
Chapter 7. Endogeneity and Instrumental Variables∗

This chapter covers endogeniety and the two-stage least squares estimation. Related materials

can be found in Chapter 3 of Hayashi (2000), Chapter 20 of Ruud (2000), Chapter 4 of Cameron

and Trivedi (2005), Chapter 5 of Wooldrige (2010), and Chapter 12 of Hansen (2022).

1 Endogeneity

In linear regression,

yi = x′iβ + ui, (1)

where yi is the dependent variable, xi ∈ Rk is a vector of explanatory variables, β contains the
unknown coeffi cients, ui is the unobservable component of yi, and E[ui|xi] = 0. A regression is

designed to carry out statistical inferences on causal effects of xi on yi. But in practice, it often

happens that xi and ui are correlated. When E[xiui] 6= 0, there is endogeneity. In this case, the

LSE will be asymptotically biased. Note here that β in (1) is the structural parameter rather

than the linear projection coeffi cient of y on span (x) since from Chapter 2 we can always find a

β such that E[xiui] = 0. The analysis of data with endogenous regressors is arguably the main

contribution of econometrics to statistical science. There are five commonly encountered situations

where endogeneity exists.

(i) Simultaneous causality. For example, do higher hotel prices decrease occupancy rates? Do

Cigarette taxes reduce smoking? Does putting criminals in jail reduce crime? Example

1 below shows the simultaneous causality induced by a system of equations. Solutions to

this problem include using instrumental variables (IVs),1 and designing and implementing a

randomizied controlled trial (RCT)2 in which the reverse causality channel is nullified (see

references cited in the Introduction). The first solution will be discussed in this chapter.

∗Email: pingyu@hku.hk
1See Stock and Trebbi (2003) for who invented instrumental variable regression. The current evidence shows

that both the father Philip Green Wright and his oldest son Sewall Green Wright contributed to this remarkable
identification idea. Philip Wright (1861—1934) was an American mathematician and economist at Lombard College
(now defunct). He was also a special expert at the United States Tariff Commission. Sewall Wright (1889-1988)
was an American geneticist known for his influential work on evolutionary theory and also for his invention of path
analysis (a key step for causal effects evaluation). He worked at the Department of Zoology at the University of
Chicago until retirement in 1955 and then moved to the University of Wisconsin—Madison.

2Banerjee, Abhijit (1961-, MIT), Esther Duflo (1972-, MIT) and Michael Kremer (1964-, Harvard) won the Nobel
Prize in 2019 because they successfully applies RCT to improve our ability to fight global poverty.
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(ii) Omitted variables. For example, in the model on returns to schooling, ability is an important
variable that is correlated to years of education, but is not observable so is included in the

error term. Solutions to this problem include using IVs, using panel data (see two chapters in

Handbook of Econometris, Chamberlain (1984) and Arellano and Honoré (2001), and some

popular books, Diggle et al. (2002), Arellano (2003), Pesaran (2015), Baltagi (2021), and

Hsiao (2022), for an introduction to panel data analysis), and using RCTs.

(iii) Errors in variables. This term refers to the phenomenon that an otherwise exogenous regressor
becomes endogenous when measured with error. For example, in the returns-to-schooling

model, the records for years of education are fraught with errors owing to lack of recall,

typographical mistakes, or other reasons. The basic solution to this problem is to use IVs (e.g.,

exogenous determinants of the error ridden explanatory variables, or multiple indicators of the

same outcome, i.e., repeated measurements) or auxiliary data-set that contains information

about the conditional distribution of the true variables given the mismeasured variables. See

the chapter in Handbook of Econometrics, Bound et al. (2001), and Chen et al. (2011)

for an introduction to measurement errors in survey data. A review of the commonly used

techniques in statistics can be found in Fuller (1987) and Carroll et al. (2006).

(iv) Sample selection. For example, in the analysis of returns to schooling, only wages for employed
workers are available, but we want to know the effect of education for the general population.

We will discuss how to handle such an endogeneity problem in Chapter 9; see Winship and

Mare (1992), Vella (1998) and Heckman (2008) for an introduction.

(v) Functional form misspecification. E[y|x] may not be linear in x. This problem can be handled

by nonparametric methods. See related chapters in Handbook of Econometrics, Härdle and

Linton (1994) (or its extended version Härdle (1990)), Chen (2007) and Ichimura and Todd

(2007), for an introduction.

Example 1 (Simultaneous Causality) Philip Wright (1928) considered estimating the elastic-
ity of butter demand, which is critical in the policy decision on the tariff of butter. In the economic

language, he considered a linear Marshallian stochastic demand/supply system. Define pi = lnPi

and qi = lnQi, and the demand equation is

qi = α0 + α1pi + ui, (2)

where ui represents other factors besides price that affect demand, such as income and consumer

taste. But the supply equation is in the same form as (2):

qi = β0 + β1pi + vi, (3)

where vi represents the factors that affect supply, such as weather conditions (see, e.g., Angrist et

al. (2000)), factor prices, and union status. So pi and qi are determined "within" the model, and
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they are endogenous. Rigorously, note that

pi =
β0 − α0
α1 − β1

+
vi − ui
α1 − β1

, (4)

qi =
α1β0 − α0β1
α1 − β1

+
α1vi − β1ui
α1 − β1

,

by solving two simultaneous equations (2) and (3). Suppose Cov(ui, vi) = 0, then

Cov(pi, ui) = −V ar(ui)
α1 − β1

, Cov(pi, vi) =
V ar(vi)

α1 − β1
,

which are not zero. If α1 < 0 and β1 > 0, then Cov(pi, ui) > 0 and Cov(pi, vi) < 0. This is

intuitively correct: if a demand (supply) shifter shifts the demand (supply) curve right or ui > 0

(vi > 0), the price increases (decreases).

If we regress qi on pi, then the slope estimator converges to

Cov(pi, qi)

V ar(pi)
= α1 +

Cov(pi, ui)

V ar(pi)
= β1 +

Cov(pi, vi)

V ar(pi)
=
α1V ar(vi) + β1V ar(ui)

V ar(vi) + V ar(ui)
∈ (α1, β1),

where the last equality is from substituting in the formulas of pi and qi in (4), so the LSE is neither

α1 nor β1, but a weighted average of them. Such a bias is called the simultaneous equations bias.

The LSE cannot consistently estimate α1 or β1 because both curves are shifted by other factors

besides price, and we cannot tell from data whether the change in price and quantity is due to a

demand shift or a supply shift. If ui = 0 (that is, the demand curve stays still), then the equilibrium

prices and quantities will trace out the demand curve and the LSE is consistent to α1.3 Figure 1

illustrates the discussion above intuitively. The identification problem in simultaneous equations

dates back to Philip Wright (1915) and Working (1927).

From the discussion above, pi has one part correlated with ui
(
− ui
α1−β1

)
and one part uncorre-

lated with ui
(

vi
α1−β1

)
. If we can isolate the second part, then we can focus on those variations in

pi that are uncorrelated with ui and disregard the variations in pi that bias the LSE. Take a supply

shifter zi (e.g., weather), which can be considered to be uncorrelated with the demand shifter ui such

as consumer’s tastes; then

Cov(zi, ui) = 0, and Cov(zi, pi) 6= 0.

So

Cov(zi, qi) = α1 · Cov(zi, pi)⇒ α1 =
Cov(zi, qi)

Cov(zi, pi)
.

A natural estimator is

α̂1 =
Ĉov(zi, qi)

Ĉov(zi, pi)
,

which is the IV estimator implicitly defined in Appendix B of Philip (1928). Another method to

3Note that the supply curve is still not identifiable because essentially, only one point on the supply curve is
observed.
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Figure 1: Endogeneity and Identification by Instrument Variables

estimate α1 as suggested above is to run regression

qi = α0 + α1p̂i + ũi,

where p̂i is the predicted value from the following regression:

pi = γ0 + γ1zi + ηi,

and ũi = α1 (pi − p̂i) + ui. It is easy to show that Cov(p̂i, ũi) = 0, so the estimation is consistent.

Such a procedure is called two-stage least squares (2SLS) for an obvious reason. In this case, the

IV estimator and the 2SLS estimator are numerically equivalent as shown in Exercise 10 below. �

Example 2 (Omitted Variables) Mundlak (1961)4 considered the production function estima-
tion, where the error term includes factors that are observable to the economic agent under study

but unobservable to the econometrician, and endogeneity arises when regressors are decisions made

by the agent on the basis of such factors.

Suppose that a farmer is producing a product using the Cobb-Douglas technology:

Qi = Ai · (Li)φ1 · exp(νi), 0 < φ1 < 1, (5)

where Qi is the output of the ith farm, Li is a variable input (labor), Ai represents an input that

is fixed over time (e.g., soil quality), and νi represents a stochastic input (e.g., rainfall) which is

not under the farmer’s control. We shall assume that the farmer knows the product price p and

input price w, which do not depend on his decisions, and that he knows Ai but econometricians do

4Yair Mundlak (1927-2015) was an agricultural economist at the Economics Department of the University of
Chicago. He contributed significantly to the early literature on the econometrics of panel data. His 1978 Econometrica
paper is cited in all relevant textbooks and in close to 1,000 articles.
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not. The factor input decision is made before knowing νi, and so Li is chosen to maximize expected

profits. The factor demand equation is

Li =

(
w

p

) 1
φ1−1

(AiBφ1)
1

1−φ1 , (6)

so a better farm induces more labors on it. We assume that (Ai, νi) is i.i.d. over farms, and Ai
is independent of νi for each i. Therefore, B = E[exp(νi)] is the same for all i, and the level of

output the farm expects when it chooses Li is Ai · (Li)φ1 ·B.
Taking logarithm on both sides of (5), we have a log-linear production function:

logQi = logAi + φ1 · log(Li) + νi,

where logAi is an omitted variable. Equivalently, each farm has a different intercept. The LSE of

φ1 will converge to
Cov(logQi,log(Li))

V ar(log(Li))
= φ1+

Cov(logAi,log(Li))
V ar(log(Li))

, which is not φ1 since there is correlation

between logAi and log(Li) as shown in (6). Figure 2 shows the effect of logAi on φ1 by drawing

E [logQ| logL, logA] for two farms. In Figure 2, the OLS regression line passes through points AB

with slope logQ1−logQ2logL1−logL2 , but the true φ1 is
D−C

logL1−logL2 . Their difference is
A−D

logL1−logL2 = logA1−logA2
logL1−logL2 ,

which is the bias introduced by the endogeneity of logAi.

