Chapter 6. Additional Topics on Linear Regression*

This chapter covers additional topics on linear regression. Related materials can be found in
Chapters 23 and 28 of Hansen (2022).
We first collect assumptions in the previous chapters:
Assumption OLS.0 (random sampling): (y;,%;), i =1, ,n, are i.i.d.
Assumption OLS.1 (full rank): rank(X) = k.
Assumption OLS.1": rank(E[xx]) = k.
Assumption OLS.2 (first moment): Ely|x] = x'S3.
Assumption OLS.2": y = x'8 + u with E[xu] = 0.
Assumption OLS.3 (second moment): E[u?] < cc.
Assumption OLS.3’ (homoskedasticity): E[u?|x] = o2.
Assumption OLS.4 (normality): ux ~ N(0,0?).

Assumption OLS.5: E[u?] < co and E [||x||4} < 0.

Different assumptions imply different properties of the LSE as summarized in Table 1.

y=x0B+u Implied Properties
E[xu]l =0 linear projection = consistency
U
Elulx] =0 linear regression = unbiasedness
U
Elu|x] = 0 and E[u?|x] = 0? | homoskedastic linear regression | = | Gauss-Markov Theorem
U
u is independent of x normal regression is a special case | = UMVUE

Table 1: Relationship Between Different Models

This chapter will examine the validity of these assumptions and cures when they fail. We first

in Section [I] examine OLS.0. Although this assumption is more likely to fail in time series, we
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study a microeconometric scenario where the data manifest a group structure and violate OLS.O0.
We then examine two other key assumptions - OLS.2 and OLS.3' E] Assumption OLS.2 has many
implications. For example, it implies (i) 3 is fixed; (ii) the conditional mean of y given x is linear in
x; (iii) all relevant regressors are included in x and are fixed. Section [2] extends the first implication
by allowing B3 to be random. This generates the so-called random coefficient model as mentioned
in Chapter 1. Section [3| and |4] examine the second implication: Section 3| tests whether E[y|x] is
indeed %’ and Section [4| provides more flexible specifications of E[y|x]. Section |5 and @ examine
the third implication: Section [5| checks the benefits and costs of including irrelevant variables or
omitting relevant variables, and Section [0 provides some model selection procedures. Section [7] and
examine Assumption OLS.3": Section [7| shows that there are more efficient estimators of 3 when
this assumption fails and Section [§] tests whether this assumption fails. Finally, Section [9] examines

the external validity of the model.

1 The Clustering Problem

In econometric practices, it is often that the data have an obvioius grouped structure. For example,
the test scores of children observed within classes or schools or years of schooling are correlated
because these children are subject to some of the same environmental and family background
influences; similar grouped structure appears in neighborhood, family, siblings etc. For another
example, researchers often merge aggregate data on characteristics of industries, occupations, or
geographical localities with micro data obtained from a cross-sectional or panel survey; the grouped
structure implied by these aggregate data is obvious.

We assume individuals are independent across groups but may be dependent within a group.
The correlation within a group is called the clustering problem, or the Moulton problem,
after Moulton (1986) ] who made it famous. See Chapter 8 of Angrist and Pischke (2009) for an
introduction and Wooldridge (2003), Cameron and Miller (2011, 2015) and MacKinnon (2012, 2016)
for summaries on this problem; other early important references include Pakes (1983), Arellano
(1987), Moulton (1987, 1990), Moulton and Randolph (1989), Angrist (1991), and Pepper (2002);
important recent developments include Bertrand et al. (2004), Donald and Lang (2007), C.B.
Hansen (2007), Stock and Watson (2008) and B.E. Hansen and Lee (2019).

Suppose we have G' groups and each group includes n, individuals, i.e., n = Zle ng. Define

parallel notations as in the standard case,

Y1 Xy up

ya Xa uc

!'We examine only OLS.0, OLS.2 and OLS.3' in this chapter. OLS.1 is discussed in Chapter 3. OLS.4 is a
parametric assumption and OLS.5 is a regularity assumption, so they are not seriously examined in the literature.

?Brent R. Moulton was an American economist at the Bureau of Economic Analysis. He earned his Ph.D.
from the University of Chicago in 1985.



where

Yg1 X1 Ug1
Yg = , Xg = yUg = )
Yong Xgn, Ugn,
g=1,---,G. Consider the error components linear regression model,

Ygi :Xlgi13+ugi7E[ugi|Xg] :O,QZ 17 7G7i: 11 y g,

where ug; = ag + €44, g is the common latent factor in group g, and eg4; is the i.i.d. idiosyncratic

error for each individual. Assume Var (oyXy) = 02 and Var (e4]Xy) = 02. Then
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Eugu|X]| =¥, =0; [ © ' =0, [(1 = p)Ig + p, 1417,
: Py
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and
E[uu'] = ¥ = diag {¥y,--- , ¥s},
2 _ 2 2 _ _oa _ o4 : : -
where o, = o7, + 02, p, = corr (ugi,ugj)i#j =3 =250 is the intragroup correlation, I, is the

ng X ng identity matrix, and 1, is a column vector of ny ones. That is, the errors are equicorrelated

within groups. Now, the OLS estimator is

ﬁ (X/ 1 Z X/ Z Xng :

from Chapter 3,

G -1/ a G -1
Var (B\x) - (X'X)T'XOX (X'X)"! <;X’gxg> <;X{qngg> (ngxg>

g=1
G ng G G nyg -1
= O'i (ZZXW-X;?;) <Z X’g I, +p,14 1 g> (ZZXQiX;i>
g=1i=1 g=11i=1

g=11i=1 glzl g=11i=1

If p, = 0, then ¥ = 021, and Var (E|X> degenerates to the standard homoskedastic covariance
matrix, Varg <B|X) = 02 (X'X)"". The difference between Var (E|X> and Varg (B|X> is

1

Var <B|X) —Vary <B|X) = (X/X)_l X'OX (X'X)" ~ o} (XIX)_I

= P02 (X'X)I(N-1,),

)1.



where

N = X'DD'X (X'X) !,

and D is an n x G matrix consisting of 0-1 indicator variables for membership (when the data is

balanced, i.e., ng =7, D =I5 ® 17).

