. (2001) use "winning a prize in the lottery" as an instrument to identify the effects of unearned

income on subsequent labor supply, earnings, savings and consumption behavior@

Exercise 16 Consider the single equation model
Yi = xif + ui,

where y; and x; are both real-valued. Let B denote the 1V estimator of B using as instrument a
dummy variable d; (takes only the values 0 and 1). Find a simple expression for the IV estimator
in this context and derive its probability limit. What is the difference between this probability limit
and the probability limit of the Wald estimator?

Exercise 17 (*) Suppose

y = Po+ bz +u, Cov(z,u)#0,
r = 70+71Z+U7E[u’2]:OaE[zv]zoa

where x is binary. Unless z is binary, E|x|z] cannot be a linear function. Suppose we run a Probit

regression in the first stage and get T = ® (5 + 712).

~ o~ o~ !/
(i) Show that if E[z|z] = ® (yo + 712), then B = (,80,61) based on regressing y on 1,T is consis-

tent.
(i) Show that if E[z|z] # ® (o + 712), then B based on regressing y on 1,7 is not consistent.

(iii) Show that if E[z|z] = ® (¢ + v12), plim(,@) is the same as the plim of the IV estimator using
(1,Z) as the instrumental variables, but if E[x|z] # ® (vo + v12), they are generally different.

(iv) Show that the IV estimator using (1,Z) as the instrumental variables is consistent, where T is

the linear projection of x on (1, z).

(Hint: if Blx|z] = ® (o +712), ¥ = Vg, 1) is consistent; otherwise, it is inconsistent.)

21See Heckman (1997) for a critique on the validity of this instrument. Suppose z # z is because = 0 although
z =1, i.e., draft evaders (x = 1 while z = 0, the volunteers, seem fine with exclusion although they may anticipate
high earnings gains from military service). If this is for medical reasons, or more generally reasons that make
these candidates ineligible to serve, then the exclusion assumption seems plausible. If, on the other hand these
are individuals fit but unwilling to serve, they may have had to take actions to stay out of the military that could
have affected their subsequent civilian labor market careers. Such actions may include extending their educational
career, or temporarily leaving the country. Note that these issues are not addressed by the random assignment of the
instrument.

22 A1l the samples bought lottery. « is the magnitude of the prize, while z is the indicator for winning the prize,
so E[z|z =0] = 0. y is the behavior (e.g., consumption) change before and after winning the prize. Imbens et al.
essentially assume the exogeneity of x, so z is not really required.
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6 Interpretation of the IV Estimator

In this section, we intend to answer two questions: (i) How to interpret the IV estimator (and the
2SLS estimator) in the projection language of Chapter 27 (ii) What is the IV estimator estimating

in a nonseparable model?

L
T
yor Pos(y)
zor&
o) R ‘
Pw(y) z PmJ_z('y)
u

Figure 5: Projection Interpretation of the IV Estimator

6.1 Geometric Interpretation of the IV Estimator

Figure[f|illustrates the geometric meaning of the IV estimator. For simplicity, we assume k = kg = 1
and [ = [, = 1; also, we discuss the population version of the IV estimator instead of the sample
version and denote plim(ﬁlv) as (. In this simple case, xf is the projection of y onto
span(z) along span™(z); this can be easily seen from x3,, = zE[zx] 1 E[2y] = P, .(y) (compare
to Px 1 z(y) in Section 4.1 of Chapter 2). Since z L w, this is also the projection of y onto span(z)
along u if dim (spcmj-(z)) = 1 as in the figure. In the figure, P, .(y) is very different from the
orthogonal projection of y onto span(x) - P.(y) = zE[z?| ' E[zy], because z is different from x
(otherwise, E[zu] # 0 since E[zu] > 0 in the figure). On the other hand, z cannot be orthogonal to
x in the figure (which corresponds to the rank condition); otherwise, P, .(y) is not well defined.
So z must stay between x and x, just as shown in the figure.

If there are more than one instruments, or [ > 1, then the 2SLS estimator first orthogonally
projects = onto span(z) to get Z in the figure, and then projects y onto span(zx) along span™(Z).
Now, span(z) determines the direction of Z. Also, y in the figure should be replaced by P, z(y) by
noting that P, z(y) = zE[zz] 'E[Zy] = 2E[22] 'E[ZP, (y)], where P, z(y) is the projection of

y on span (z,).
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6.2 What is the IV Estimator Estimating? (*)