Rigorously, let ui = log(Ai) − E[log(Ai)], and φ0 = E[log(Ai)]; then E[ui] = 0 and Ai =

exp (φ0 + ui). (5) and (6) can be written as

logQi = φ0 + φ1 · log(Li) + νi + ui, (7)

logLi = β0 +
1

1− φ1
ui, (8)

where β0 = 1
1−φ1

(
φ0 + log(Bφ1)− log

(
w
p

))
is a constant for all farms. Now, it is obvious that

logLi is correlated with (νi + ui). Thus, the LSE of φ1 in the estimation of log-linear production

function confounds the contribution of ui with the contribution of labor. Actually,

φ̂1,OLS
p−→ 1,

because substituting (8) into (7), we get

logQi = φ0 − (1− φ1)β0 + 1 · log(Li) + νi.

The lesson from this example is that a variable chosen by the agent taking into account some

information unobservable to the econometrician can induce endogeneity. �

Exercise 1 Suppose the farmer could observe νi as well as Ai before deciding on labor input,
how does the demand equation for labor (6) change? Show that logQi and log(Li) are perfectly

correlated.
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Figure 2: Effect of Soil Quality on Labor Input

Example 3 (Errors in Variables) The cross-section version of M. Friedman’s (1957) Perma-
nent Income Hypothesis can be formulated as an errors-in-variables problem. The hypothesis states

that "permanent consumption" C∗i for household i is proportional to "permanent income" Y
∗
i :

C∗i = kY ∗i with 0 < k < 1.

Assume both measured consumption Ci and income Yi are contaminated by measurement error:

Ci = C∗i + ci and Yi = Y ∗i + yi,

where ci and yi are independent of C∗i and Y
∗
i and are independent of each other; then

Ci = kYi + ui with ui = ci − kyi. (9)

It is easy to see that E [Yiui] = −kE
[
y2i
]
< 0, so the LSE of k converges to E[YiCi]

E[Y 2i ]
=

kE
[
(Y ∗i )

2
]

E
[
(Y ∗i )

2
]
+E[y2i ]

<

k, that is, the OLS using measured data underestimates k. Essentially, the effect of the measurement

error in the covariate ends up being "netted out" in the error term, so the mismeasured covariate

is negatively correlated with the error term, which makes the OLS underestimate the slope. More

intuitively, with measurement error, the covariate is more spreading, which makes the OLS estimate

of slope smaller. Taking expectation on both sides of (9), we have E[Ci] = kE[Yi] +E[ui]. So z = 1

is a valid IV if E[yi] = E[ci] = 0 and E [Y ∗i ] = E[Yi] 6= 0.. The IV estimation using z as the
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instrument is C
Y
, which is how Friedman estimated k.

Actually, measurement errors are embodied in regression analysis from the beginning. Galton

(1889)5 analyzed the relationship between the height of sons and the height of fathers. Specifically,

suppose the true model is

S∗i = α+ βF ∗i + ui, (10)

where S∗i and F
∗
i are the heights of sons and fathers, respectively. Even if S

∗
i should perfectly match

F ∗i (that is, α0 = 0, β0 = 1 and ui = 0), the OLS estimator would be smaller than 1 if there are

environmental factors or measurement errors that affect S∗i and F
∗
i . Suppose the observables are

Si = S∗i + si, and Fi = F ∗i + fi, where si and fi are the mean-zero environmental factors; then our

regression becomes

Si = α+ β (Fi − fi) + si = α+ βFi + si − βfi.

The OLS estimator of β will converge to Cov(Fi,Si)
V ar(Fi)

=
V ar(F ∗i )

V ar(F ∗i )+V ar(fi)
< 1, where V ar(F ∗i )

V ar(F ∗i )+V ar(fi)
≡ ρ

is called the reliability coeffi cient or Heritability coeffi cient.6 In Galton’s analysis, this coeffi cient is

about 2/3. Similarly, the OLS estimator of α converges to (1− ρ)E[Fi] 6= 0 (why?). The regression

line and the true line intersect at E[Fi], and both are shown in Figure 3. Galton wrote "the average

regression of the offspring is a constant fraction of their respective mid-parental deviations" and

termed this phenomenon as "regression towards mediocrity".

Finally, note from Exercise 2 in Chapter 5 that measure errors in yi will not affect the consis-

tency of the LSE but may affect its asymptotic distribution. �

2 Instrumental Variables

We call (1) the structural equation or primary equation. In matrix notation, it can be written as

y = Xβ + u. (11)

Any solution to the problem of endogeneity requires additional information which we call instru-

mental variables (or simply instruments). The label “instrumental variables”was introduced by

Reiersøl (1945). The l× 1 random vector zi is an instrument for (1) if E [ziui] = 0. This condition

cannot be tested in practice since ui cannot be observed.

In a typical set-up, some regressors in xi will be uncorrelated with ui (for example, at least the

5Sir Francis Galton (1822-1911) was an English statistician. In addition to inventing the concept of regression, he
is credited with introducing the concepts of correlation, the standard deviation, and the bivariate normal distribution.
He was Charles Darwin (1809-1882)’s half-cousin, sharing the common grandparent Erasmus Darwin, and was also
the advisor of Karl Pearson and the inventor of fingerprinting.

6Since Si and Fi have the same distribution, the LSE converges to Cov(Si,Fi)
V ar(Fi)

= Cov(Si,Fi)√
V ar(Fi)V ar(Si)

which is the

correlation between Si and Fi and is less than 1.
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intercept). Thus we make the partition

xi =

(
x1i

x2i

)
k1

k2
, (12)

where E [x1iui] = 0 yet E [x2iui] 6= 0. We call x1i exogenous and x2i endogenous. By the above

definition, x1i is an instrumental variable for (1), so should be included in zi, giving the partition

zi =

(
x1i

z2i

)
k1

l2
, (13)

where x1i = z1i are the included exogenous variables, and z2i are the excluded exogenous variables.

In other words, z2i are variables which could be included in the equation for yi (in the sense that

they are uncorrelated with ui) yet can be excluded, as they would have true zero coeffi cients in the

equation which means that certain directions of causation are ruled out a priori.

The model is just-identified if l = k (i.e., if l2 = k2) and over-identified if l > k (i.e., if l2 > k2).

We have noted that any solution to the problem of endogeneity requires instruments. This does

not mean that valid instruments actually exist.

3 Reduced Form

The reduced form relationship between the variables or "regressors" xi and the instruments zi is

found by linear projection. Let

Γ = E
[
ziz
′
i

]−1
E
[
zix
′
i

]
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be the l × k matrix of coeffi cients from a projection of xi on zi, and define

vi = xi − Γ′zi

as the projection error. Then the reduced form linear relationship between xi and zi is the instru-

mental equation

xi = Γ′zi + vi. (14)

In matrix notation,

X = ZΓ + V, (15)

where V is a n × k matrix. By construction, E [ziv
′
i] = 0, so (14) is a projection and can be

estimated by OLS:

X = ZΓ̂ + V̂,

Γ̂ =
(
Z′Z

)−1 (
Z′X

)
.

Substituting (15) into (11), we find

y = (ZΓ + V)β + u = Zλ+ e (16)

where λ = Γβ and e = u + Vβ. Observe that

E [ze] = E
[
zv′
]
β + E [zu] = 0. (17)

Thus (16) is a projection equation and may be estimated by OLS. This is

y = Zλ̂+ ê,

λ̂ =
(
Z′Z

)−1 (
Z′y
)
.

The equation (16) is the reduced form for y. (15) and (16) together are the reduced form equations

for the system

y = Zλ+ e,

X = ZΓ + V.

As we showed above, OLS yields the reduced-form estimates
(
λ̂, Γ̂

)
.

The system of equations

y = Xβ + u,

X = ZΓ + V,

are called triangular (or recursive) simultaneous equations because the second part of equations
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do not depend on y. This system of equations rules out full simultaneity and includes the same

information as an "incomplete" linear system

y = Xβ + u, E
[
Z′u

]
= 0.

However, in a nonlinear system, they are not equivalent in general.

To see how a recursive model can originate in practice, consider the return-to-schooling example

again. Our statement of the example follows from Imbens and Newey (2009). Let Y denote

individual lifetime earnings and X denote level of education, where we use the capital letters

such as X to denote random variables and the corresponding lower case letters such as x denote

the potential values they may take. The value of X is chosen first, as a function of expected

but not of realized Y . The value of Y is determined next, as a function of X, as well as of other

observable and unobservable variables. In the simple version of such a model, the typical individual’s

lifetime earnings are a function of the level of education and productivity (or ability), U . Although

productivity is unobserved to the agent at the time of deciding the length of education, the value

of a signal, V , correlated with productivity, U , is known to the agent at such time. A measure,

Z, determining the cost of a unit of education is observed as well. Denote the cost of education

by the value of a function c (X,Z). The agent chooses X to maximize expected lifetime earnings

given the signal, V , and the cost of education:

X = arg max
x
{E [m1 (x, U) |Z, V ]− c (x, Z)} .

The solution is then a function, m2, of Z and V . The recursive model becomes

Y = m1 (X,U) ,

X = m2 (Z, V ) .
(18)

If m1 and m2 are linear, then we obtain the recursive linear model above. If X is an input and

Y is output, then this example is related to Example 2 in Section 1; see Mundlak (1963) for more

discussion.

Exercise 2 (i) Show that E [viui] 6= 0. (ii) Suppose k = k2 = l = 1, and all variables are

demeaned. Can the correlation between ui and vi be 1?

Exercise 3 Suppose y = Xβ + u and X = ZΓ + V, where E[u|Z] = 0 and E[V|Z] = 0 but

E[V′u] 6= 0. Derive the plim of β̂OLS. When Γ = 0, what will plim
(
β̂OLS

)
degenerate to?

Exercise 4 In the reduced form between the regressors xi and instruments zi (14), the parameter

Γ is defined by the population moment condition

E
[
ziv
′
i

]
= 0.

Show that the MoM estimator for Γ is Γ̂ = (Z′Z)−1 Z′X.
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4 Identification

The structural parameter β in triangular simultaneous equations relates to (λ,Γ) by λ = Γβ. This

relation can be derived directly by using the orthogonal condition E [zi (yi − x′iβ)] = 0 which is

equivalent to

E [ziyi] = E
[
zix
′
i

]
β. (19)

Multiplying each side by an invertible matrix E [ziz
′
i]
−1, we have λ = Γβ. The parameter is

identified, meaning that it can be uniquely recovered from the reduced form, if the rank condition7

rank (Γ) = k (20)

holds. Intuitively, the rank condition requires that z can perturb x in all directions. This condition

can be tested (think about the case k = 1); see, e.g., Cragg and Donald (1993, 1996, 1997), Robin

and Smith (2000), Kleibergen and Paap (2006) and Chen and Fang (2019). If rank(E [ziz
′
i]) = l

(this is trivial), and rank(E [zix
′
i]) = k (this is crucial), this condition is satisfied. Assume that

(20) holds. If l = k, then β = Γ−1λ. If l > k, then for any A > 0, β = (Γ′AΓ)−1 Γ′Aλ. If (20)

is not satisfied, then β cannot be uniquely recovered from (λ,Γ). Note that a necessary (although

not suffi cient) condition for (20) is the order condition l ≥ k. Since Z and X have the common

variables X1, we can rewrite some of the expressions. Using (12) and (13) to make the matrix

partitions Z = [Z1,Z2] and X = [Z1,X2], we can partition Γ as

Γ =

(
Γ11 Γ12

Γ21 Γ22

)
=

(
I Γ12

0 Γ22

)
k1 k2

k1

l2
.