To compare with Varg (B|X), we make further assumptions for simplification, following Kloek

(1981), which provides a good approximation even in the general case. First, assume x4 = x, for

all i = 1,--- ,ng, ie., all regressors are group or aggregate (market or policy) variables, then

. !/ ! . Ng ~! !/ ! _ Ng L
Xy = 1gxg, Xi Xy =% XgiXg; = NgXgXg, and Xplg = > i1 Xgi = ngxy. Note that

X’g\Ingg = X’g\Ingg = xgl'g\Ilglgx;
14+ (ng—1)p,
= aixgllg : X
14+ (ng—1)p,
2

= oung[L+ (ng — 1) p,] XgX}) = 0ongTgXgx,

g7

SO
-1

-1
G G G
2 _ 2 / / /
Var (ﬁ|X>—0u g NgXgX, E NgTgXgX E NgXgX,
9=1 g=1 g=1

Second, assume further that the data is balanced so that 7o =7 =1+ (T'— 1) p,,, then
N G e G -
Var (,3\X> = ot Z Txgx, ZTxgx’g ZTxgx'g
g=1 g=1 g=1
-1

G
= O'iT ZTng'g =7 [O’i (X'X)_l} ,
g=1

ie., Var (,@|X) is 7(> 1) times the usual covariance matrix. 7 is increasing in 7" and p,, is illustrated

in an application of Pepper (2002). The under-estimation of standard errors can result in spurious

findings of statistical significance, especially for the aggregate variable of interest as shown in the

following exercise.

Exercise 1 Show that when x4 = (1,14)", i.e., dim (x4) = 2 and ygi = By + T4iB1 + Ugi,

Var B1|X
<,\) =1+ [W +n =1 pppus
Varg <61|X> n
G g i (Tgi—T) (245 —T)
= éz‘gzl ng7 and Pz = \;]ar(x;;i)zg:gng(njj—l)

where Var (ng) = é Zle (ng — n)% with
1

7= X, T and Var (eg) = £ 5,

n
(xgi — T)? is the intragroup correlation of Tgi.

with



To estimate Var (B]X), we need to estimate 02 and p,. First, natural estimators of o2 and

2
o;, are

G ng

Ugil
Z Z Ug; and o a2 el Z n;ijzg ﬁ 19)]

glzl

So we can estimate Var (,B\X) by

—1 —1
G G G
Var (BIX) = | Y XX, XX, | (XX
g=1 g=1 g=1
where lflg =352 (1 =PIy + P, 141, ] with p, = 62 /5%, Alternatively, as shown in Pepper (2002),
VG (B-8) -5 N (0, B [X,X,]) 1 E [XpuuX,] B [X)X,] ),

so we can estimate Var <B|X> by

- -1
G

G
Var (B|X) - [ xx, ZX’ 60X, | (Y xx, | = ZX’ a,a X, | (X'X)™,
g:]_ g=1

which allows for general within-group covariance and heteroskedasticity and was suggested by Liang
and Zeger (1986). These estimators of Var <B]X) are valid when G — oc.
We can extend the degrees-of-freedom correction of Bell and McCaffrey (2002) discussed in LN5

to the clustering case. Here, the counterpart of HC2 is

Vi = (X,X)_l ZX/Q (Ing — Py ) 2 AgAlg (I - ng)_1/2 Xy (X,X)_lv

G is an n x G matrix with gth column equal to the n-vector

1

X, (XX) e,

Gy = (In - P)g (Ing B ng)
and )
(Zszl Ai)

PIEPY;

consists of the ny columns of the n x n matrix (I,, — P) corresponding to cluster g,

Kpm =

where (I, — P),
P, =X, (X'X)~* X}, and \; are the eigenvalues of G'G. If ny = 1 for all g, then the adjustment is
the same as that in Chapter 5. Recall that under heteroskedasticity, \; should be the eigenvalues of

G'QG. Imbens and Kolesar (2016, IK hereafter) suggest to estimate €2 using the error components
~2 25:1 Zi;ﬁj Ugilig; _ ZG Zi;&j Ugilly;

model above. Their & 0 is the same as above, but their o7, 50 na(ng—1) 9=1 99 0 (na—T)



with w, = Gng("gfl) ; obviously, if all ny’s are equal, their & U is the same as above. The

_1ng(ng=1)’
simulations in gImbens and Kolesar (2016) show that the degrees-of-freedom corrections of BM and

IK work well even in moderately sized samples.
. ~ =2 . . .
Exercise 2 Show that 52 = %255;:1 ngl, is inconsistent to 02 when nyg =T fived and G — oc.

(**) We can use the feasible GLS to improve the efficiency of OLS. Specifically, define

Bors = ZX"I’ Xy ZX vy, |,

g=1

whose variance can be estimated by <ZQG:1 X'g\/I}g_ng)il. To check whether there is indeed a
grouped structure, we can use Breusch and Pagan (1980)’s LM test to test Hy : p, =0 vs. p, > 0,
where we assume u ~ N (0, ¥). Honda (1985) and King and Evans (1986) find the one-sided LM
statistic is more powerful, where the one-sided LM statistic is defined as

— 2, (Eigi)” ugz)Q
uDD'u—-uv'u Zg (ngug> Z YT Ugi TS, -1 1

- “7;“,/2(2113—72) - 33\/2(27@—71) ,/ ZnQ—n -

which follows a standard normal asymptotic distribution as n — oo and G — oo under the null. In

finite samples, N(0,1) does not approximate LM well, so Moulton and Randolph (1989) suggest
to use the standardized LM statistic,

SLM =2
\/,LTQ

where p; = E[s|X] and puy = Var(s|X). The SLM statistic has a zero mean and unit variance
and is asymptotically NV (0,1). The difference between LM and SLM depends on the size of k and
D’'PxD (i.e., whether X can explain group membership). An alternative test is the F test, which
tries to test whether the columns of D jointly contribute to explaining the variance of y. Since
some columns of X may not have variation within groups, rank([X, D]) may be less than k + G,
where W = [X, D]. For example, suppose X = [X;, Xs], where Xy contains the kg variables that
do not change within groups (so the constant is also included in X3); then rank(W) = k1 + G,
where k1 = k — ko. Define the F' statistic as

'MxD (D'MxD)” D'Mxy/(rank (W) — k)
y'Mwy/ (n — rank (W)) ’

=Y

which follows Fluni(W)—kn—rank(w) under the null, where M. is the annihilator, and ()~ is a
generalized inverse operator. Although the one-sided LM test is locally most powerful, the F test
may have better power when the deviation from the null is large.

All the above inferences are valid only when G — oo. When G is small, as in the difference-



in-differences models, we need new inference results. Donald and Lang (2007) apply the two-step
procedure of Amemiya (1978), as discussed in the next section, to estimate 35 (the coefficients of
X3), and show that the usual inference methods based on the OLS estimator and Var <B|X> (or

Var <B|X>) are quite misleading no matter n, is large or small. They also show that the ¢-statistic
in their two-step procedure would follow a ¢ distribution in many scenarios where ng is either large

or small. (**)

2 Random Coefficient Models

According to Swamyﬂ and Tavlas (2001), random coefficient models (RCMs) grew out of Zell-
ner (1969)E| although already appeared in Rubin (1950), Klein (1953)E| and Hildreth and Houck
(1968). The following RCMs are called the first-generation RCMs in Swamy and Tavlas (2001). An
exposition of this kind of RCMs at text-book level can be found in Judge et al. (1985, Chs 11, 13,
and 19). See, also, Swamy (1971), Chow (1984), Nicholls and Pagan (1985) and Hsiao and Pesaran
(2008).