In the linear model, the IV estimator is estimating 3, the constant effect of x on y. In a generally

nonseparable model (e.g., the equations , or x and y are both binary),

= m(x,u),

x = h(z,v),

the effect of x on y is heterogenous. What is the IV estimator estimating? This is an interesting
question. To be specific, consider the example of Angrist and Krueger (1991). In this example, z is
a dummy variable equal to 0 if born in the first quarter of the year and 1 otherwise, x = S is also a
dummy indicating high school graduates versus nongraduates, and y is the log weekly wage. Since
z is dummy, the IV estimator is the Wald estimator. To acknowledge the dependence of y on S,
we use y; to denote the log weekly wage with jth level of schooling, j = 0,1, and to acknowledge
the dependence of S on z, we use S; to denote the schooling level when z =4, ¢ = 0, 1.
Now, S =2-51+ (1 —2)- S, and y = 3o + (y1 — y0)S. The numerator of

Elylz =1] - Efylz = 0]
= Elyo+ (y1 —y0)S1lz = 1] = Eyo + (y1 — y0)Solz = 0]
= Elyo+ (y1 — v0)S1] — E'lyo + (y1 — y0)So]
= E[(y1 —vo) - (51— So)]

where the second equality is from the exclusion restriction which requires that z affects y only
through S, e.g., the independence of z with (yo,y1, S0, 51) can guarantee this. Using the more

familiar notations, we write the system as

y = Bot+pBiS+u
S = Ytmnzto,

where y; = 4751 +u, and S; = vy +i-v; +v. If z is independent of (u,v), the second equality
follows.

We classify the possibility of S and Sy in the following table.

So
0 1
Yo—y =0 yo—v1=—(y1— %)
S Never-taker Defier
Y1 — Yo y1—y1=0
Complier Always-taker

Table: Causal Effect of z on y, ys, — ys, Classified by Sy and S}
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The name "complier" in the table is because this group of individuals always comply with their
assignment z; other names can be similarly understood. S; — Sy could be —1,0, or 1, where 0
indicates those whose schooling status is unchanged, and 1 and —1 could be similarly understood.

Therefore,

E(y1 — o) - (51— So)]
= BElly1—0) 81— So=1P(S1—So=1)+E[(y1 — o) [S1 = So = —1] P(S1 — Sp = —1).

If for everyone, we always have S;1 — .Sy = 1 or 0, that is, compulsory attendance laws cannot reduce

schooling, then
El(y1 —yo) - (S1—50)] = E[(y1 —90) [S1 — So = 1] P (51— S =1).

In the table, we exclude the possibility of defiers. This is the monotonicity assumption in Imbens
and Angrist (1994)@ The denominator of

E[S’ZZl]—E[S‘ZIO]:E[Sl—SO]:P(Sl—S():l),

so we have
81 - E(y1 — o) |S1 — So = 1].

In summary, if we interpret z as a random assignment and x as the realized treatment status
due to imperfect compliance, then plim (Bl) is the intention-to-treat (ITT) effect E [y|z = 1] —
E [y|z = 0] scaled by the proportion of individuals that are induced to change their treatment status
through the intented assignment.

plim <,§1> = FE(y1 —yo0)|S1 — So = 1] is called the local average treatment effect (LATE)
in Imbens and Angrist (1994), that is, the average treatment effect for those individuals whose
schooling decision is affected by the law. This set of individuals is only implicitly defined and
cannot be observed. Bl is called the local average treatment effect estimator. For different
z, this set of individuals is different, so different from the usual estimators (such as the LSE)
whose interpretations are invariant, the interpretation of the IV estimator depends on the choice
of instruments.

When S takes J > 2 levels, Angrist and Imbens (1995) show that

J
BlLij-E[yj—yj—ﬂSl >j>S)=p (29)
j=1
P(5125>50)  _ P(8<j|z=0)—P(5<j|2=1)

where w; = is the impact of z on the cdf of S at the level

Sy P(S12j>S80) ~  ElS|e=1]-E[S]z=0]
j. That is, B, is a weighted average of per-unit treatment effect. For the case with continuous S,

*Balke and Pearl (1997) refer to it as the "no-defiance" assumption, and Heckman and Vytlacil (2005) call it the
uniformity assumption because all individuals respond to z in the same direction.
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see Angrist et al. (2000).
Exercise 18 Show (29) in the case of J = 2.

Exercise 19 S; — Sy s called the compliance intensity which need not be 1, so in the expression
of B in , the sets of compliers {S1 > j > SO}}]:1 are overlapping subpopulations. Denote the
complier subpopulation with So = k and S1 =1 as Cx;, where k <1, k,1=0,1,---,J. Show that 3

can be re-expressed in terms of nonoverlapping subpopulations as

J-1
B=> " ww-Ely —ylCul,

k=0 >k

P(Cri)
i—o Lk (—k)P(Cri)

where wy; =

7 LIML (*¥)

Simultaneous equations models can be estimated by the MLE, which is called the full-information
maximum likelihood (FIML) estimator. Sometimes, we are only interested in the parameters
of a single equation. The corresponding MLE is called the limited-information maximum
likelihood (LIML) estimator. This estimator is proposed by Anderson and Rubin (1949, 1950)@
and is the ML counterpart of the 25LS estimator. The LIML estimator predates the 2SLS estimator
and is asymptotically equivalent to the 2SLS estimator given homoskedastic errors. The LIML
estimator is less efficient than the FIML estimator, but more robust (invariant to the normalization
used in a simultaneous equations system). This section is based on Section 8.6 of Hayashi (2000).