(15) can be rewritten as

X1 = Z1

X2 = Z1Γ12 + Z2Γ22 + V2.

β is identified if rank(Γ) = k, which is true if and only if rank(Γ22) = k2 (by the upper-diagonal

structure of Γ). Thus the key to identification of the model rests on the l2 × k2 matrix Γ22.

Alternatively, rewrite (16) as

y = X1λ1 + Z2λ2 + e,

where λ1 = β1 + Γ12β2 and λ2 = Γ22β2. So β2 can be identified if and only if rank(Γ22) = k2.

If β2 can be identified, then β1 can be identified as β1 = λ1 − Γ12β2. Thus the key identification

condition is indeed rank(Γ22) = k2.

7The precise condition should be rank([λ,Γ]) =rank(Γ) = k. The first equality guarantees the existence, and the
second guarantees the uniqueness. Usually, the existence is assumed, so we only write out the second equality.
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Exercise 5 In the structural model

y = Xβ + u,

X = ZΓ + V,

with Γ l × k, l ≥ k, we claim that β is identified (can be recovered from the reduced form) if

rank(Γ) = k. Explain why this is true. That is, show that if rank(Γ) < k then β cannot be

identified.

Example 4 (What Variable Is Qualified to Be An IV?) It is often suggested to select an in-
strumental variable that is

(i) uncorrelated with u; (ii) correlated with endogenous variables.8 (21)

(i) is the instrument exogeneity condition, which says that the instruments can correlate with the

dependent variable only indirectly through the endogenous variable. (ii) intends to repeat the in-

strument relevance condition which says that X1 and the predicted value of X2 (from the regression

of X2 on Z2 and X1) are not perfectly multicollinear; in other words, there must be "enough" extra

variation in x̂2 that can not be explained by x1. Such a condition is required in the second stage

regression. Scrutinizing (21) is important to practioners.

Check the following example with only one endogenous variable:

y = x1β1 + x2β2 + u,

E[x1u] = 0, E[x2u] 6= 0, Cov(x1, x2) 6= 0.

One may suggest the following instrument for x2, say, z = x1 + ε, where ε is some computer-

generated random variable independent of the system.9 Now, E [zu] = 0 and Cov (z, x2) = Cov(x1, x2) 6=
0 . It seems that z is a valid instrument, but intuition tells us that it is NOT, since it includes the

same useful information as x1. What is missing? We know the right conditions for a random

variable to be a valid instrument are

E [zu] = 0, (22)

x2 = x1γ1 + zγ2 + v with γ2 6= 0.

In this example, x2 = x1γ1+zγ2+v = x1 (γ1 + γ2)+(εγ2 + v), γ2 is not identified! Actually, from

Exercise 6, γ2 can be identified as 0.

The arguments above indicate that (21) is not suffi cient. Is it necessary? The answer is still

NO! The question can be formulated as follows: in (22), can we find some z such that

γ2 6= 0 but Cov(z, x2) = 0?
8Of course, we also require the instrument to be excluded from the outcome equation.
9WLOG, assume E [x1] = E [ε] = 0 so that E [zu] = Cov (z, u).
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Observe that Cov(z, x2) = Cov(z, x1γ1+zγ2+v) = Cov(z, x1)γ1+V ar(z)γ2, so if
Cov(z,x1)
V ar(z) = −γ2

γ1
,

this could happen. That is, although z is not correlated with x2, it is correlated with x1, and x1 is

correlated with x2. In mathematical language, Cov(z, x1) 6= 0, γ1 6= 0. In such a case, z is related

to x2 only indirectly through x1. If we assume Cov(z, x1) = 0, or γ1 = 0, then the assumption

Cov(z, x2) 6= 0 is the right condition for z to be a valid instrument. So the right condition should

be that z is partially correlated with x2 after netting out the effect of x1.
In general, a necessary condition for a set of qualified instruments is that at least one (need not

be the same one) instrument appears in each of the first-stage regression. Here "appear" means the

coeffi cient of the variable is not zero. When k = l, each instrument must appear in at least one

endogenous regression. �

Exercise 6 Show that the true value of γ2 in (22) is zero.

Given the cautions in the above example, how to select instruments? Generally speaking, good

instruments are not selected based on mathematics, but based on economic theory.10 In the return

to schooling example, the usual practice in the literature is to seek instruments which proxy, or are

correlated with, costs of schooling. For example, Angrist and Krueger (1991) propose using quarter

of birth as an IV for education in the analysis of returns to schooling because of a mechanical

interaction between compulsory school attendance laws and age at school entry;11 Butcher and

Case (1994) use the sex of siblings, in particular whether a girl has any sisters, as an IV to estimate

the schooling return to women because the gender of siblings may affect the cost of investing in a

child’s human capital through the existence of borrowing constraints if there are exogenous gender

differences in the return to human capital;12 Card (1995) uses college proximity as an instrument to

identify the returns to schooling, noting that living close to a college during childhood may induce

some children to go to college but is unlikely to directly affect the wages earned in their adulthood;

Blundell et al. (2005) use three instruments - a dummy variable for whether the parents reported

an adverse financial shock at either age 11 or age 16 of the child, a dummy variable for whether the

child’s teacher ranked the parent’s "interest in education" high or low when the child was 7, and

10Murray (2006) provides nine strategies to justify the validity of an instrument.
11Children born earlier in the year enter school at an older age (children turning six by January 1 can enter the

primary school on September 1) and are therefore allowed to drop out (on their 16th or 17th birthday) after having
completed less schooling than children born later in the year. The exclusion condition may fail because children
born in the first quarter are a few months older than other children, and at vey young ages a difference of a few
months might be an advantage in performance in school. This indicates that the estimator based on this IV may
underestimate the return to schooling.
12According to Butcher and Case, in the presence of borrowing constraints and assuming that boys receive a higher

return to each level of schooling, "we should expect to see not only that boys receive more education, but also that
the presence of sons reduces the educational attainment of daughters." They also considered other justifications of
this IV, e.g., the costs of raising girls are different from boys. On the contrary, they find that girls who have any
sisters, conditional on the number of siblings, have lower school attainment than do girls with no sisters; on the other
hand, the school attainment of boys is found to be unrelated to gender composition. This may be because parents
prefer a "gender mix".
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the number of older siblings of the child13.14 In development economics, Acemoglu et al. (2001)

use the mortality rates (of soldiers, bishops, and sailors) as an IV to estimate the effect of property

rights and institutions on economic development. In political economics, Levitt (1997) uses the

timing of mayoral and gubernatorial elections as an IV to identify the causal effect of police on

crime by arguing that after controlling some economic variables such as state unemployment rates

and spending on public welfare or education this IV does not affect the crime rate but will affect

the number of police offi cers.

As emphasized in Deaton (2010)15, exogeneity is different from externality. Exogeneity of a

variable means that it is orthogonal to the error term, while externality of a variable means that

it is not set or caused by the variables in the model. The former is not guaranteed by the latter.

The instruments mentioned above are external, but their exogeneity still need careful arguments.

Exercise 7 Consider the linear demand and supply system:

Demand: qi = α0 + α1pi + α2yi + ui,

Supply: qi = β0 + β1pi + β2wi + vi.

where income (y) and wage (w) are determined outside the market. In this model, are the parameters

identified?

5 Estimation: Two-Stage Least Squares

If l = k, then the moment condition is E [zi (yi − x′iβ)] = 0, and the corresponding IV estimator is

a MoM estimator:

β̂IV =
(
Z′X

)−1 (
Z′y
)
.

Another interpretation stems from the fact that since β = Γ−1λ, we can construct the Indirect

Least Squares (ILS) estimator of Tinbergen16 (1930) and Haavelmo17 (1943):

β̂ = Γ̂−1λ̂ =
((

Z′Z
)−1

Z′X
)−1 ((

Z′Z
)−1

Z′y
)

=
(
Z′X

)−1 (
Z′y
)
.

13This variable can take three values in the sample, 0, 1 and 2. It is argued that number of older siblings is more
relevant to schooling than number of total siblings.
14Other popular instruments in the return to schooling analysis include the local unemployment rate at age 18, a

state-level tuition variable, the dummy for residence in an urban area at age 18, parental education (e.g., dummies
for attending college or not), etc.
15Angus Deaton (1945-) is a British-American economist, Dwight D. Eisenhower professor at Princeton University,

and 2015 Nobel Prize winner. He is best known for his work on consumption theory, welfare and inequality. In the
consumption theory, Deaton and Muellbauer (1980) developed the Almost Ideal Demand System (AIDS).
16Jan Tinbergen (1903-1994) was a Dutch economist who shared the first Nobel Prize in Economics with Ragnar

Frisch in 1969. He is widely considered to be one of the most influential economists of the 20th century and one of
the founding fathers of econometrics. It has been argued that the development of the first macro econometric models,
the solution of the identification problem, and the understanding of dynamic models are his three most important
legacies to econometrics.
17Trygve M. Haavelmo (1911-1999) was a Professor at the University of Oslo. He won the Nobel prize in 1989

"for his clarification of the probability theory foundations of econometrics and his analyses of simultaneous economic
structures" especially in Haavelmo (1943, 1944)
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Exercise 8 In the linear model,

yi = x′iβ + ui,

E[ui|xi] = 0.

Suppose σ2i = E[u2i |xi] is known. Show that the GLS estimator of β with the weight matrix

diag
{
σ−21 , · · · , σ−2n

}
can be written as an IV estimator using some instrument zi. (Find an ex-

pression for zi.)

Exercise 9 Suppose y = xβ + u, x = ε+ λ−1u, and z = v+ γε, where ε, u and v are independent.

Find the probability limits of β̂OLS and β̂IV . Show that if γ = 0, 1n
∑n

i=1 viεi = 0, and σ2u is large,

the two probability limits are the same.