Think about the return-to-schooling example. Suppose y = log(wage), x = (1,educ)’, and
B = (B1,85). Obviously, the return to education, i.e., 85, may vary among individuals, so it is
more convenient to write

yi = B1 + Bo; - educ + v,

where (35, is the individual-specific return to educationﬁ Generally, we write
Yi = X;ﬁia

where 8;; = [ + u; if there is an intercept. In other words, the usual linear regression models
allow only the intercept to be random, while the RCMs further allow all slopes to be randomm In
Chapter 1, we express 3; = B(u;). Since the 3(-) function is not restricted, these two expressions
are equivalent.

Although when 3, is treated as fixed, the following exercise shows that the LSE converges

to B (the average of 3,’s), it is more convenient to treat 3,’s as random draws from a common

SP.A.V.B. Swamy (1934-) is an Indian-born statistician at the Federal Reserve System. He earned his Ph.D. from
the University of Wisconsin—-Madison under the supervision of Arthur Goldberger in 1968. Arnold Zellner is in his
dissertation committee, which can explain why his thesis title was “Statistical Inference in a Random Coefficient
Regression Model.” His Ph.D. thesis led to a book, Swamy (1971), which quickly became a classic on RCMs.

4 Arnold Zellner (1927-2010) was an American economist and statistician at the University of Chicago, specializing
in the fields of Bayesian probability and econometrics. He earned his Ph.D. in economics from the University of
California, Berkeley, in 1957 under supervision of George Kuznets whose older brother Simon Kuznets won the 1971
Nobel Prize.

Lawrence Robert Klein (1920-2013) was an American econometrician at the University of Pennsylvania. He was
awarded the Nobel Prize in 1980 "for the creation of econometric models and their application to the analysis of
economic fluctuations and economic policies."

68, is the causal effect of education on log wage for individual i, while as shown below, F [8,,] is the corresponding
average treatment effect.

"The clustering problem in the last section can be treated as a RCM where the intercept remains, and the
coefficients on the group indicators are random with mean zero and independent of u,.



distribution. We make the following two key assumptions:
(i) B;’s are i.i.d. with mean B and variance 3;
(ii) x; is independent of 3;.

Under these two assumptions we can show that the RCM can be expressed as a heteroskedastic

linear regression model.
Exercise 3 (*) Suppose 3; is fived. Show that the LSE converges in probability to 3 = nli_)ngorf1 Yo By
Write B; = B + €;, where E [g;] = 0 and Var (g;) = E [e;€}] = X from Assumption (i). Then
yi = x;8; = x; (B + &) = ;B + xie; = X6 + w;,
where
E [U,Z‘Xl] = F [ngi‘xi] = X;E [Ei‘Xi] = X;E [Ez] = 0,
Var (uix;) = E[ulx;] = E [xjeie)xi|x;] = X,E [e;€]|x:] x; = X, E [e;€]] x; = x| Tx;,

and the second to last equality in both equations follow from Assumption (ii). In other words, RCMs
are natural cases of heteroskedastic linear regression - the CEF is linear in x with the coefficients
B equal to the mean of the random coefficient 3;, and the conditional variance is quadratic in x.
As a result, the asymptotics developed in Chapter 5 for the heteroskedastic linear regression model

can be applied.

Exercise 4 Suppose the components of B;, B1; -+ B, tn the RCM are independent. Find the

asymptotic variance of LSE.

(**) In some cases, we may restrict some components of 3; to be nonrandom, which would
restrict the corresponding rows and columns of X as zero. As to random components, we can
assume they are related to some observable covariates. For example, Amemiya (1978) considered

the following setup,

y = Xi8;+Dvy+e,
Y = X2ﬂ2+a7

which implies
y = X168, + DX28; + Da + ¢,

where o and € are uncorrelated,

Var(e) = A, Var (a) =Q,Var (Da+¢) =DOD'+ A =X,



and A, Q, Xy, and [X;, D] are all full-rank. First, assume A and € are known. Then the BLUE
of B, is the GLS estimator,

B, = [X4D'S*1DX,] T X,D'E y,

where ¥*71 = »-1 — 371X, (X’lZ_le)_l X)L B, is obtained by regressing £~/2y on
»-1/2X; and £~/2DX, and applying the FWL theorem. Another estimation method is to use
a two-step procedure: estimate - first and then regress the estimated v on Xa to estimate 3,.

Specifically, in step one, define
5= (D'A*'D) ' DAy,
which is the BLUE of ~, where A*~! = A~ — A~1X, (X’IA_le)_1 X/ A1, In step two, since
F=7+7-7=Xof+a+ (D'A"'D) DA e,
the BLUE of 3, in this regression is
By = [X40*1X,] T Xp0* 17,

where

»*1 = D'A*'D (D'A* 'SA* D) D'A*ID.

Amemiya showed that Bz = BQ. ,52 may have computational advantage over BQ when A~ is easier
to compute than 371

If feasible GLS is used, then provided the covariance matrices A and €2 are estimated in the
same fashion, numerical equivalence continue to hold. More commonly, the two approaches lend
themselves to different methods for obtaining consistent estimates of the covariance matrices. If
so, the equivalence is asymptotic rather than numeric.

In Donald and Lang (2007), X3 is G x kg, A = 021, = 0215 and ¥ = ¥. So in step one,
the BLUE of (3;,7) is the LSE (fil,?) In step two,

— ~! 5 -~ _ — ~
yg_X1g515529:Xégﬁ2+a+eg—X1g<ﬁl—ﬁl>,gzl’... .G,

where y, and X, are the within-group means of y,; and x4, They use this form of regression in
step two because when X; is absent, ‘y\g =¥, Obviously, new observations within group do not
provide additional information for estimating 3, beyond affecting y,, so 8, cannot be consistently
estimated if G is small even if n; — oo. They provide a few scenarios where the error term
a+g,— X’lg (Bl - ,81) is homoskedastic so that the LSE is the BLUE; if the error term is further

assumed to be normal, then the ¢-statistic would follow ¢ (G — kg). (**)

Exercise 5 (*) Show that ,232 = 3,.



(*) All the above models assume (3; and x; are independent in some sense. Garen (1984)
discusses a case in the estimation of return to schooling where 8, and x; are correlated. Later on,
Wooldridge (1997, 2003, 2008), Heckman and Vytlacil (1998) and Masten and Torgovitsky (2016)
provide more discussions on identification and estimation in the so-called correlated random
coefficient model. See also Heckman et al. (2010) and Heckman and Robb (1985, pp. 195-197)
for testing the hypothesis that 3; and x; are independent.

3 Tests for Functional Form Misspecification

Misspecification of E[y|x] may be due to omitted variables or misspecified functional forms. In this
section, we only examine the second source of misspecification and provide a general test of the
adequacy of the specification of E[y|x].