If only one-equation is of interest, we come back to the setup of Sections 2, 3 and 4. The

notations there can be applied in this case. Define

B _ 1 0 r - By T2 \ k1
(ko +1)% (ko +1)) By T, ) (x(ka+1)) 0 Ty ) I’

1 ko

.
o — <ﬂhﬁz’rw,rm>7w:(y@-,xa»’,w( )

V2

where y; collects endogenous variables. If v;|z; ~ N (0,X), then the average log-likelihood

1 1 &
log (27) — 3 log (|1X]) — o Z (B'y; — F/Zi)/ 1 (Bly; —I'z),
=1

ko +1

0, (0,%) =—

?*Theodore (Ted) Anderson (1918-2016) was a American statistician and econometrician, who made fundamental
contributions to multivariate statistical theory. Important contributions include the Anderson-Darling distribution
test, the Anderson-Rubin statistic, the method of reduced rank regression, and his most famous econometrics con-
tribution — the LIML estimator. He continued working throughout his long life, even publishing theoretical work at
the age of 97!
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where |X| is the determinant of X, and note that the Jacobian of the transformation from y; to v;
is B whose determinant is 1. The average log likelihood function concentrated with respect to the

parameter 3, 3,12, T'9s (see Appendix A) is

b, (/32) - -

1 1 1
kZ;L log (27) — 3 log k (B5) — Elog [Y'MzY|,

where ,
YYMYy (v —X5By) (v —X58,)

K (By) = ~'Y' Mz Y~ o (yJ_ — XQLIBZ),MZ% (yl - X2Lﬂ2)

(30)

with v = (1,—,8’2),, Y = [y,Xz], My = I, — Z1(Z}Z,)7'Z} and for any random matrix A,
At = M;A. Maximizing £, (B5) is equivalent to minimizing  (85). Because B5 can be obtained
in this way, LIML estimates are sometimes referred to as least variance ratio estimates. First
ofall, K = k (,/8\2) > 1, since span(Z1) C span(Z) and the numerator of x (85) cannot be smaller
than the denominator for any possible 4. In fact, for any equation that is overidentified, x will
always be greater than 1 in finite samples. For an equation that is just identified, ¥ will be exactly
equal to 1 because the number of free parameters to be estimated is then just equal to k, the rank
of Z. Thus, in this case, it is possible to choose v so that the numerator and denominator of
are equal.

Thanks to the special form of B and no exclusion restrictions in the endogenous variable re-

gression, there is a closed-form solution to the LIML estimator (see Appendix A):

~ ~1 ~1\/ ~ -1 ~

Bt = (ﬁuﬁz) = [X/ (In - /‘CMZ)X} X' (I, — KMz)y, (31)
where & is the smallest characteristic root of Wi W1 or W—1/2W,; W~1/2 with

W, =Y'M;Y

: \\ - Y'MzY,
(k1) (k2+1)) (k2 +1)x (ka+1))

or the smallest root of the determinantal equation |W1; — kKW| = 0. For inference, it is useful to
observe that shows that BLIML can be written as an IV estimator

BLIML = (i/X>_l X/Y (32)

using the instrument

- X
X = (I, - iMz) X = o,
X9 —kKV2

where \A/'g = MzX, is the reduced-form residuals from regressing xo; on z;. Expressing LIML using
this IV formula is useful for variance estimation.

In Appendix B, we show that the LIML and 2SLS have the same asymptotic distribution, which
holds under the same assumptions as for 2SLS, and in particular does not require normality of the

errors. Consequently, one method to obtain an asymptotically valid covariance estimate for LIML
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is to use the same formula as for 2SLS. However, this is not the best choice. Rather, using the IV

representation for LIML (32)), we can estimate the asymptotic covariance matrix by
N 1~ -1 /1 \“!
V= (X’X) Q (X’X> , (33)
n n

where

ﬁ:

SRS

n
: :~ ~f N
i=1

with X; being the ith row of X and @; = y; — x;BLIML. This simplifies to the 2SLS formula when
k = 1 but otherwise differs. The estimator is a better choice than the 2SLS formula for
covariancematrix estimation as it takes advantage of the LIML estimator structure. When the

model is homoskedastic, we can replace \Y, by

52 [X/ (I, — "Mg) X] ",

o~ / ~
where 6% = n~! (y - X/ BLIML) (y - X/ ,BLIML). The likelihood ratio statistic for testing overi-
dentifying restrictions reduces to
LR =nlogk,

which converges to X%_k. When [ = k, Kk =1 and LR = 0 as expected. This test statistic was first
proposed by Anderson and Rubin (1950).
Minimizing with respect to « is invariant to the scale of «, so we use a normalization