When l > k, the two-stage least squares (2SLS) estimator can be used. It was originally

proposed by Theil (1953) and Basmann (1957), and is the classic estimator for linear equations

with instruments. Given any k instruments out of z or its linear combinations can be used to

identify β, the 2SLS chooses those that are most highly (linearly) correlated with x. Namely, it is

the sample analog of the following implication of E[zu] = 0:

0 = E [E∗ [x|z]u] = E
[
Γ′zu

]
= E

[
Γ′z(y − x′β)

]
, (23)

where E∗ [x|z] is the linear projection of x on z. Replacing population expectations with sample

averages in (23) yields

β̂2SLS =
(
X̂′X

)−1
X̂′y,

where X̂ = ZΓ̂ ≡ PX with Γ̂ = (Z′Z)−1 (Z′X) and P = PZ = Z (Z′Z)−1 Z′. In other words, the

2SLS estimator is an IV estimator with the IVs being x̂i.

Exercise 10 Show that if l = k, then β̂2SLS = β̂IV , that is, no matter we use x̂i or zi as IVs, we

get the same results.

The source of the name "two-stage" is from Theil (1953)’s formulation of 2SLS. From (17),

0 = E
[
E∗[x|z](u+ v′β)

]
= E

[(
Γ′z
)

(y − z′Γβ)
]
,

i.e., β is the least squares regression coeffi cients of the regression of y on fitted values of Γ′z, so

this method is often called the fitted-value method. The sample analogue is the following two-step

procedure:

• First, regress X on Z to get X̂.

• Second, regress y on X̂ to get

β̂2SLS =
(
X̂′X̂

)−1
X̂′y =

(
X′PX

)−1 (
X′Py

)
. (24)
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Exercise 11 Show that β̂2SLS satisfies

(
S− λ̂e1e

′
1

)( 1

−β̂2SLS

)
= 0,

where e1 = (1, 0, · · · , 0)′ is the first (k + 1) × 1 unit vector, S = (y,X)′P(y,X), and λ̂ =

(1,−β̂′2SLS)S(1,−β̂′2SLS)′. Further show that when the model is just identified, λ̂ = 0 and S is

singular.

Another closely related formulation of 2SLS is Basmann (1957)’s version of 2SLS.18 It is moti-

vated by observing that E[zu] = 0 implies

0 = E∗ [u|z] = E∗ [y|z]− E∗[x|z]′β, (25)

so

β̂2SLS =
(
X̂′X̂

)−1
X̂′ŷ.

Equivalently, β̂2SLS = arg minβ (y −Xβ)′PZ (y −Xβ), which is a GLS estimator. Intuitively,

PZ (y −Xβ) should converge in probability to zero because E[zu] = 0, so we try to find some β

value such that the length of PZ (y −Xβ) is as close to zero as possible. Another algebraically

equivalent formulation of 2SLS is the control function formulation of Telser (1964)19:(
β̂2SLS

ρ̂2SLS

)
=
(
Ŵ′Ŵ

)−1
Ŵ′y, (26)

where Ŵ = [X, V̂]. This estimator is the OLS estimator of y on x and v̂. This construction

exploits another implication of E[zu] = 0:

E∗[u|x, z] = E∗[u|Γ′z + v, z] = E∗ [u|v, z] = E∗[u|v] ≡ v′ρ

for some coeffi cient vector ρ, where the third equality follows from the orthogonality of both error

terms u and v with z. So

E∗[y|x, z] = E∗[x′β + u|x, z] = x′β + E∗[u|x, z] = x′β + v′ρ.

Thus, this particular linear combination of the first-stage errors v is a function that controls for

the endogeneity of the regressors x; one can think of v as proxying for the factors in u that are
18Robert L. Basmann (1926-) is an American econometrician. He earned a Ph.D. in economics from Iowa State

University in 1955, and was a Professor of Econometrics at Texas A&M University until his retirement. He served
as a lecturer at Binghamton University after his retirement.
19 It is diffi cult to locate a definitive reference to the control function version of 2SLS. Dhrymes (1970, equation

4.3.57) formally discussed this formulation. Heckman (1978) attributed it to Telser (1964). Lester G. Telser (1931-)
is an American economist and Professor Emeritus in Economics at the University of Chicago. He received his Ph.D.
from the University of Chicago in 1956 under the supervision of Milton Friedman. His first name is an anagram of
his surname.
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correlated with x. From the FWL theorem, β̂2SLS is the effect of the net variation in x on y

after excluding the variation in v̂, while the net variation in x comes from z because x = Γ̂′z + v̂.

Basmann (1957)’s formulation (25) and the control function formulation of 2SLS can be extended

to more general (especially nonlinear) models discussed in Chapter 1, but the fitted-value method

seems hard to extend; see Blundell and Powell (2003).

Exercise 12 (i) Show that E∗ [u|v, z] = E∗[u|v] if E[zu] = 0 and E[zv′] = 0. (ii) Show that (26)

generates the same formula of β̂2SLS as (24).

Exercise 13 Take the linear model

yi = xiβ + ui, E[ui|xi] = 0,

where xi and β are scalars.

(i) Show that E[xiui] = 0 and E[x2iui] = 0. Is zi = (xi, x
2
i )
′ a valid instrumental variable for

estimation of β?

(ii) Define the 2SLS estimator of β, using zi as an instrument for xi. How does this differ from

OLS?

Exercise 14 Suppose y = m(x) + u, E[xu] 6= 0 and E[zu] = 0.

(i) Derive the probability limit of β̂2SLS.

(ii) Is β̂2SLS is the best linear predictor of m(x) in the sense that

plim
(
β̂2SLS

)
= arg min

β
E
[(
m(x)− x′β

)2]
?

It is useful to scrutinize the projection X̂ and v̂. First, X̂. Recall that Z = [X1,Z2] and

X = [X1,X2], so

X̂ = [PX1,PX2] = [X1,PX2] =
[
X1, X̂2

]
,

since X1 lies in the span of Z. Thus in the second stage, we regress y on X1 and X̂2. So only the

endogenous variables X2 are replaced by their fitted values:

X̂2 = Z1Γ̂12 + Z2Γ̂22.

Note that as a linear combination of z, x̂2 is not correlated with u and it is often interpreted as the

part of x2 that is uncorrelated with u. Second, v̂. In the control function formulation of 2SLS, only

v̂2 = x2 − x̂2 should be added to the regression since v̂1 = x1 − x̂1 = x1 − x1 = 0 (otherwise, the

multicollinearity problem would happen). x2 = Γ′12z1+Γ′22z2+v2 implies v2 = x2−Γ′12z1−Γ′22z2,

so the rank condition that rank(Γ22) = k2 guarantees that there is separate variation in v2 from

x = (z′1,x
′
2)
′ in the regression of y on x and v2.
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Exercise 15 In the structural model

y = X1β1 + X2β2 + u,

X2 = X1Γ12 + Z2Γ22 + V,

(i) show that β̂2,2SLS =
(
X′2PZ⊥2

X2

)−1
X′2PZ⊥2

y, where Z⊥2 = MX1Z2; (ii) Given that x1i are the

included exogenous variables with E[x1iui] = 0, does X′1û equal 0? where û = y −Xβ̂2SLS; (iii)

Does β̂1,2SLS equal β̂1,OLS?

Example 5 (Wald Estimator) The Wald estimator is a special IV estimator when the single

instrument z is binary. Suppose we have the model

y = β0 + β1x+ u, Cov(x, u) 6= 0,

x = γ0 + γ1z + v.

The identification conditions are

Cov(z, x) 6= 0, Cov(z, u) = 0.20 (27)

From Exercise 15, the IV estimator is

β̂1 =

n∑
i=1

(zi − z) (yi − y)

n∑
i=1

(zi − z) (xi − x)

.

If z is binary that takes the value 1 for n1 of the n observations and 0 for the remaining n0
observations, then β̂1 is equivalent to

β̂Wald =
y1 − y0
x1 − x0

,

where y1 is mean of y across the n1 observations with z = 1, y0 is the mean of y across the n0
observations with z = 0, and analogously for x. Why?

β̂1 =

n∑
i=1

yizi − yzi
n∑
i=1

xizi − xzi
=

∑
zi=1

(yizi − yzi) +
∑
zi=0

(yizi − yzi)∑
zi=1

(xizi − xzi) +
∑
zi=0

(xizi − xzi)

=

∑
zi=1

(yizi − yzi) /n1∑
zi=1

(xizi − xzi) /n1
=
y1 − y
x1 − x

=
y1 − y0
x1 − x0

,

20 In view of Example 4, why is Cov(z, x) 6= 0 the right identification condition? This is because x1 = 1 in this
example so that γ1 = Cov(z, x)/V ar(z); as a result, Cov(z, x) 6= 0 is not only necessary but also suffi cient for
identification.
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Figure 4: Intuition for the Wald Estimator in the Linear Demand/Supply System

where the last equality is from y = n1y1+n0y0
n . This estimator is called the Wald estimator first

proposed in Wald (1940) and converges in probability to

E [y|z = 1]− E [y|z = 0]

E [x|z = 1]− E [x|z = 0]
. (28)

Note that the numerator and denomator of (28) are exactly the slope coeffi cients in the reduced

form equations:

y = λ0 + λ1z + e,

x = γ0 + γ1z + v,

so the form of β̂Wald is a direct application of ILS. A simple interpretation of this estimator is to

take the effect of z on y and divide by the effect of z on x. Figure 4 provides some intuition for the

identification scheme of the Wald estimator in the linear demand/supply system - the shift in p by

z devided by the shift in q by z is indeed a reasonable slope estimator of the demand curve. �

The Wald estimator has many applications. In Card (1995), y is the log weekly wage, x is years

of schooling S, and z is a dummy which equals 1 if born in the neighborhood of an university and 0

otherwise. In studying the returns to schooling in China, Giles et al. (2003) used a dummy indicator

of living through the Cultural Revolution or not as z. Angrist and Evans (1998) use the dummy of

whether the sexes of the first two children are the same, which indicates the parental preferences

for a mixed sibling-sex composition, (and also a twin second birth) as the instrument to study the

effect of a third child on employment, hours worked and labor income. Hearst et al. (1986) and

Angrist (1990) use the Vietnam era draft lottery as an instrument for veteran status to identify the
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effects of mandatory military conscription on subsequent civilian mortality and earnings.21 Imbens

et al. (2001) use "winning a prize in the lottery" as an instrument to identify the effects of unearned

income on subsequent labor supply, earnings, savings and consumption behavior.22

Exercise 16 Consider the single equation model

yi = xiβ + ui,

where yi and xi are both real-valued. Let β̂ denote the IV estimator of β using as instrument a

dummy variable di (takes only the values 0 and 1). Find a simple expression for the IV estimator

in this context and derive its probability limit. What is the difference between this probability limit

and the probability limit of the Wald estimator?