One simple test for neglected nonlinearity is to add nonlinear functions of the regressors to the
regression, and test their significance using a Wald test. Thus, if the model y; = X;B + w; has
been fit by OLS, let z; = h(x;) denote functions of x; which are not linear functions of x; (perhaps
squares of non-binary regressors) and then fit y; = x;,@—kzﬁ—i—ﬂi by OLS, and form a Wald statistic
for v = 0.

Another popular approach is the REgression Specification Error Test (RESET) proposed by
Ramsey (1969, 1970) f| The null model is

yi = X8 + w;,

which is estimated by OLS, yielding predicted values 7; = X;B Now let

Am)’

Z; = (@\7,27 > Ui
be an (m — 1)-vector of powers of y;. Then run the auxiliary regression
yi = X0+ 27 + U (1)

by OLS, and form the Wald statistic W,, for v = 0. ¥;’s are generated regressors in the term of
Pagan (1984) (see also Murphy and Topel, 1985). However, for testing purposes, using estimates
from earlier stages causes no complications (because under Hy, the coefficients associated with
generated regressors are zero). So under Hy, W, BN x2,_1- Thus the null is rejected at the « level
if W,, exceeds the upper « tail critical value of the x2,_; distribution. To implement the test, m
must be selected in advance. Typically, small values such as m = 2, 3, or 4 seem to work best.
The RESET test appears to work well as a test of functional form against a wide range of

smooth alternatives. It is particularly powerful in detecting the single-index model of Ichimura

8 James Bernard Ramsey (1937- ) is a Canadian econometrician. He is a professor of Economics at New York
University. He got his Ph.D. in Economics from the University of Wisconsin-Madison in 1968. His most influential
paper, Ramsey (1969), is based on his dissertation under the supervision of Arnold Zellner.
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(1993),
Yi = G(X,B) + Ug,

where G(-) is a smooth "link" function. To see why this is the case, note that may be written

as
~ ~\ 2 ~\ m
v =B+ (xiB) Ay + o+ (%iB) " Ay + s
which has essentially approximated G(-) by an mth order polynomial.
(**)Another specification test is White’s (1980a, 1981) version of Hausman’s (1978) test. The
idea of this test is that if the model is correctly specified, then both the LSE and the WLS estimator

are consistent and their difference should be close to zero. Specifically, under the null,
3 3 'S-1 (A 3 d . 2
n (ﬁOLS - ﬂWLs) Vv (50LS - /@WLS) — Xi»

where V is a consistent estimator of V, the asymptotic variance of \/n (Bo S — BW LS) under the
null. 'V generally takes a complicated form, but under the auxiliary assumption of homoskedasticity,

it takes a neat form,

V = n[AVarByrs) - AVar (Bogs)] (2)
= FE [wixix;]_l E [wixxjui] E [wixixﬂ_l ~’E [xixﬂ_l

This simplification is due to the fact that although both the LSE and the WLS estimator are

consistent under the null, the LSE is efficient under homoskedasticity.

Exercise 6 (i) Suppose in model y; = xi3 + w;, E[ui|x;] = 0 and E[u?|x;] = 0?. Show that

Avar (\/ﬁ <BOLS — BWLS)) =V in (@) (ii) If E[u?|x;] is not a constant, what is the expression

for Avar <\/ﬁ <BOLS — BWL5>) ? Ifw; = o; 2, what will the expression for Avar <\/ﬁ (BOLS — BWLS>>
change to?

V can be estimated by its sample analog. But such an estimator is generally consistent only under
the null (and the auxiliary assumption of homoskedasticity). A covariance matrix estimator that is
consistent regardless of misspecification is given in White (1980b). Theorem 2.2 of Hausman (1978)
shows that the test statistic has a noncentral x? distribution for a sequence of local alternative
hypotheses, with a noncentrality parameter depending on plim(BO g — BW 1s). To generate power,
the weights in BWLS are important. White (1981) suggests to impose weights on the area where
the linear approximation is bad. Specifically, the weights are predicted @2 using all non-redundant
elements of x;, its squares, and all cross—productsﬂ

All these tests mentioned above are special cases of the conditional moment (CM) test of
Newey (1985a) and Tauchen (1985)@ Specifically, under Hy, E[u|x] = 0, so any function of x

980 we should include 2(k—1)+C#_, nonconstant regressors on the right-hand side. But if x; includes polynomial
or dummy terms, we should adjust the number of regressors accordingly.
0Note that these authors consider the CM test in the context of likelihood models.
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is orthogonal to u. Different tests just pick different functions of x to form orthogonal moment
conditions. But all such tests can only detect some form of deviation from the null. To detect
any possible deviation from the null, we essentially need infinite moment conditions, which seems
formidable. Nevertheless, Bierens (1982, 1990) extends the CM test to achieve this goal; see also
Bierens and Ploberger (1997) for the integrated conditional moment (ICM) test. Another test that
can detect any deviation from the null is proposed by Zheng (1996). The idea of his test is that

BluBlup ()] = £ [Blux) = [ | [ uf(wx)durdx >0,

where f(x) is the density of x. Equality can be achieved only if Ffu|x] = 0, so this test would
have power to detect any deviation from E[y|x] = x'3. f(x) is added in to offset the denominator
in Elulx] = [ uf?&’)‘) du This test is constructed under the null (e.g., u; is estimated in the null
model), so is similar to the score test in spirit; see Porter and Yu (2015) for more discussions. (**)

4 Nonlinear Least Squares

If the specification test rejects the linear specification in the least squares estimation, we may
consider to use a nonlinear setup for the regression function E[y|x]. Specifically, suppose E[y;|x; =
x] = m(x|@). For a comprehensive treatment of nonlinear regression, see Seber and Wild (2003).
Nonlinear regression means that m(x|@) is a nonlinear function of @ (rather than x). The functional
form of m(x|@) can be suggested by an economic model, or as in the LSE, it can be treated as a
nonlinear approximation to a general conditional mean function (see White (1981)). Examples of

nonlinear regression functions include the following.
e m(x|0) = exp (x'0): Exponential Link Regression

The exponential link function is strictly positive, so this choice can be useful when it is desired

to constrain the mean to be strictly positive, e.g., the mean of the Poisson distribution.
e m(x|0) = 0 + 0229, x > 0: Power Transformed Regressors

A generalized version of the power transformation is the famous Box-Cox (1964) transformation,
where the regressor 23 is generalized as 2(%3) with
{ 21N> 0,

2O —

logz, if A=0.

The function z(*

nests linearity (A = 1) and logarithmic (A = 0) transformations continuously.
Figure [1] shows the Box-Cox transformations for different A values. All transformations pass the

point (1,0).