5 = (1,—/3,)" above. An alternative normalization is to set v Y'MzY~ = 1. Using the second
normalization,

. . YY'M; Y~y

T MYy
is the generalized eigenvector of Y'M;Y with respect to Y/MzY associated with the smalled
generalized eigenvalueﬁ Computationally this is straightforward. For example, in MATLAB,
the generalized eigenvalues and eigenvectors of the matrix A with respect to B is found by the
command eig(A,B). Once this 4 is found, any other normalization can be obtained by rescaling.
For example, to obtain the MLE for 8, make the partition ' = [7;,75] and set ,[A32 = —55/7;. To
obtain the MLE for B, recall the structural equation y; = x,8; + x5,8, + u;. Replacing 3, with
the MLE 3, and then apply regression. Thus

B = (X)X,) X (?J - X2E2) .

These solutions are the same as those in . Both kinds of solutions involve similar computations,

*Let A and B be k x k matrices. The generalized characteristic equation is |A — uB| = 0. The solutions y are
known as generalized eigenvalues of A with respect to B. Associated with each generalized eigenvalue p is a
generalized eigenvector v which satisfies Av = Bvu. They are typically normalized so that v'Bv = 1 and thus

/
uw=vAv.
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e.g., calculate &, but is important for the distribution theory and to reveal the algebraic
connection between LIML, leasts quares, and 2SLS.
If we want to test Hy : By = By, then notice that

Yy — XoBy0 = XiA] + Zo A5 + €7,

where AT = 81 + T'12 (Bs — Byg), A5 = T'aa (B9 — Byg), and e* = u + Vo (By — By). Here, the
exogenous variables excluded from the structural equation are added directly to the equation instead
of being used to replace the endogenous explanatory varaibles by fitted values as in 2SLS. Now,

testing By = By is equivalent to test A3 = 0, and the resulting F-statistic

(y — XaBy) M1 — Mz](y — XoBog) /la (v — X3 B0)’ Py (v —X38) /Iy

F(Bay) = (y — X2By0) Mz (y — X2By0) / (n—1) (yL — X2lg20)’Mz2L (yl — X%ﬂzo) /(n—1)

follows Fj, ,—; under the nullm This test statistic was first proposed by Anderson and Rubin
(1949). The advantage of the F' test over the Wald test based on the 2SLS estimation is that it is
valid even if the identification fails (i.e., rank(I'22) < k2); see Dufour (1997). The 1 — « confidence
set of By by inverting the F' test, say, Cpg, (), is not generally an ellipsoidm Also, the AR-test
is designed to test the complete vector By = B4, and is not suitable to build confidence sets for
individual components of 3, or some tranformation r(3,) € R?, where ¢ < ko. A generic solution
is the projection-based confidence set; see, e.g., Dufour (1990, 1997), Wang and Zivot (1998),
Dufour and Jasiak (2001) and Dufour and Taamouti (2005, 2007). Such a confidence set takes the
image set r (Cg, (a)) = {r(B,)|B; € Cg, (o)} as the confidence set. Because 3, € Cg, () implies
r(83,) € r (Cg, (@), we have

P (r(By) er(Cg, (a))) > P(By € Cg, (@) > 1—a,

i.e., such a confidence set is valid. When r(8,) = 3;, an individual element of 3,, r (Cg, (@)) can
be interpreted as the projection of Cg, («) on the §;-axis; r (Cg, (@)) need not be an interval, but
we can take its convex hull, which is an interval, as the confidence interval. The projection-based

confidence set is typically nonsimilar and conservative.

26This null distribution relies on the normality of w; but not that of vg;, which implies that the reduced-form
equation of x2; may suffer from the omitted instruments.

2"The confidence set can be even empty when X in Exercise [22| exceeds some constant. Empty confidence set is an
indication that the model is misspecified, e.g., there does not exist B, such that Ay = I'223,.
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8 k-class Estimators (*)

The LIML estimator is a special k-class estimator@ (see Theil (1961) and Nagar (1959)),
2 -1
B (k) = [X' (I, — kMz)X] X' (I, — kMz)y.