Exercise 17 (*) Suppose

y = β0 + β1x+ u, Cov(x, u) 6= 0,

x = γ0 + γ1z + v,E[u|z] = 0, E[zv] = 0,

where x is binary. Unless z is binary, E[x|z] cannot be a linear function. Suppose we run a Probit
regression in the first stage and get x̂ = Φ (γ̂0 + γ̂1z).

(i) Show that if E[x|z] = Φ (γ0 + γ1z), then β̂ ≡
(
β̂0, β̂1

)′
based on regressing y on 1, x̂ is consis-

tent.

(ii) Show that if E[x|z] 6= Φ (γ0 + γ1z), then β̂ based on regressing y on 1, x̂ is not consistent.

(iii) Show that if E[x|z] = Φ (γ0 + γ1z), plim
(
β̂
)
is the same as the plim of the IV estimator using

(1, x̂) as the instrumental variables, but if E[x|z] 6= Φ (γ0 + γ1z), they are generally different.

(iv) Show that the IV estimator using (1, x̃) as the instrumental variables is consistent, where x̃ is

the linear projection of x on (1, z).

(Hint: if E[x|z] = Φ (γ0 + γ1z), γ̂ = (γ̂0, γ̂1)
′ is consistent; otherwise, it is inconsistent.)

21See Heckman (1997) for a critique on the validity of this instrument. Suppose z 6= x is because x = 0 although
z = 1, i.e., draft evaders (x = 1 while z = 0, the volunteers, seem fine with exclusion although they may anticipate
high earnings gains from military service). If this is for medical reasons, or more generally reasons that make
these candidates ineligible to serve, then the exclusion assumption seems plausible. If, on the other hand these
are individuals fit but unwilling to serve, they may have had to take actions to stay out of the military that could
have affected their subsequent civilian labor market careers. Such actions may include extending their educational
career, or temporarily leaving the country. Note that these issues are not addressed by the random assignment of the
instrument.
22All the samples bought lottery. x is the magnitude of the prize, while z is the indicator for winning the prize,

so E [x|z = 0] = 0. y is the behavior (e.g., consumption) change before and after winning the prize. Imbens et al.
essentially assume the exogeneity of x, so z is not really required.
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6 Interpretation of the IV Estimator

In this section, we intend to answer two questions: (i) How to interpret the IV estimator (and the

2SLS estimator) in the projection language of Chapter 2? (ii) What is the IV estimator estimating

in a nonseparable model?

Figure 5: Projection Interpretation of the IV Estimator

6.1 Geometric Interpretation of the IV Estimator

Figure 5 illustrates the geometric meaning of the IV estimator. For simplicity, we assume k = k2 = 1

and l = l2 = 1; also, we discuss the population version of the IV estimator instead of the sample

version and denote plim
(
β̂IV

)
as βIV . In this simple case, xβIV is the projection of y onto

span(x) along span⊥(z); this can be easily seen from xβIV = xE[zx]−1E[zy] ≡ Px⊥z(y) (compare

to PX⊥Z(y) in Section 4.1 of Chapter 2). Since z ⊥ u, this is also the projection of y onto span(x)

along u if dim
(
span⊥(z)

)
= 1 as in the figure. In the figure, Px⊥z(y) is very different from the

orthogonal projection of y onto span(x) - Px(y) ≡ xE[x2]−1E[xy], because z is different from x

(otherwise, E[zu] 6= 0 since E[xu] > 0 in the figure). On the other hand, z cannot be orthogonal to

x in the figure (which corresponds to the rank condition); otherwise, Px⊥z(y) is not well defined.

So z must stay between x and x⊥, just as shown in the figure.

If there are more than one instruments, or l > 1, then the 2SLS estimator first orthogonally

projects x onto span(z) to get x̂ in the figure, and then projects y onto span(x) along span⊥(x̂).

Now, span(z) determines the direction of x̂. Also, y in the figure should be replaced by Px,x̂(y) by

noting that Px⊥x̂(y) = xE[x̂x]−1E[x̂y] = xE[x̂x]−1E[x̂Px,x̂(y)], where Px,x̂(y) is the projection of

y on span (x, x̂).
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6.2 What is the IV Estimator Estimating? (*)

In the linear model, the IV estimator is estimating β, the constant effect of x on y. In a generally

nonseparable model (e.g., the equations (18), or x and y are both binary),

y = m(x,u),

x = h(z,v),

the effect of x on y is heterogenous. What is the IV estimator estimating? This is an interesting

question. To be specific, consider the example of Angrist and Krueger (1991). In this example, z is

a dummy variable equal to 0 if born in the first quarter of the year and 1 otherwise, x = S is also a

dummy indicating high school graduates versus nongraduates, and y is the log weekly wage. Since

z is dummy, the IV estimator is the Wald estimator. To acknowledge the dependence of y on S,

we use yj to denote the log weekly wage with jth level of schooling, j = 0, 1, and to acknowledge

the dependence of S on z, we use Si to denote the schooling level when z = i, i = 0, 1.

Now, S = z · S1 + (1− z) · S0, and y = y0 + (y1 − y0)S. The numerator of (28)

E [y|z = 1]− E [y|z = 0]

= E [y0 + (y1 − y0)S1|z = 1]− E [y0 + (y1 − y0)S0|z = 0]

= E [y0 + (y1 − y0)S1]− E [y0 + (y1 − y0)S0]
= E [(y1 − y0) · (S1 − S0)]

where the second equality is from the exclusion restriction which requires that z affects y only

through S, e.g., the independence of z with (y0, y1, S0, S1) can guarantee this. Using the more

familiar notations, we write the system as

y = β0 + β1S + u

S = γ0 + γ1z + v,

where yj = β + j · β1 + u, and Si = γ0 + i · γ1 + v. If z is independent of (u, v), the second equality

follows.

We classify the possibility of S1 and S0 in the following table.

S0

0 1

S1
0

y0 − y0 = 0

Never-taker

y0 − y1 = − (y1 − y0)
Defier

1
y1 − y0
Complier

y1 − y1 = 0

Always-taker

Table: Causal Effect of z on y, yS1 − yS0 Classified by S0 and S1
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The name "complier" in the table is because this group of individuals always comply with their

assignment z; other names can be similarly understood. S1 − S0 could be −1, 0, or 1, where 0

indicates those whose schooling status is unchanged, and 1 and −1 could be similarly understood.

Therefore,

E [(y1 − y0) · (S1 − S0)]
= E [(y1 − y0) |S1 − S0 = 1]P (S1 − S0 = 1) + E [(y1 − y0) |S1 − S0 = −1]P (S1 − S0 = −1) .

If for everyone, we always have S1−S0 = 1 or 0, that is, compulsory attendance laws cannot reduce

schooling, then

E [(y1 − y0) · (S1 − S0)] = E [(y1 − y0) |S1 − S0 = 1]P (S1 − S0 = 1) .

In the table, we exclude the possibility of defiers. This is the monotonicity assumption in Imbens

and Angrist (1994).23 The denominator of (28)

E [S|z = 1]− E [S|z = 0] = E [S1 − S0] = P (S1 − S0 = 1) ,

so we have

β̂1
p−→ E [(y1 − y0) |S1 − S0 = 1] .

In summary, if we interpret z as a random assignment and x as the realized treatment status

due to imperfect compliance, then plim
(
β̂1

)
is the intention-to-treat (ITT) effect E [y|z = 1]−

E [y|z = 0] scaled by the proportion of individuals that are induced to change their treatment status

through the intented assignment.

plim
(
β̂1

)
= E [(y1 − y0) |S1 − S0 = 1] is called the local average treatment effect (LATE)

in Imbens and Angrist (1994), that is, the average treatment effect for those individuals whose

schooling decision is affected by the law. This set of individuals is only implicitly defined and

cannot be observed. β̂1 is called the local average treatment effect estimator. For different
z, this set of individuals is different, so different from the usual estimators (such as the LSE)

whose interpretations are invariant, the interpretation of the IV estimator depends on the choice

of instruments.

When S takes J ≥ 2 levels, Angrist and Imbens (1995) show that

β̂1
p−→

J∑
j=1

ωj · E [yj − yj−1|S1 ≥ j > S0] ≡ β (29)

where ωj = P (S1≥j>S0)∑J
j=1 P (S1≥j>S0)

= P (S<j|z=0)−P (S<j|z=1)
E[S|z=1]−E[S|z=0] is the impact of z on the cdf of S at the level

j. That is, β1 is a weighted average of per-unit treatment effect. For the case with continuous S,

23Balke and Pearl (1997) refer to it as the "no-defiance" assumption, and Heckman and Vytlacil (2005) call it the
uniformity assumption because all individuals respond to z in the same direction.
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see Angrist et al. (2000).

Exercise 18 Show (29) in the case of J = 2.

Exercise 19 S1 − S0 is called the compliance intensity which need not be 1, so in the expression

of β in (29), the sets of compliers {S1 ≥ j > S0}Jj=1 are overlapping subpopulations. Denote the
complier subpopulation with S0 = k and S1 = l as Ckl, where k < l, k, l = 0, 1, · · · , J . Show that β
can be re-expressed in terms of nonoverlapping subpopulations as

β =
J−1∑
k=0

∑
l>k

wkl · E [yl − yk|Ckl] ,

where wkl = P (Ckl)∑J−1
k=0

∑
l>k(l−k)P (Ckl)

.

7 LIML (*)

Simultaneous equations models can be estimated by the MLE, which is called the full-information
maximum likelihood (FIML) estimator. Sometimes, we are only interested in the parameters
of a single equation. The corresponding MLE is called the limited-information maximum
likelihood (LIML) estimator. This estimator is proposed by Anderson and Rubin (1949, 1950),24

and is the ML counterpart of the 2SLS estimator. The LIML estimator predates the 2SLS estimator

and is asymptotically equivalent to the 2SLS estimator given homoskedastic errors. The LIML

estimator is less effi cient than the FIML estimator, but more robust (invariant to the normalization

used in a simultaneous equations system). This section is based on Section 8.6 of Hayashi (2000).