' (*) This is essentially to avoid random denominators in the nonparametric kernel estimation of F[u|x] which will
not be covered in this course.
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Figure 1: Box-Cox Transformation for Different A Values

o m(x|0) = 61 + 02 exp (f3x): Exponentially Transformed Regressors
e m(x]0) = G(x'0), G knowi[7]

When G(-) = (1 + exp(—-))~1, the regression with m(x|0) = G(x'8) is called the logistic link
regression; when G(-) = ®(-) with ®(-) being the cdf of standard normal, it is called the probit

link regression.
e m(x|0) = 01x1 + 05x1G <%>: Smooth Transition
o m(z|@) =601+ Oz + 03 (x — 04) 1(x > 04): Continuous Threshold Regression
e m(x]0) = (07x1) 1(z2 < 63) + (05%1) 1(z2 > 3): Threshold Regression

For surveys of the smooth transition model (STM), see Terdsvirta (1998), Terésvirta et al.
(2010) and van Dijk et al. (2002); for the continuous threshold regression (CTR) model, see
Chan and Tsay (1998); for surveys of the threshold regression (TR) model, see Hansen (2011) and
Tong (1990). When 64 = 0, the STM reduces to the TR model, and when 64 = oo, the STM
reduces to linear regression. Figure 2| shows the difference between the STM (x3 = (1,z), 22 = =,
0, = (1,-1), 02 = (-2,2)', 63 = 1,04 = 0.1 in the top left panel and 64 = 10 in the top right
panel, and G(-) = ®(-)), the CTR model ((61,62) = (1,—1) and (63, 604) = (2,1)) and the TR model
(61 =(1,-1), 02 = (0,1) and 03 = 1) for x € [0, 2].

"2 This is different from the single index model mentioned in the Introduction where G(-) is unknown.
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Figure 2: Difference Between STM, CTR and TR

In the first five examples, m(x|0) is (generically) differentiable with respect to the parameters

0. In the last two examples, m is not differentiable with respect to 4 and 63 which alters some of
the analysis. When it exists, let
0
myp(x|0) = 8—0m(x\9)

The least squares estimator @ minimizes the sum of squared errors

n

Sn(0) = (yi — m(x:]0))”.

=1

When the regression function is nonlinear, we call this the nonlinear least squares (NLLS) esti-

mator. The NLLS residuals are @; = y;—m(x;|0). One motivation for the choice of NLLS as the esti-

mation method is that the parameter is the solution to the population problem ming £ [(yz —m(x; |0))2] .
Since sum-of-squared-errors function S, (0) is not quadratic, 6 must be found by numerical

methods (as in the ML estimation). When m(x|) is differentiable, then the FOCs for minimization

are .
0= my(xi|0)i;.
i=1
Theorem 1 If the model is identified and m(x|0) is differentiable with respect to 0,

\/ﬁ@—eo) . N(0,V),
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where V =F [mgim’ei]f1 E [mgim’eiuf] E [mgim’gi]*l with mg; = mg(x;|00).

Exercise 7 Prove the above theorem. (Hint: Note that 0 is the MoM estimator associated with

the moment conditions E [mg;u;] = 0.)

Based on this theorem, an estimate of the asymptotic variance V is
-1 -1 -1
<7 1 - ~ ~ / 1 - ~ ~ ) ~2 1 - ~ ~ /
V= - Zl Mmeg; My, - Zl Mg; Mg, Us; - Zl Mmeg; My, ,
1= 1= 1=

where mg; = mg(xl]/H\)

(**) Identification is often tricky in nonlinear regression models. Suppose that

m(xi|0) = B1zi + Byxi(7),

where x;(7) is a function of x; with an the unknown parameter v. Examples include z;(y) = =,

2y = exp (), wi(y) = G (B0
By =0, and this is often a useful hypothesis (sub-model) to consider. Thus we want to test

) and z;(y) = z;1(g(x;) > 7). The model is linear when

However, under Hy, the model is
yi = B12i + u;

and both 3, and v have dropped out. This means that under Hy, v is not identified. Such tests
are labeled as tests with nuisance parameter (7) unidentified under the null. This renders the
distribution theory presented in the last chapter invalid. Thus when the truth is that 8, = 0,
the parameter estimates are not asymptotically normally distributed. Furthermore, tests of Hy
do not have asymptotic normal or chi-square distributions. This kind of tests was first considered
by Davies (1977, 1987). More discussions on the asymptotic theory of such tests can be found in
Andrews (1993), Andrews and Ploberger (1994) and Hansen (1996) among others. In particular,
Hansen (1996) shows how to use simulation (similar to the bootstrap) to construct the asymptotic
critical values (or p-values) in a given application.

The asymptotic theory for 0 may also be complicated when m(x|@) is not smooth in 6. For
example, in threshold regression, m(x|@) is discontinuous in 3. The asymptotic distribution of
53 depends on the magnitude of the threshold effect 85 — @1: when 85 — 61 shrinks to zero, the
asymptotic distribution is related to a two-sided Brownian motion, while when 65 — 01 is fixed, the
asymptotic distribution is related to a compound Poisson process; see Chan (1993), Hansen (2000)
and Yu (2012) for further discussions. (**)
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5 Omitted and Irrelevant Variables

X14
X; = .
X2i

Suppose we are interested in the coefficient on x3; alone in the regression of y; on the full set x;.

Let the regressors be partitioned as

We can write the model as

yi = X101 +x58 + s, (3)
Exu;] = 0,

where the parameter of interest is 3;.
Now suppose that instead of estimating equation by least-squares, we regress y; on x1; only.

This is estimation of the equation

yi = Xy + i (4)
E[Xlivi] = 0.

Notice that we have written the coefficient on x;; as y; rather than 3; and the error as v; rather
than w;. This is because the model being estimated is different from (3. Goldberger (1991) calls
the long regression and the short regression to emphasize the distinction.

Typically, B; # 7,1, except in special cases. To see this, we calculate

—1 ~1
v = E[xuxy;] Elxuyl = E [xux);] Elxu (X181 + x589 + ;)]
—1
= B+ FE [Xlixlu} E[x1;x%;]B, = B + '3y,

where I' = F [Xlix’li]_l_l E[xy;x4,;] is the coeflicient from a regression of xg; on xi;.

Observe that v, # 3; unless I' = 0 or B, = 0. Thus the short and long regressions have the
same coefficient on x1; only under one of two conditions. First, the regression of x9; on x1; yields
a set of zero coefficients (they are uncorrelated), or second, the coefficient on x; in is zero.
In general, least squares estimation of is an estimate of v; = By + I' 3y rather than 3,. The
difference I'3, is known as omitted variable bias. It is the consequence of omitting a relevant
correlated variable. Intuitively, v, includes both the direct effect of x; on y (3;) and the indirect
effect (I'35) through xo. Figure [3|illustrates these two effects.

To avoid omitted variable bias the standard advice is to include potentially relevant variables
in the estimated model. By construction, the general model will be free of the omitted variables
problem. Typically there are limits, as many desired variables are not available in a given dataset.
In this case, the possibility of omitted variable bias should be acknowledged and discussed in the
course of an empirical investigation.