Inspection of the 2SLS formula shows that the 2SLS estimator is a k-class estimator with £ = 1
(which implies that under just-identification the IV estimator is MLE under normality), and the
OLS estimator is a k-class estimator with £ = 0. It follows that the LIML and 2SLS are numerically
the same when the equation is just identified. When the errors are normally distributed, the 2SLS
estimator has the p-th moment when p < [ — k, that is, the number of finite moments for 2SLS
equals the number of overidentifying restrictions; see Mariano and Sawa (1972), Sawa (1969) and
also Richardson (1968) and Kinal (1980). This implies that 2SLS does not even have a mean if the
equation is just identified. On the other hand, the LIML estimator has no finite moments because
its distribution has fat tails, so it generally has large disperson especially with weak instruments;
see Mariano (1982) and Phillips (1983). Nevertheless, Anderson et al. (1982) present analytical
results that show that LIML approaches its asymptotic normal distribution much more rapidly
than 2SLS. They also show that the median of LIML is typically much closer to 3 than is the mean
or median of TSLS. Sargan (1958) reports that the bias of the 2SLS is of the order of the inverse
of the minimum population canonical correlation between Xs and ZgFE] In the fixed-instrument,
normal-error model (i.e., Z is fixed and (u;, v}) are iid jointly normal) with Iy = k; =0 and k = 1,
Rothenberg (1984) shows that the bias of 2SLS (to three terms) is

(1=2)pou
pr ooy’

which increases with [, but the bias of LIML,

P Ou

rr
does not, where p is the correlation between u; and v;, and p?> = I'Z’ ZI‘/O’Z is often called
the concentration parameter; for the general asymptotic expansion of the 2SLS estimator, see
Sargan and Mikhail (1971) and Anderson and Sawa (1973). When the instruments are fixed and
the errors are symmetrically distributed, Rothenberg (1983) shows that LIML is the best median-
unbiased k-class estimator to second order. Hillier (1990) criticizes the 2SLS estimator by arguing
that the object that is identified is the direction (1, —3')" but not its magnitude. He then shows that
the 2SLS estimator of direction is distorted by its dependence on normalization of the parameter.

On the other hand, the LIML is less sensitive to the normalization and is a better estimator of

28The "Ek" in k-class estimators and the "k" of dim (x) can be differentiated from the context. Also, R is usually
written as k in the literature, which is the origin of the name of k-class estimators.

29He also gave a minimax instrumental-variable interpretation to the original LIML estimator. For a minimum
distance interpretation of the LIML estimator, see Goldberger an Olkin (1971).
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direction. Bekker (1994) presents small-sample results for LIML and a generalization of LIML, and
also shows that unlike 2SLS, LIML is consistent under many-instrument asymptotics. Hahn and
Hausman (2002) justify the use of the LIML estimator in some cases with weak instruments.

There are many other k-class estimators. For example, Sawa (1973) has suggested a way of
modifying the 2SLS estimator to reduce bias, and Fuller (1977) and Morimune (1978, 1983) have
suggested modified versions of the LIML estimator. Fuller’s estimator, which is the simplest of
these, uses k = KLmvL — /(n — 1) with « being a fixed number. One good choice is o = 1, since
it yields estimates that are approximately unbiased. In contract to the LIML estimator, which
has no finite moments, Fuller’s modified estimator has all moments finite provided the sample
size is large enough. Rothenberg (1984) shows that with fixed instruments and normal errors,
the Fuller-k estimator with @ = 1 is best unbiased to second order among estimators with & =
1+ a (kKL — 1) — ¢/ (n — 1) for some constants a and c. In Monte Carlo simulations, Hahn et al.
(2004) reported substantial reductions in bias and MSE using Fuller-k estimators, relative to 2SLS
and LIML, when instruments are weak.

It has been shown that all members of the k-class for which k£ converges to 1 at a rate faster
than n~1/2 have the same asymptotic distribution as the 2SLS estimator. These are largely of
theoretical interest, given the pervasive use of 2SLS or OLS. The large sample properties of all k-
class estimators are the same, but the finite sample properties are possibly very different. Mariano
(1982) discusses a number of analytical results and provides some guidance as to when LIML is
likely to perform better than 2SLS. He suggests some evidence favors LIML when the sample size
is not large while the number of overidentifying restrictions is. However, much depends on the
particular model and data set.

LIML is rarely used as it is more difficult to implement and harder to explain than 2SLS.
Nevertheless, Pagan (1979) shows that the LIML estimator can be computed by treating the system
of equations as a seemingly unrelated regressions (SUR) models, ignoring both the constraints

on the reduced form and the correlation between xs; and u;, and using the iterative GLS method.