If only one-equation is of interest, we come back to the setup of Sections 2, 3 and 4. The

notations there can be applied in this case. Define

B
((k2+1)×(k2+1))

=

(
1 0

−β2 Ik2

)
, Γ
(l×(k2+1))

=

(
β1 Γ12

0 Γ22

)
1 k2

k1

l2
,

θ = (β1,β2,Γ12,Γ22) , yi =
(
yi,x

′
2i

)′
,υi =

(
ui

v2i

)
,

where yi collects endogenous variables. If υi|zi ∼ N (0,Σ), then the average log-likelihood

`n (θ,Σ) = −k2 + 1

2
log (2π)− 1

2
log (|Σ|)− 1

2n

n∑
i=1

(
B′yi − Γ′zi

)′
Σ−1

(
B′yi − Γ′zi

)
,

24Theodore (Ted) Anderson (1918-2016) was a American statistician and econometrician, who made fundamental
contributions to multivariate statistical theory. Important contributions include the Anderson-Darling distribution
test, the Anderson-Rubin statistic, the method of reduced rank regression, and his most famous econometrics con-
tribution —the LIML estimator. He continued working throughout his long life, even publishing theoretical work at
the age of 97!
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where |Σ| is the determinant of Σ, and note that the Jacobian of the transformation from yi to υi
is B whose determinant is 1. The average log likelihood function concentrated with respect to the

parameter Σ,β1,Γ12,Γ22 (see Appendix A) is

`n (β2) = −k2 + 1

2
log (2π)− 1

2
log κ (β2)−

1

2
log
∣∣Y′MZY

∣∣ ,
where

κ (β2) =
γ ′Y′M1Yγ

γ ′Y′MZYγ
=

(
y⊥ −X⊥2 β2

)′ (
y⊥ −X⊥2 β2

)(
y⊥ −X⊥2 β2

)′
MZ⊥2

(
y⊥ −X⊥2 β2

) (30)

with γ =
(
1,−β′2

)′, Y = [y,X2], M1 = In − Z1(Z
′
1Z1)

−1Z′1 and for any random matrix A,

A⊥ = M1A. Maximizing `n (β2) is equivalent to minimizing κ (β2). Because β2 can be obtained

in this way, LIML estimates are sometimes referred to as least variance ratio estimates. First
of all, κ̂ ≡ κ

(
β̂2

)
≥ 1, since span(Z1) ⊂ span(Z) and the numerator of κ (β2) cannot be smaller

than the denominator for any possible γ. In fact, for any equation that is overidentified, κ̂ will

always be greater than 1 in finite samples. For an equation that is just identified, κ̂ will be exactly

equal to 1 because the number of free parameters to be estimated is then just equal to k, the rank

of Z. Thus, in this case, it is possible to choose γ so that the numerator and denominator of (30)

are equal.

Thanks to the special form of B and no exclusion restrictions in the endogenous variable re-

gression, there is a closed-form solution to the LIML estimator (see Appendix A):

β̂LIML =
(
β̂
′
1, β̂

′
2

)′
=
[
X′ (In − κ̂MZ) X

]−1
X′ (In − κ̂MZ) y, (31)

where κ̂ is the smallest characteristic root of W1W
−1 or W−1/2W1W

−1/2 with

W1
((k2+1)×(k2+1))

= Y′M1Y, W
((k2+1)×(k2+1))

= Y′MZY,

or the smallest root of the determinantal equation |W1 − κW| = 0. For inference, it is useful to

observe that (31) shows that β̂LIML can be written as an IV estimator

β̂LIML =
(
X̃′X

)−1
X̃′y (32)

using the instrument

X̃ = (In − κ̂MZ) X =

(
X1

X2 − κ̂V̂2

)
,

where V̂2 = MZX2 is the reduced-form residuals from regressing x2i on zi. Expressing LIML using

this IV formula is useful for variance estimation.

In Appendix B, we show that the LIML and 2SLS have the same asymptotic distribution, which

holds under the same assumptions as for 2SLS, and in particular does not require normality of the

errors. Consequently, one method to obtain an asymptotically valid covariance estimate for LIML
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is to use the same formula as for 2SLS. However, this is not the best choice. Rather, using the IV

representation for LIML (32), we can estimate the asymptotic covariance matrix by

V̂ =

(
1

n
X̃′X

)−1
Ω̂

(
1

n
X′X̃

)−1
, (33)

where

Ω̂ =
1

n

n∑
i=1

x̃ix̃
′
iû
2
i

with x̃i being the ith row of X̃ and ûi = yi − x′iβ̂LIML. This simplifies to the 2SLS formula when

κ̂ = 1 but otherwise differs. The estimator (33) is a better choice than the 2SLS formula for

covariancematrix estimation as it takes advantage of the LIML estimator structure. When the

model is homoskedastic, we can replace V̂ by

σ̂2
[
X′ (In − κ̂MZ) X

]−1
,

where σ̂2 = n−1
(
y −X′β̂LIML

)′ (
y −X′β̂LIML

)
. The likelihood ratio statistic for testing overi-

dentifying restrictions reduces to

LR = n log κ̂,

which converges to χ2l−k. When l = k, κ̂ = 1 and LR = 0 as expected. This test statistic was first

proposed by Anderson and Rubin (1950).

Minimizing (30) with respect to γ is invariant to the scale of γ, so we use a normalization

γ = (1,−β′2)′ above. An alternative normalization is to set γ ′Y′MZYγ = 1. Using the second

normalization,

γ̂ = arg min
γ

γ ′Y′M1Yγ

γ ′Y′MZYγ

is the generalized eigenvector of Y′M1Y with respect to Y′MZY associated with the smalled

generalized eigenvalue.25 Computationally this is straightforward. For example, in MATLAB,

the generalized eigenvalues and eigenvectors of the matrix A with respect to B is found by the

command eig(A,B). Once this γ̂ is found, any other normalization can be obtained by rescaling.

For example, to obtain the MLE for β2 make the partition γ̂
′ =

[
γ̂1, γ̂

′
2

]
and set β̂2 = −γ̂2/γ̂1. To

obtain the MLE for β1, recall the structural equation yi = x′1iβ1 + x′2iβ2 + ui. Replacing β2 with

the MLE β̂2 and then apply regression. Thus

β̂1 = (X′1X1)
−1X′1

(
y −X2β̂2

)
.

These solutions are the same as those in (31). Both kinds of solutions involve similar computations,

25Let A and B be k × k matrices. The generalized characteristic equation is |A− µB| = 0. The solutions µ are
known as generalized eigenvalues of A with respect to B. Associated with each generalized eigenvalue µ is a
generalized eigenvector v which satisfies Av = Bvµ. They are typically normalized so that v′Bv = 1 and thus
µ = v′Av.
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e.g., calculate κ̂, but (31) is important for the distribution theory and to reveal the algebraic

connection between LIML, leasts quares, and 2SLS.

If we want to test H0 : β2 = β20, then notice that

y −X2β20 = X1λ
∗
1 + Z2λ

∗
2 + e∗,

where λ∗1 = β1 + Γ12 (β2 − β20), λ∗2 = Γ22 (β2 − β20), and e∗ = u + V2 (β2 − β20). Here, the
exogenous variables excluded from the structural equation are added directly to the equation instead

of being used to replace the endogenous explanatory varaibles by fitted values as in 2SLS. Now,

testing β2 = β20 is equivalent to test λ
∗
2 = 0, and the resulting F -statistic

F (β20) =
(y −X2β20) [M1 −MZ] (y −X2β20) /l2
(y −X2β20) MZ (y −X2β20) / (n− l) =

(
y⊥ −X⊥2 β20

)′
PZ⊥2

(
y⊥ −X⊥2 β20

)
/l2(

y⊥ −X⊥2 β20
)′

MZ⊥2

(
y⊥ −X⊥2 β20

)
/ (n− l)

follows Fl2,n−l under the null.
26 This test statistic was first proposed by Anderson and Rubin

(1949). The advantage of the F test over the Wald test based on the 2SLS estimation is that it is

valid even if the identification fails (i.e., rank(Γ22) < k2); see Dufour (1997). The 1− α confidence
set of β2 by inverting the F test, say, Cβ2 (α), is not generally an ellipsoid.27 Also, the AR-test

is designed to test the complete vector β2 = β20, and is not suitable to build confidence sets for

individual components of β2 or some tranformation r(β2) ∈ Rq, where q < k2. A generic solution

is the projection-based confidence set; see, e.g., Dufour (1990, 1997), Wang and Zivot (1998),
Dufour and Jasiak (2001) and Dufour and Taamouti (2005, 2007). Such a confidence set takes the

image set r
(
Cβ2 (α)

)
=
{
r(β2)|β2 ∈ Cβ2 (α)

}
as the confidence set. Because β2 ∈ Cβ2 (α) implies

r(β2) ∈ r
(
Cβ2 (α)

)
, we have

P
(
r(β2) ∈ r

(
Cβ2 (α)

))
≥ P

(
β2 ∈ Cβ2 (α)

)
≥ 1− α,

i.e., such a confidence set is valid. When r(β2) = βj , an individual element of β2, r
(
Cβ2 (α)

)
can

be interpreted as the projection of Cβ2 (α) on the βj-axis; r
(
Cβ2 (α)

)
need not be an interval, but

we can take its convex hull, which is an interval, as the confidence interval. The projection-based

confidence set is typically nonsimilar and conservative.

26This null distribution relies on the normality of ui but not that of v2i, which implies that the reduced-form
equation of x2i may suffer from the omitted instruments.
27The confidence set can be even empty when λ̂ in Exercise 22 exceeds some constant. Empty confidence set is an

indication that the model is misspecified, e.g., there does not exist β2 such that λ2 = Γ22β2.
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8 k-class Estimators (*)

The LIML estimator (31) is a special k-class estimator28 (see Theil (1961) and Nagar (1959)),

β̂ (k) =
[
X′ (In − kMZ) X

]−1
X′ (In − kMZ) y.

Inspection of the 2SLS formula (24) shows that the 2SLS estimator is a k-class estimator with k = 1

(which implies that under just-identification the IV estimator is MLE under normality), and the

OLS estimator is a k-class estimator with k = 0. It follows that the LIML and 2SLS are numerically

the same when the equation is just identified. When the errors are normally distributed, the 2SLS

estimator has the p-th moment when p ≤ l − k, that is, the number of finite moments for 2SLS
equals the number of overidentifying restrictions; see Mariano and Sawa (1972), Sawa (1969) and

also Richardson (1968) and Kinal (1980). This implies that 2SLS does not even have a mean if the

equation is just identified. On the other hand, the LIML estimator has no finite moments because

its distribution has fat tails, so it generally has large disperson especially with weak instruments;

see Mariano (1982) and Phillips (1983). Nevertheless, Anderson et al. (1982) present analytical

results that show that LIML approaches its asymptotic normal distribution much more rapidly

than 2SLS. They also show that the median of LIML is typically much closer to β than is the mean

or median of TSLS. Sargan (1958) reports that the bias of the 2SLS is of the order of the inverse

of the minimum population canonical correlation between X2 and Z2.29 In the fixed-instrument,

normal-error model (i.e., Z is fixed and (ui,v
′
i) are iid jointly normal) with l1 = k1 = 0 and k = 1,

Rothenberg (1984) shows that the bias of 2SLS (to three terms) is

(l − 2) ρ

µ2
σu
σv
,

which increases with l, but the bias of LIML,

− ρ

µ2
σu
σv
,

does not, where ρ is the correlation between ui and vi, and µ2 = Γ′Z′ZΓ/σ2v is often called

the concentration parameter; for the general asymptotic expansion of the 2SLS estimator, see
Sargan and Mikhail (1971) and Anderson and Sawa (1973). When the instruments are fixed and

the errors are symmetrically distributed, Rothenberg (1983) shows that LIML is the best median-

unbiased k-class estimator to second order. Hillier (1990) criticizes the 2SLS estimator by arguing

that the object that is identified is the direction (1,−β′)′ but not its magnitude. He then shows that
the 2SLS estimator of direction is distorted by its dependence on normalization of the parameter.