When 8, = 0 and 3, is the parameter of interest, x; is "irrelevant". In this case, the estimator
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Figure 3: Direct and Indirect Effects of x; on y

of B; from the short regression, B; = (X}X;) !Xy, is consistent from the analysis above. So
we compare its efficiency relative to the estimator from the long regression, ,@'1. The compari-
son between the two estimators is straightforward when the error is conditionally homoskedastic

E[u?|x;] = 2. In this case,
— -1 _
n-AVar (,81) =F [xlix’u] o’ = 11102,

and
n-AVar (Bl) =Q1,0° = (Qu — Q12Q521Q21)_1 o’

as discussed in Section 1.2 of the last chapter. If Q2 = E[x1;x5,] = 0 (so the variables are
orthogonal) then these two variance matrices equal, and the two estimators have equal asymptotic

efficiency. Otherwise, since Q12Q2_21Q21 > 0, Q11 > Q112 and consequently
1 2 -1 2
Qi1 0”7 < Q0™

This means that 3, has a lower asymptotic variance matrix than El. We conclude that inclusion of
irrelevant variables reduces estimation efficiency if these variables are correlated with the relevant
variables. Intuitively, the irrelevant variable does not provide information for y;, but introduces
multicollinearity to the system, so decreases the denominator of AVar (Bl) from Q11 to Q112
without decreasing its numerator o2. For example, take the model y; = 3, + 3, 2; + u; and suppose
that By = 0. Let Bl be the estimate of 3; from the unconstrained model, and 3; be the estimate

under the constraint 5y = 0 (the least squares estimate with the intercept omitted.). Let E[z;] = p,
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and Var(x;) = 02. Then we can show under homoskedasticity,

0.2

n- AVCLT (B].) = m7

while

[\

n-AVar (Bl) = 0—2.
U:U
When p = E[1-x] # 0, we see that 3, has a lower asymptotic variance.

On the contrary, if x3 is relevant (8, # 0) and uncorrelated with x;, then it decreases the
numerator without affecting the denominator of AVar ,@1) , so should be included in the regression.
For example, including individual characteristics in a regression of beer consumption on beer prices
leads to more precise estimates of the price elasticity because individual characteristics are believed
to be uncorrelated with beer prices but affect beer consumption. The analysis above is summarized
in Table 2.

By =0 By #0
Q12 =0 | B consistent B, consistent
same efficiency long more efficient
Q12 # 0 | B consistent depends on Q2 - B,
short more efficient | undetermined

Table 2: Consistency and Efficiency with Omitted and Irrelevant Variables
Exercise 8 If B, # 0, Q12 # 0, could Q23,5 be zero?

We have concentrated on the homoskedastic linear regression model. From Exercise 8 of the
last chapter, we know that when the model is heteroskedastic, it is possible that Bl is more efficient
than 3, (= Bl r) even if xo is irrelevant, or adding irrelevant variables can actually decrease the
estimation variance. This result is strongly counter-intuitive. It seems to contradict our initial mo-
tivation for pursuing restricted estimation (or short regression) - to improve estimation efficiency.
It turns out that a more refined answer is appropriate. Constrained estimation is desirable, but
not the RLS estimation. While least squares is asymptotically efficient for estimation of the un-
constrained projection model, it is not an efficient estimator of the constrained projection model;

the efficient minimum distance estimator is the choice.

6 Model Selection

In the last section, we discussed the costs and benefits of inclusion/exclusion of variables. How
does a researcher go about selecting an econometric specification, when economic theory does not
provide complete guidance? This is the question of model selection. Model selection is an important
topic in linear regression analysis. In practice, a large number of variables usually are introduced at

the initial stage of modeling to attenuate possible modeling biases. On the other hand, to enhance
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predictability and to select significant variables, econometricians usually use stepwise deletion and
subset selection. See Miller (2002) for a comprehensive treatment of subset selection in regression
and Linhart and Zucchini (1986) and Burham and Anderson (2002) for general references on model
selection.

It is important that the model selection question be well-posed. For example, the question:
"What is the right model for y?" is not well-posed, because it does not make clear the condition-
ing set. In contrast, the question, "Which subset of (z1,---,zx) enters the regression function

Elyi|x1; = x1,- - ,xx; = xx|?" is well posed.

6.1 Selection Among Nested Models

In many cases the problem of model selection can be reduced to the comparison of two nested
models, as the larger problem can be written as a sequence of such comparisons. We thus consider

the question of the inclusion of X5 in the linear regression
y = X168 + X208, + u,
where X is n X k1 and Xg is n X k9. This is equivalent to the comparison of the two models

My Yy = Xlﬂl +u, E[U|X1,X2] =0,
Moy : Yy = Xlﬁl + X2:62 +u, E[U|X1,X2] =0.

Note that M; C Majy. To be concrete, we say that My is true if 3, # 0. To fix notation,
models 1 and 2 are estimated by OLS, with residual vectors u; and us, estimated variances 8? and
3%, etc., respectively. To simplify some of the statistical discussion, we will on occasion use the
homoskedasticity assumption E [u?|x1i, Xoi| = 0.

A model selection procedure is a data-dependent rule which selects one of the two models. We
can write this as M. There are many possible desirable properties for a model selection procedure.
One useful property is consistency, i.e., it selects the true model with probability one if the sample

is sufficiently large. Formally, a model selection procedure is consistent if
P (/\7: M1!M1) —1and P (M\: Mz\/\/b) 1

However, this rule only makes sense when the true model is finite dimensional. If the truth is
infinite dimensional, it is more appropriate to view model selection as determining the best finite
sample approximation.

A common approach to model selection is to use a statistical test such as the Wald W,,. The
model selection rule is as follows. For some significance level «, let ¢, satisfy P (X%Q > ca) = a.
Then select My if W,, < ¢, else select My. A major problem with this approach is that the
significance level is indeterminate. The reasoning which helps guide the choice of « in hypothesis
testing (controlling Type I error) is not relevant for model selection. That is, if « is set to be a small
number, then P(M\ = M;|M;)~1—abut P(M\ = M3|Mz) could vary dramatically, depending
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on the sample size, etc. Another problem is that if « is held fixed, then this model selection
procedure is inconsistent, as P(M = M;|M1) — 1 — a < 1 although P(M = M| M) — 1.