9 Split-Sample IV and JIVE (*)

We briefly describe the jackknife instrumental variables estimator (JIVE) of Angrist, Imbens
and Krueger (1999, AIK hereafter) here. To motivate the JIVE, first note that the ideal instrument

for estimation of 3 is w = I'z. We can write the ideal IV estimator as

n -1 n
Bideal = <Z Wz’X;) <Z Wiyz’> = (W'X)H (W'y).
i=1 i=1

This estimator is not feasible since I' is unknown. The 2SLS estimator replaces I' with the mul-

tivariate least squares estimator T and w; by X; = fzi leading to the following representation for
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2SLS B
Basts = (Z iX;) (Z ﬁi?ﬁ) = (}A(’X>_1}A('y.
i=1 i=1

Since T is estimated on the full sample including observation i it is a function of the reduced form
error v; which is correlated with the structural error u;. It follows that X; and w; are correlated,

which means that BQSLS is biased for 8. More specifically,
~ N 1P
Bosis - B = (X'X) X',

where X = ZT' = PzX with T' = (Z'Z) "' (2'X). Note that X = ZT + PzV, so although ZT is
not correlated with u, PzV is. Specifically,

z, (Z'Z)_1 (Z zjv;> u;
i=1
l

= FE [z; (Z'Z)_1 z,E [V;’U,Z‘ZH =F [z; (Z’Z)_lziavu} = Ovu,

=F [z; (Z’Z)_1 zivéuz}

where we denote E [viu;|Z] as oy, which is not zero{ﬂ For fixed [, this bias will vanish in large
samples, but in finite samples, this bias is not neglectable.

A possible solution to this problem is to replace X; with a predicted value which is uncorrelated
with the error u;. One method is the split-sample IV (SSIV) estimator of Angrist and Krueger
(1995). Divide the sample randomly into two independent halves A and B. Use A to estimate the
reduced form and B to estimate the structural coefficient. Specifically, use sample A to construct
f‘A = (Z’AZA)_1 (Z/yX 4). Combine this with sample B to create the predicted values }A(B — 75T 4.
The SSIV estimator is Bggpy = ()ACSBXB>71 X',y 5. This has lower bias than Bosrs. A limitation
of SSIV is that the results will be sensitive to the sample spliting. One split will produce one
estimator; another split will produce a different estimator. Any specific split is arbitrary, so the
estimator depends on the specific random sorting of the observations into the samples A and B. A
second limitation of SSIV is that it is unlikely to work well when the sample size n is small.

A much better solution is obtained by a leave-one-out estimator for I'. Specifically, let

Ly = (22— uz) " (ZX —zx)) = (Z/(—wz(—z‘))il (2 %)

be the estimator of I' computed using all but the 7th observation in the first stage, and let x} =

f‘(ii)zi be the reduced form predicted values. Using x; as an instrument we obtain the estimator

n -1 n n -1 n
Biver = <Z X;‘XQ) <Z Xf%) = <Z I"(_Z-)Zﬂé) (Z F'(_i)zl'yi) =: (X*’X)_lX*’y.
i=1 i=1 i=1 i=1

%"Note that >, z; (2'Z)"" z; =tr(Pz) = I. Since for a random sample, the expectation of each summand is the
same, we have F |:ZIL (2'Z)"" Zi:| =1/n.
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This is the first JIVE of AIK. It first appeared in Phillips and Hale (1977)@ Now,

1
E[ux]] =E [z; (ZiZca) 2B Xegumlz]| =0,
i.e., //B\JIVEl is unbiased.
AIK point out that a somewhat simpler adjustment also removes the correlation and bias.

Define the estimator and predicted value

Ty = (Z2) " (ZX -zx)) = (ZZ) (Z".X-),
x* = IN"(_i)zi,

]

which only adjusts the Z’X component. Their second JIVE of 3 is

n -1 n n -1 n
2 Kok Kk i ~ Kk —1 %
Bive: = <Z X Xé) (Z X Z/z’) = (Z F,(i)zixg) (Z I‘/(i)ziyZ) = (X ,X) X™y.
i=1 i=1 i=1 =1

The unbiasedness of B jive2 can be similarly shown.

Using the formula for leave-one-out estimators in Section 6 of Chapter 3, BJIVEl and ,@HVEQ use
two linear operations: the first to create the predicted values x; or x;* , and the second to calculate
the IV estimator. Thus the estimators do not require significantly more computation than 2SLS.

AIK showed that their JIVEs and 2SLS are asymptotically equivalent under conventional fixed-
model asymptotics. The literature usually refers to BJIVEl as the JIVE, and we follow this conven-
tion. Calculations drawing on work of Chao and Swanson (2002) reveal that under weak-instrument
asymptotics, the JIVE is asymptotically equivalent to a k-class estimator with K = 1 +{/(n — ).
Theoretical calculations by Chao and Swanson (2002) and Monte Carlo simulations by AIK indi-
cate that the JIVE is similar to LIML and improves on 2SLS in bias when there are many weak
instruments@ Davison and MacKinnon (2006) criticize the JIVE to have low efficiency relative
to LIML under homoskedasticity, but as suggested in Hausman et al. (2012), this criticism can be
overcomed by combining the JIVE idea with LIML. For asymptotic distribution theory for ,B JIVEL
and ,@JIVEZ in the presence of heteroskedasticity and many instruments, see Chao, et al. (2012).