On the other hand, the LIML is less sensitive to the normalization and is a better estimator of

28The "k" in k-class estimators and the "k" of dim (x) can be differentiated from the context. Also, κ̂ is usually
written as k in the literature, which is the origin of the name of k-class estimators.
29He also gave a minimax instrumental-variable interpretation to the original LIML estimator. For a minimum

distance interpretation of the LIML estimator, see Goldberger an Olkin (1971).
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direction. Bekker (1994) presents small-sample results for LIML and a generalization of LIML, and

also shows that unlike 2SLS, LIML is consistent under many-instrument asymptotics. Hahn and

Hausman (2002) justify the use of the LIML estimator in some cases with weak instruments.

There are many other k-class estimators. For example, Sawa (1973) has suggested a way of

modifying the 2SLS estimator to reduce bias, and Fuller (1977) and Morimune (1978, 1983) have

suggested modified versions of the LIML estimator. Fuller’s estimator, which is the simplest of

these, uses k = κ̂LIML − α/(n − l) with α being a fixed number. One good choice is α = 1, since

it yields estimates that are approximately unbiased. In contract to the LIML estimator, which

has no finite moments, Fuller’s modified estimator has all moments finite provided the sample

size is large enough. Rothenberg (1984) shows that with fixed instruments and normal errors,

the Fuller-k estimator with α = 1 is best unbiased to second order among estimators with k =

1 + a (κ̂LIML − 1)− c/ (n− l) for some constants a and c. In Monte Carlo simulations, Hahn et al.
(2004) reported substantial reductions in bias and MSE using Fuller-k estimators, relative to 2SLS

and LIML, when instruments are weak.

It has been shown that all members of the k-class for which k converges to 1 at a rate faster

than n−1/2 have the same asymptotic distribution as the 2SLS estimator. These are largely of

theoretical interest, given the pervasive use of 2SLS or OLS. The large sample properties of all k-

class estimators are the same, but the finite sample properties are possibly very different. Mariano

(1982) discusses a number of analytical results and provides some guidance as to when LIML is

likely to perform better than 2SLS. He suggests some evidence favors LIML when the sample size

is not large while the number of overidentifying restrictions is. However, much depends on the

particular model and data set.

LIML is rarely used as it is more diffi cult to implement and harder to explain than 2SLS.

Nevertheless, Pagan (1979) shows that the LIML estimator can be computed by treating the system

of equations as a seemingly unrelated regressions (SUR) models, ignoring both the constraints
on the reduced form and the correlation between x2i and ui, and using the iterative GLS method.

9 Split-Sample IV and JIVE (*)

We briefly describe the jackknife instrumental variables estimator (JIVE) of Angrist, Imbens
and Krueger (1999, AIK hereafter) here. To motivate the JIVE, first note that the ideal instrument

for estimation of β is w = Γz. We can write the ideal IV estimator as

β̂ideal =

(
n∑
i=1

wix
′
i

)−1( n∑
i=1

wiyi

)
=
(
W′X

)−1 (
W′y

)
.

This estimator is not feasible since Γ is unknown. The 2SLS estimator replaces Γ with the mul-

tivariate least squares estimator Γ̂ and wi by x̂i = Γ̂zi leading to the following representation for

29



2SLS

β̂2SLS =

(
n∑
i=1

x̂ix
′
i

)−1( n∑
i=1

x̂iyi

)
=
(
X̂′X

)−1
X̂′y.

Since Γ̂ is estimated on the full sample including observation i it is a function of the reduced form

error vi which is correlated with the structural error ui. It follows that x̂i and ui are correlated,

which means that β̂2SLS is biased for β. More specifically,

β̂2SLS − β =
(
X̂′X

)−1
X̂′u,

where X̂ = ZΓ̂ = PZX with Γ̂ = (Z′Z)−1 (Z′X). Note that X̂ = ZΓ + PZV, so although ZΓ is

not correlated with u, PZV is. Specifically,

E
[
uix̂
′
i

]
= E

[
z′i
(
Z′Z

)−1( n∑
i=1

zjv
′
j

)
ui

]
= E

[
z′i
(
Z′Z

)−1
ziv
′
iui

]
= E

[
z′i
(
Z′Z

)−1
ziE

[
v′iui|Z

]]
= E

[
z′i
(
Z′Z

)−1
ziσvu

]
=

l

n
σvu,

where we denote E [v′iui|Z] as σvu which is not zero.30 For fixed l, this bias will vanish in large

samples, but in finite samples, this bias is not neglectable.

A possible solution to this problem is to replace x̂i with a predicted value which is uncorrelated

with the error ui. One method is the split-sample IV (SSIV) estimator of Angrist and Krueger
(1995). Divide the sample randomly into two independent halves A and B. Use A to estimate the

reduced form and B to estimate the structural coeffi cient. Specifically, use sample A to construct

Γ̂A = (Z′AZA)−1 (Z′AXA). Combine this with sample B to create the predicted values X̂B = ZBΓ̂A.

The SSIV estimator is β̂SSIV =
(
X̂′BXB

)−1
X̂′ByB. This has lower bias than β̂2SLS. A limitation

of SSIV is that the results will be sensitive to the sample spliting. One split will produce one

estimator; another split will produce a different estimator. Any specific split is arbitrary, so the

estimator depends on the specific random sorting of the observations into the samples A and B. A

second limitation of SSIV is that it is unlikely to work well when the sample size n is small.

A much better solution is obtained by a leave-one-out estimator for Γ. Specifically, let

Γ̂(−i) =
(
Z′Z− ziz

′
i

)−1 (
Z′X− zix

′
i

)
=
(
Z′(−i)Z(−i)

)−1 (
Z′(−i)X(−i)

)
be the estimator of Γ computed using all but the ith observation in the first stage, and let x∗i =

Γ̂′(−i)zi be the reduced form predicted values. Using x∗i as an instrument we obtain the estimator

β̂JIVE1 =

(
n∑
i=1

x∗ix
′
i

)−1( n∑
i=1

x∗i yi

)
=

(
n∑
i=1

Γ̂′(−i)zix
′
i

)−1( n∑
i=1

Γ̂′(−i)ziyi

)
=:
(
X∗′X

)−1
X∗′y.

30Note that
∑n
i=1 z′i (Z′Z)

−1
zi =tr(PZ) = l. Since for a random sample, the expectation of each summand is the

same, we have E
[
z′i (Z′Z)

−1
zi
]

= l/n.
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This is the first JIVE of AIK. It first appeared in Phillips and Hale (1977).31 Now,

E
[
uix
∗′
i

]
= E

[
z′i

(
Z′(−i)Z(−i)

)−1
Z′(−i)E

[
X(−i)ui|Z

]]
= 0,

i.e., β̂JIVE1 is unbiased.

AIK point out that a somewhat simpler adjustment also removes the correlation and bias.

Define the estimator and predicted value

Γ̃(−i) =
(
Z′Z

)−1 (
Z′X− zix

′
i

)
=
(
Z′Z

)−1 (
Z′−iX−i

)
,

x∗∗i = Γ̃′(−i)zi,

which only adjusts the Z′X component. Their second JIVE of β is

β̂JIVE2 =

(
n∑
i=1

x∗∗i x′i

)−1( n∑
i=1

x∗∗i yi

)
=

(
n∑
i=1

Γ̃′(−i)zix
′
i

)−1( n∑
i=1

Γ̃′(−i)ziyi

)
=
(
X∗∗′X

)−1
X∗∗′y.

The unbiasedness of β̂JIVE2 can be similarly shown.

Using the formula for leave-one-out estimators in Section 6 of Chapter 3, β̂JIVE1 and β̂JIVE2 use

two linear operations: the first to create the predicted values x∗i or x∗∗i , and the second to calculate

the IV estimator. Thus the estimators do not require significantly more computation than 2SLS.

AIK showed that their JIVEs and 2SLS are asymptotically equivalent under conventional fixed-

model asymptotics. The literature usually refers to β̂JIVE1 as the JIVE, and we follow this conven-

tion. Calculations drawing on work of Chao and Swanson (2002) reveal that under weak-instrument

asymptotics, the JIVE is asymptotically equivalent to a k-class estimator with κ̂ = 1 + l/(n − l).
Theoretical calculations by Chao and Swanson (2002) and Monte Carlo simulations by AIK indi-

cate that the JIVE is similar to LIML and improves on 2SLS in bias when there are many weak

instruments.32 Davison and MacKinnon (2006) criticize the JIVE to have low effi ciency relative

to LIML under homoskedasticity, but as suggested in Hausman et al. (2012), this criticism can be

overcomed by combining the JIVE idea with LIML. For asymptotic distribution theory for β̂JIVE1
and β̂JIVE2 in the presence of heteroskedasticity and many instruments, see Chao, et al. (2012).

Exercise 20 Define Pij as the ijth element of PZ. Show that (i) z′iΓ̂(−i) =
z′iΓ̂−Piix′i
1−Pii ; (ii) β̂JIVE2

can be rewritten as
(∑

i 6=j x′iPijxj
)−1 (∑

i 6=j x′iPijyj
)
.

Exercise 21 (Empirical) The data file card.dat is taken from David Card "Using Geographic

Variation in College Proximity to Estimate the Return to Schooling" in Aspects of Labour Market

Behavior (1995). There are 2215 observations with 29 variables, listed in card.pdf. We want to

31 β̂JIVE1 is the UJIVE of Blomquist and Dahlberg (1999), who propose their JIVE as (X∗′X∗)
−1

X∗′y.
32Monte Carlo simulations in Blomquist and Dahlberg (1999) show that the variance of JIVE and LIML is larger

than 2SLS.
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estimate a wage equation

log(Wage) = β0 + β1Educ+ β2Exper + β2Exper
2 + β4South+ β5Black + u,

where Educ = Education (Years), Exper = Experience (Years), and South and Black are regional

and racial dummy variables.

(a) Estimate the model by OLS. Report estimates and standard errors.