6.1.1 Information Criteria

Another common approach to model selection is to use an information criterion. The essential
intuition is that there exists a tension between model fit, as measured by the maximized log-
likelihood value, and the principle of parsimony that favors a simple model. The fit of the model
can be improved by increasing model complexity, but parameters are only added if the resulting
improvement in fit sufficiently compensates for loss of parsimony. One popular choice is the Akaike
Information Criterion (AIC) proposed in Akaike (1973)@ From Appendix A, the AIC under

normality for model m is

AIC,, =log (62,) + 2%’", (5)

where G2, is the variance estimate for model m and is roughly —2/,, (neglecting the constant term)
with ¢,, being defined in the Introduction, and k,, is the number of coefficients in the model. The
rule is to select My if AICy < AIC,, else select Ms. AIC selection is inconsistent, as the rule
tends to overfit as observed in Shibata (1976). Indeed, since under M, from Section 5 of Chapter
4

Y

LR =n(log (3%) — log (3%)) < Xt (6)

then

P (/\7: Ml\/\/h) = P(AIC) < AICy| M) (7)

k k
1+ Ko Ml)
n

Although the AIC tends to overfit, this need not be a defect of the AIC. This is because the AIC is
derived as an estimate of the Kullback-Leibler information distance K LIC (M) = E [log f(y|X) — log f(y|X, M)]
between the true density and the model densityﬂ In other words, the AIC attempts to select a

good approximating model for inference. In contrast, other information criteria as mentioned below

P <log (@7) + 2% < log (53) +2

= P(LR < 2ko|My) — P (x3, < 2k2) < 1.

attempt to estimate the "true" model. Figure 4] intuitively shows the difference between the AIC
and other information criteria.

Many other criteria similar to the AIC have been proposed, the most popular is the Bayes
Information Criterion (BIC) introduced by Schwarz (1978)E The BIC is based on approximating

BHirotugu Akaike (1927-2009) was a Japanese statistician at the Institute of Statistical Mathematics, Tokyo.

YThis is also the term "information criterion" originated.

15 Another Baysian measure of model complexity, especially when the number of parameters is not clearly defined,
is the deviance information criterion (DIC) by Spiegelhalter et al. (2002).
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Figure 4: Difference Between AIC and Other IC

the Bayes factor; from Appendix B, it turns out to be
9 km
BICy, = log (c;,) + logn—. (8)
n

Since log(n) > 2 (if n > 8), the BIC places a larger penalty than the AIC on the number of
estimated parameters and is more parsimonious. Another criterion, which is often cited but seems
to have seen little use in practice, is the HQIC by Hannan and Quinn (1979). This criterion replaces
logn in BIC,, by @ loglogn for some () > 2. This criterion imposes a penalty larger than the AIC
and smaller than the BIC.

In contrast to the AIC, the BIC and HQIC model selection procedures are consistent. Take the
BIC as an example since the argument for the HQIC is similar. Because @ holds under My,

LR
LN 07
log(n)

SO

P (M\: Ml\/\/h) P (BIC; < BICs|My) = P (LR < log (n) ka| M)

LR

Also under Mo, one can show that
LR

log(n)

i

thus IR

Essentially, to consistently select My, we must let the significance level of the LR test approach

Mg) — 1.

zero to asymptotically avoid choosing a model that is too large, so the critical value (or the penalty)
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must diverge to infinity. On the other hand, to consistently select Mg, the penalty must be o(n) so
that LR divided by the penalty converges in probability to infinity under Ms. Compared with the
fixed penalty scheme such as the AIC, the consistent selection procedures sacrifice some power to
exchange for an asymptotically zero type I error. Although BIC leads to a consistent model selector
if the true data generating model belongs to the finite-parameter family under investigation, as
shown by Haughton (1989) for expoential families, BIC selected models tend to underfit if this
assumption does not hold.

We have discussed model selection between two models. The methods extend readily to the

issue of selection among multiple regressors. The general problem is the model
Yi = Br1x1i + Bow2i + -+, Br i + wi, Eluilx;] = 0

and the question is which subset of the coefficients are non-zero (equivalently, which regressors
enter the regression). There are two leading cases: ordered regressors and unordered regressors. In

the ordered case, the models are

My 2 B #0,8y=03="= P =0,
M2 : ﬁl#oaﬁ2§é07ﬂ3:"'zﬂl(:07

MK : 617&07/827507"'761{7507

which are nested. The AIC estimates the K models by OLS, stores the residual variance &2 for
each model, and then selects the model with the lowest AIC . Similarly, the BIC selects based on
. In the unordered case, a model consists of any possible subset of the regressors {14, - , Tk},
and the AIC or BIC in principle can be implemented by estimating all possible subset models.
However, there are 2% such models, which can be a very large number. For example, 210 = 1024,
and 229 = 1,048, 576. So in the unordered case, a full-blown implementation of these information

criteria would seem computationally prohibitive.

Exercise 9 In the ordered regressors case, compare the difference between the AIC, the BIC and

the LR test in the conclusion of model selection.

6.1.2 Limitation and Extension of Information Criteria (*)

Given their simplicity, penalized likelihoood criteria are often used for selecting "the best model".
However, there is no clear answer as to which criterion, if any, should be preferred. Considerable
approximation is involved in deriving the formulas for the AIC and related measures and other
criteria than the AIC and BIC might be more appropriate. From a decision-theoretic viewpoint,
the choice of the model from a set of models should depend on the intended use of the model. For
example, the purpose of the model may be to summarize the main features of a complex reality,

or to predict some outcome, or to test some important hypothesis. In applied work it is quite rare
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to see an explicit statement of the intended use of an econometric model. Recently, Claeskens and
Hjort (2003) propose the focused information criterion (FIC) that focuses on the parameter singled
out for interest. This criterion seems close to the target-based principle mentioned above.

Another serious drawback of the information criteria (and many other subset variable selection
procedures) is their lack of stability as analyzed in Breiman (1996). That is, a small change of data
may cause large changes in selected variables. To avoid such a problem, recent statistical literature
on model selection proposes penalty-function-based criteria where penalty functions continuously
shrink the coefficients rather than discretely select the variables. Different penalty functions induce
different selection criteria; outstanding examples include the least absolute shrinkage and selection
operator (LASSO) of Tibshirani (1996), Lg-penalty of Frank and Friedman (1993), the smoothly
clipped absolute deviation (SCAD) penalty function of Fan and Li (2001), adaptive LASSO of Zou
(2006) and the minimax concave penalty (MCP) of Zhang (2010) among others. Such shrinkage
estimtors are especially useful when the number of regressors, k, is large relative to (or even larger
than) the number of available observations, n, where the standard information criteria such asAIC
and BIC are not applicable; see Hastie et al. (2009) and Biihlmann and van de Geer (2012) for
comprehensive reviews of literature. Another strand of literature uses so-called model averaging to
alleviate model misspecification on estimation. The idea of model averaging was first put forward
in Hjort and Claeskens (2003) and applied in least squares estimation by Hansen (2007)@ see
Claeskens and Hjort (2008) for a summary of literature.

Finally, because k and its estimate ¥ are integers, all the established asymptotic theory when k
is known applies also when % can consistently estimate k. However, see Leeb and Pétscher (2005)

and references therein for cautions on this result.