I /
_ 7, T—Pyx;

Exercise 20 Define P;; as the ijth element of Pgz. Show that (i) Z;f(,i) = “—p—; (ii) Brvis

can be rewritten as (Z#j x;Pinj) (Z#j X;.Pijyj).

Exercise 21 (Empirical) The data file card.dat is taken from David Card "Using Geographic
Variation in College Proximity to Estimate the Return to Schooling” in Aspects of Labour Market
Behavior (1995). There are 2215 observations with 29 variables, listed in card.pdf. We want to

Slam,El is the UJIVE of Blomquist and Dahlberg (1999), who propose their JIVE as (X*X*) ™" X*'y.
32Monte Carlo simulations in Blomquist and Dahlberg (1999) show that the variance of JIVE and LIML is larger
than 2SLS.
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estimate a wage equation
log(Wage) = By + B1Educ + ByExper + foExper® + B4South + B35 Black + u,

where Educ = Education (Years), Exper = Experience (Years), and South and Black are regional

and racial dummy variables.

(a) Estimate the model by OLS. Report estimates and standard errors.

(b) Now treat Education as endogenous, and the remaining variables as exogenous. Estimate the
model by 2SLS, using the instrument near4, a dummy indicating that the observation lives

near a 4-year college. Report estimates and standard errors.

(c) Re-estimate by 2SLS (report estimates and standard errors) adding three additional instru-
ments: near2 (a dummy indicating that the observation lives near a 2-year college), fatheduc

(the education, in years, of the father) and motheduc (the education, in years, of the mother).

Appendix A: Concentrated Likelihood in the LIML

The derivation here is based on Section 18.5 of Davidson and MacKinnon (1993). First concentrate

out . Taking derivative with respect to X1, we have

n

90,(0,%) 1. 1
8;)—1) = 52—% (B/yZ — F,ZZ‘) (B/yz - I‘,Zi)/,
=1
SO
S0 — LN Bl - ) (Blv — T} — _ 71V _
2(0)_71;(13% I'z;) (B'y; rz,)—n(YB Zr) (YB — ZT).

As a result, the concentrated average log-likelihood is

ko + 1 1. |1
0, (0) = — 2; (log (27) + 1) — ; log n(YB—ZI‘)’(YB—ZI‘)‘
ko +1

! (Y —zrB™Y) (Y - ZzZrB™)

n

I

1
= (log(27r)+1)—§log

where the second equality is due to |B| = 1. Note that

rpg-1_ [ P Tw L0 ) ([ B1+Tnf; I'p
0 Ta By I, T2, Ty )’
which is the (restricted) reduced-from coefficient matrix, the top part corresponds to Z; and the
bottom part to Zy. Since 3; does not appear in the bottom part, it is clear that for whatever value

of B4, we can find values of 8, and I'12 such that the top part is equal to anything at all. In other

words, the structural equations do not impose any restrictions on the (unrestricted) reduced-form
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coefficients corresponding to Z;. In general, however, they do impose restrictions on the coefficients
corresponding to Zs.

It is obvious that minimizing ¢,, (@) is equivalent to minimizing ’(Y - ZI‘B_I)I (Y —zIrB™ 1) ’
If there are no restrictions on the coefficients of Z, then the minimizer (corresponding to TB™!)
should be the OLS estimate IT which minimizes ‘(Y — ZII)' (Y — ZII)|. To see why, let II=II+A

be another candidate. Then
~\/ ~
‘(Y—Zl‘[) (Y—ZH)‘

_ ‘(Y—Zﬁ—ZA)/<Y—Zﬁ—ZA)‘
= |(MzY —ZA) (MzY — ZA)|
= |[YMzY +A'Z'ZA]|.

Because the determinant of the sum of two positive definite matrices is always greater than the
determinants of either of those matrix, we can see II is indeed the minimizer. Since there are no
restrictions on the rows of IT that corresponds to Zp, we can use OLS to estimate those param-
eters, and then concentrate them out of the determinant. When we do this, the determinant of
|(YB — ZT)' (YB — ZT')|, which equals that of ‘(Y ~ZrB~Y) (Y - ZzrB)

, becomes
|(YB —ZI') M, (YB — ZT)|

which can be rewritten as

| (Yl’)’)l (Yl’)’) (YJ_,Y)’ (X%- — Z%‘I‘QQ) | (34)

(X3 — Z3T2) (Y') (X3 —Z3T2) (X3 — Z3Ta)

This determinant depends only on « and I'ss; we further concentrate out I'so. Using the result

that for any matrix A and B,

A’A A'B

B/A BIB = ‘A/A‘ |B,MAB ) (35)

we have our target equal to

!/ /
(YH) (Yly) '(XZ% . z;rﬂ) M, (){2L - z;rm)