(b) Now treat Education as endogenous, and the remaining variables as exogenous. Estimate the
model by 2SLS, using the instrument near4, a dummy indicating that the observation lives

near a 4-year college. Report estimates and standard errors.

(c) Re-estimate by 2SLS (report estimates and standard errors) adding three additional instru-
ments: near2 (a dummy indicating that the observation lives near a 2-year college), fatheduc

(the education, in years, of the father) and motheduc (the education, in years, of the mother).

Appendix A: Concentrated Likelihood in the LIML

The derivation here is based on Section 18.5 of Davidson and MacKinnon (1993). First concentrate

out Σ. Taking derivative with respect to Σ−1, we have

∂`n (θ,Σ)

∂Σ−1
=

1

2
Σ− 1

2n

n∑
i=1

(
B′yi − Γ′zi

) (
B′yi − Γ′zi

)′
,

so

Σ̂ (θ) =
1

n

n∑
i=1

(
B′yi − Γ′zi

) (
B′yi − Γ′zi

)′
=

1

n
(YB− ZΓ)′ (YB− ZΓ) .

As a result, the concentrated average log-likelihood is

`n (θ) = −k2 + 1

2
(log (2π) + 1)− 1

2
log

∣∣∣∣ 1n (YB− ZΓ)′ (YB− ZΓ)

∣∣∣∣
= −k2 + 1

2
(log (2π) + 1)− 1

2
log

∣∣∣∣ 1n (Y − ZΓB−1
)′ (

Y − ZΓB−1
)∣∣∣∣ ,

where the second equality is due to |B| = 1. Note that

ΓB−1 =

(
β1 Γ12

0 Γ22

)(
1 0

β2 Ik2

)
=

(
β1 + Γ12β2 Γ12

Γ22β2 Γ22

)
,

which is the (restricted) reduced-from coeffi cient matrix, the top part corresponds to Z1 and the

bottom part to Z2. Since β1 does not appear in the bottom part, it is clear that for whatever value

of β2, we can find values of β1 and Γ12 such that the top part is equal to anything at all. In other

words, the structural equations do not impose any restrictions on the (unrestricted) reduced-form
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coeffi cients corresponding to Z1. In general, however, they do impose restrictions on the coeffi cients

corresponding to Z2.

It is obvious that minimizing `n (θ) is equivalent to minimizing
∣∣∣(Y − ZΓB−1

)′ (
Y − ZΓB−1

)∣∣∣.
If there are no restrictions on the coeffi cients of Z, then the minimizer (corresponding to ΓB−1)

should be the OLS estimate Π̂ which minimizes
∣∣(Y − ZΠ)′ (Y − ZΠ)

∣∣. To see why, let Π̃ = Π̂+A

be another candidate. Then ∣∣∣∣(Y − ZΠ̃
)′ (

Y − ZΠ̃
)∣∣∣∣

=

∣∣∣∣(Y − ZΠ̂− ZA
)′ (

Y − ZΠ̂− ZA
)∣∣∣∣

=
∣∣(MZY − ZA)′ (MZY − ZA)

∣∣
=

∣∣Y′MZY + A′Z′ZA
∣∣ .

Because the determinant of the sum of two positive definite matrices is always greater than the

determinants of either of those matrix, we can see Π̂ is indeed the minimizer. Since there are no

restrictions on the rows of Π that corresponds to Z1, we can use OLS to estimate those param-

eters, and then concentrate them out of the determinant. When we do this, the determinant of∣∣(YB− ZΓ)′ (YB− ZΓ)
∣∣, which equals that of ∣∣∣(Y − ZΓB−1

)′ (
Y − ZΓB−1

)∣∣∣, becomes
∣∣(YB− ZΓ)′M1 (YB− ZΓ)

∣∣ ,
which can be rewritten as∣∣∣∣∣

(
Y⊥γ

)′ (
Y⊥γ

) (
Y⊥γ

)′ (
X⊥2 − Z⊥2 Γ22

)(
X⊥2 − Z⊥2 Γ22

)′ (
Y⊥γ

) (
X⊥2 − Z⊥2 Γ22

)′ (
X⊥2 − Z⊥2 Γ22

) ∣∣∣∣∣ (34)

This determinant depends only on γ and Γ22; we further concentrate out Γ22. Using the result

that for any matrix A and B, ∣∣∣∣∣ A′A A′B

B′A B′B

∣∣∣∣∣ =
∣∣A′A∣∣ ∣∣B′MAB

∣∣ , (35)

we have our target (34) equal to

(
Y⊥γ

)′ (
Y⊥γ

) ∣∣∣∣(X⊥2 − Z⊥2 Γ22

)′
Mv

(
X⊥2 − Z⊥2 Γ22

)∣∣∣∣ , (36)

where v = Y⊥γ, and note that
(
Y⊥γ

)′ (
Y⊥γ

)
is scalar so its determinant is itself. The parameters

Γ22 appears only in the second factor of (36). This factor is the determinant of the matrix of sums

of squares and cross-products of the residuals from regressions of MvX⊥2 on MvZ⊥2 . From the

discussion above, the minimizer (corresponding to Γ22) should be the OLS estimate, and the matrix

of residuals is MMvZ⊥2
MvX⊥2 = Mv,Z⊥2

X⊥2 . Consequently, the second factor of (36), minimized
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with respect to Γ22, is ∣∣∣X⊥′2 Mv,Z⊥2
X⊥2

∣∣∣ . (37)

The fact that v and Z⊥2 appear in a symmetrical fashion in (37) can be exploited in order to make

(37) depend on γ only through a scalar factor. Consider the determinant∣∣∣∣∣ v′MZ⊥2
v v′MZ⊥2

X⊥2

X⊥′2 MZ⊥2
v X⊥′2 MZ⊥2

X⊥2

∣∣∣∣∣ . (38)

By use of (35), this determinant can be factorized just as (34) was. We obtain(
v′MZ⊥2

v
) ∣∣∣X⊥′2 Mv,Z⊥2

X⊥2

∣∣∣ .
Using the facts that M1MZ⊥2

= MZ and that v = M1Yγ, (38) can be rewritten as∣∣∣∣∣ γ ′Y′MZYγ γ ′Y′MZX2

X′2MZYγ X′2MZX2

∣∣∣∣∣ =
∣∣B′Y′MZYB

∣∣ =
∣∣Y′MZY

∣∣ , (39)

where the first equality is from the definition of B, and the second equality is from the fact that

|B| = 1. It implies that (39) does not depend on B at all.

In summary, minimizing the concentrated log-likelihood is equivalent to minimizing(
Y⊥γ

)′ (
Y⊥γ

) |Y′MZY|
v′MZ⊥2

v
=
γ ′Y′M1Yγ

γ ′Y′MZYγ

∣∣Y′MZY
∣∣ = κ (β2)

∣∣Y′MZY
∣∣ ,

or minimizing κ (β2) since |Y′MZY| is free of parameters. Differentiating κ (β2) with respect to

γ, we have the FOCs:

2Y′M1Yγ
(
γ ′Y′MZYγ

)
− 2Y′MZYγ

(
γ ′Y′M1Yγ

)
= 0.

Dividing both sides by 2 (γ ′Y′MZYγ), we have

Y′M1Yγ−κY′MZYγ = 0, (40)

or

(W1 − κW)γ = 0,

where W1 and W are defined in the main text. In other words, κ̂ is the smallest eigenvalue of

W1W
−1, and γ̂ is the corresponding eigenvector. To find γ̂ or β̂2, expanding (40) as[(

y′M1y y′M1X2

X′2M1y X′2M1X2

)
− κ̂

(
y′MZy y′MZX2

X′2MZy X′2MZX2

)](
1

−β̂2

)
= 0.

34



When the rows corresponding to X2 are multiplied out, this becomes

X′2 (M1 − κ̂MZ) y −X′2 (M1 − κ̂MZ) X2β̂2 = 0,

which implies

β̂2 =
(
X′2 (M1 − κ̂MZ) X2

)−1
X′2 (M1 − κ̂MZ) y.

Given β̂2, β̂1 can be obtained by regressing y −X2β̂2 on X1. Combining the formulas for β̂1 and

β̂2, we can show (31).

Exercise 22 Define λ̂ = min
β

(y−Xβ)PZ(y−Xβ)
(y−Xβ)(y−Xβ) and λ̃ =

λ̂− α
n−l(1−λ̂)

1− α
n−l(1−λ̂)

. Show that the LIML estimator

can be re-expressed as

β̂LIML =
(
X′PZX− λ̂X′X

)−1 (
X′PZy − λ̂X′y

)
,

and Fuller’s estimator can be re-expressed as

β̂LIML =
(
X′PZX− λ̃X′X

)−1 (
X′PZy − λ̃X′y

)
.

Appendix B: LIML Asymptotic Distribution

For the distribution theory, it is useful to rewrite (31) as

β̂LIML =
(
X′PZX− µ̂X′MZX

)−1 (
X′PZy − µ̂X′MZy

)
,

where

µ̂ = κ̂− 1 = min
γ

γ ′Y′M1Z2 (Z′2M1Z2)
−1 Z′2M1Yγ

γ ′Y′MZYγ
.

This second equality holds since the span of Z = [Z1,Z2] equals the span of [Z1,M1Z2]. This

implies

PZ = Z
(
Z′Z

)−1
Z′ = Z1

(
Z′1Z1

)−1
Z′1 + M1Z2

(
Z′2M1Z2

)−1
Z′2M1.

We now show that nµ̂ = Op (1). The reduced form of yi implies

Y = Z1Π1 + Z2Π2 + F,

where Π1 = [λ1,Γ12], Π2 = [λ2,Γ22] and F stacks f ′i with f ′i = [ei,v
′
2i]. Since Π2 = [Γ22β2,Γ22], it

follows thatΠ2γ = 0 for γ =
(
1,−β′2

)′. Note that Fγ = u, soMZYγ = MZu andM1Yγ = M1u.
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Hence

nµ̂ = min
γ

γ ′Y′M1Z2 (Z′2M1Z2)
−1 Z′2M1Yγ

1
nγ
′Y′MZYγ

≤

(
1√
n
u′M1Z2

) (
1
nZ′2M1Z2

)−1 ( 1√
n
Z′2M1u

)
1
nu′MZu

= Op (1) .

It follows that

√
n
(
β̂LIML − β

)
=

(
1

n
X′PZX− µ̂ 1

n
X′MZX

)−1( 1√
n

X′PZu−
√
nµ̂

1

n
X′MZu

)
=

(
1

n
X′PZX− op (1)

)−1( 1√
n

X′PZu− op (1)

)
=
√
n
(
β̂2SLS − β

)
+ op (1) .

Obviously, as long as
√
nµ̂ = op (1), all k-estimators have the same asymptotic distribution as the

2SLS estimator.
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