; (36)

where v = Y1+, and note that (YJ-'y)/ (YJ-’y) is scalar so its determinant is itself. The parameters
95 appears only in the second factor of . This factor is the determinant of the matrix of sums
of squares and cross-products of the residuals from regressions of MVX2L on MVZ2L. From the
discussion above, the minimizer (corresponding to I's2) should be the OLS estimate, and the matrix
of residuals is My, 5 L M,Xy = M, 7 2¢X§-. Consequently, the second factor of , minimized

33



with respect to I'ag, is
1 1
‘X2 /MV7Z%X2 ‘ . (37)

The fact that v and Zs appear in a symmetrical fashion in can be exploited in order to make
depend on - only through a scalar factor. Consider the determinant

vM, v vM,. X5
NG R (38)
By use of , this determinant can be factorized just as was. We obtain
(VMg v) [X3'M, 7, X5
Using the facts that MlezL = Mgz and that v =M;Y~, can be rewritten as
"Y'MzY "Y'MzX
T et VER | BY'MZYB| = [YMZY], (39)
XéMzY’y XIQMZXQ

where the first equality is from the definition of B, and the second equality is from the fact that
|IB| = 1. It implies that does not depend on B at all.

In summary, minimizing the concentrated log-likelihood is equivalent to minimizing

LN (vl ) [YMZY]  ~'Y'Mi Yy
(Y 7) (Y 7) VleJ_V = ‘)//YIMZY‘)’ ’Y/MZY’ =K (,62) |Y,MzY| ,
2

or minimizing x (B5) since [Y'MzY]| is free of parameters. Differentiating x (35) with respect to
~, we have the FOCs:

2Y'M 1Y~y ('Y MzY~) - 2Y'MzY~ (Y'Y'M;Yy) = 0.
Dividing both sides by 2 (y"Y'MzY+), we have
Y'M;Yy—kY'MzY~ =0, (40)

or
(W1 —kW)~y =0,

where W1 and W are defined in the main text. In other words, K is the smallest eigenvalue of
W1W™! and 7 is the corresponding eigenvector. To find 7 or BQ, expanding as

yMy yMiXz |\ . yMzy yMzXp L)y
XMy  X4M;Xo X,Mzy X,MzXs B, '
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When the rows corresponding to Xy are multiplied out, this becomes
X, (M — iMz)y — X4 (M; — KMgz) X208, = 0,

which implies
By = (X (M) — iMgz) X5) ' X4 (M, — Mz)y.

Given BQ, Bl can be obtained by regressing y — XQBQ on X;. Combining the formulas for ,E‘}l and
,/8\2, we can show .

; 3 = i O XBPzy-Xp) 5 _ Az (1Y) :
Exercise 22 Define A = mﬁm 5 —XB)(y—XB) and \ = om (1) Show that the LIML estimator

can be re-expressed as
B = (X'P2X —3X'X) " (X'Pzy ~ AXYy).
and Fuller’s estimator can be re-expressed as
By = (X’PZX - XX'X>_1 (X’sz . XX'y) :
Appendix B: LIML Asymptotic Distribution
For the distribution theory, it is useful to rewrite as
Brni = (X'PzX — iX'MzX) ' (X'Pzy — iX'Mzy)

where

L  YY'M,Zy (Z4M1Zo) ZEM Yy
1L =K—1=min .
v YY'MzY~
This second equality holds since the span of Z = [Z1,Zs] equals the span of [Z;,M;Z5]. This
implies

Pz =27 (Z'2) ' 7 =7, (2\Z,) ' Z) + M1 Zs (ZyM1Zs) ' ZHM,.

We now show that nii = O (1). The reduced form of y; implies
Y =711 + Z7I15 + F,

where IT; = [)\1, ]._‘12], 11, = [AQ, FQQ] and F stacks fz/ with fll e [6,‘, VIQZ] Since ITy = [].-‘22,627 FQQ], it
follows that IToy = 0 for 7 = (1, —5/2)1. Note that F¥ = u, so MzY% = Mzu and MY~ = Mju.
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Hence

i — min’)’,Y/M1Z2(Z/2M1Z2)_1Z/2M1Y’7
v Ly Y Mz Y~
< (LwMiz,) (AZpMiZo) " (LZ5Miu)
- %u’Mzu
= Op (1)
It follows that
f(B ﬂ) Lwpyx — alxMpx ) (LxP JRiLXM
- = — — U= — u-— — u
|\ PLIML n Z /Ln Z NG Z nun Z

— <:LX’PZX —_— (1)) - (\}ﬁX’qu —0p (1)>
= Vn (BQSLS - ﬂ) +op(1).

Obviously, as long as \/nfi = op (1), all k-estimators have the same asymptotic distribution as the
2SLS estimator.
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