6.2 Tests against Nonnested Alternatives (*)

In the model selection procedures above, the model to be selected can be nonnested, i.e., the null is
not a special case of the alternative, e.g., y = x'8+u vs y = 2’ + v with x and z not covering each
other completely. Nevertheless, the dependent variable should be the same to define 5% in or
in the same scale for different m’s. In some cases, nonnested models have different dependent
variables, e.g., y = x’8 + u vs logy = x'v + v. How to choose among such nonnested models is
challenging.

Tests against nonnested alternatives date back at least to Cox (1961, 1962) and Atkinson
(1969, 1970). Breusch and Pagan (1980) interpret Cox’s LR test as a LM test. Cox’s basic ideas
were adapted to linear regression models by Pesaran (1974) and to nonlinear regression models
by Pesaran and Deaton (1978). Vuong (1989) provides a very general distribution theory for the
LR test statistic that covers both nested and nonnested models and more remarkably permits the
DGP to be an unknown density that differs from both the densities under the null and alternative.

However, all these methods are restricted to fully parametric models. Tests in the nonlikelihood

Y6Rigorously speaking, Hansen’s model averaging is to approximate an infinite-dimensional model rather than a
parametric model as Hjort and Claeskens. In this sense, Hansen’s work is close to Li (1987) where the best model
rather than an average is selected.
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case often take one of two approaches. Artificial nesting, proposed in Dividson and MacKinnon
(1981, 1984), embeds the two nonnested models into a more general artificial model, which leads to
so-called J tests and P tests and related tests. The encompassing principle, proposed by Mizon
and Richard (1986), leads to a quite general framework for testing one model against a competing
nonnested model. White (1994) links this approach with CM tests. See Gourieroux and Monfort
(1994, 1995 Ch. 22) and Pesaran and Weeks (2001) for a summary of literature.

We will not discuss these nonnested tests in details, but only briefly discuss choice between
log(y) versus y as the dependent variable. There is a large literature on this subject, much of it
quite misleading. The plain truth is that either regression is "okay", in the sense that both Ely;|x;]
and Ellog(y;)|x;] are well-defined (so long as y; > 0). It is perfectly valid to estimate either or
both regressions. They are different regression functions, neither is more nor less valid than the
other. To test one specification versus the other, or select one specification over the other, requires
the imposition of additional structure, such as the assumptions that the conditional expectation is
linear in x;, and u; ~ N (0, 02)E

There still may be good reasons for preferring the log(y) regression over the y regression. First,
it may be the case that E[log(y;)|x;] is roughly linear in x; over the support of x;, while the
regression E[y;|x;] is non-linear, and linear models are easier to report and interpret. Second, it
may be the case that the errors in u; = log(y;) = E[log(yi)|x;] may be less heteroskedastic than the
errors from the linear specification (although the reverse may be true!). Finally, and probably most
importantly, if the distribution of y; is highly skewed (as the wage example in the Introduction), the
conditional mean FE[y;|x;] may not be a useful measure of central tendency, and estimates will be
undesirably influenced by extreme observations ("outliers"). In this case, the conditional mean-log
Ellog(yi)|x;] may be a better measure of central tendency, and hence more interesting to estimate
and report. In the classical return-to-schooling example, it is commonly believed that the wage rate
follows the log-normal distribution which is highly skewed, while the log-wage follows the normal
distribution which is symmetric.

Log transformation is often used for a percentage interpretation of the coefficients. This is
because log(y+A)—log(y) ~ A/y which is the percentage change of y. When the log transformation
is also conducted to x, the coefficients are elasticities of y with respect to x. Finally, note that

variables measured in units such as years or in percentage points should not be logged.

7 Generalized Least Squares

In the linear projection model, we know that the least squares estimator is semi-parametrically

efficient for the projection coefficient. However, in the linear regression model

Yyi = Xfiﬁ+ui7
E[ul]xl] = O,

"For example, under such assumptions, Amemiya (1980) shows that R? and R based on log(y) are larger than
those based on y.
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the least squares estimator may not be efficient. The theory of Chamberlain (1987) can be used
to show that in this model the semiparametric efficiency bound is obtained by the weighted least
squares (WLS) estimator

B= (XD 'X) (XD'y), (9)

1(
where D = diag{o?}, -+ ,02} and 0? = o%(x;) = E[uf|x;]. We provide some intuition for this
result. Note that

n !
7

_ 1 n ) ‘ 2
B:argminZ(yi—x;ﬂf2:argmjn2(%_x5> :
B gy B i1 ()

0.
i=1 ¢

where the objective function takes the form of weighted sum of squared residuals, and the model

’
Yi X; Uj
e 713 + =
g; gi g;

is homoskedastic (why?). Under homoskedasticity, the Gauss-Markov theorem implies the efficiency
of the LSE which is the WLS estimator in the original model. An interesting aspect of this efficiency
result is that only the second moment of u; is relevant and higher moments are not. Of course, this

is because we are comparing the asymptotic variance which involves only the second moment of u;.

Exercise 10 Consider the WLS estimator (@) with D = diag {%2'17 e ,m?n}, where xj; is one of

x;. (i) Is this estimator unbiased and consistent? (ii) Using your intuition, in which situations

would you expect that this estimator would perform better than OLS?

The GLS estimator (9) is infeasible since the matrix D is unknown. A feasible GLS (FGLS)
estimator replaces the unknown D with an estimate D= diag{&%, e ,3,21}. We now discuss this
estimation problem. As in Goldfeld and Quandt (1972, Ch.3), we model the conditional variance
using the parametric form

2 / /
o5 = ap + 21,001 = A'Zg,

where z1; is some ¢ x 1 function of x;. Typically, z1; are squares (and perhaps levels) of some (or

all) elements of x;. Often the functional form is kept simple for parsimony. Let n; = u?. Then
E [n;]xi] = ao + 2);00
and we have the regression equation

n;, = oo+z00+E, (10)
Ellx] = 0.

This regression error &, is generally heteroskedastic and has the conditional variance

Var (&|x;) = Var (u12|xz) =F [uf|xl] —(E [u12|xl])2
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Suppose u; (and thus 7;) were observed. Then we could estimate o by OLS:
a=(2z)"Zn

and
V(@ —a) -5 N(0,Vs),

where
Va = (8 [sesl]) " (B 0al€?]) (B [asal]) )

Exercise 11 Take the model

yvi = x84+ u;, Elxu] =0,
u; = ziy+&;, Elz;] = 0.

Find the MoM estimators (,@,‘y\) for (B,7).
While u; is not observed, we have the OLS residual w; = y; — x;B =u; — XZ(B — ). Thus

¢ =T —m; =107 —uf = —2uxi(B — B) + (B — B)'xixi(B — B).

And then
1 ¢ 2 ¢ / 2 IEN 2 / / a p
7 > zig; = - > zuixivn(B - B) + - 228 —0) x;x;\/n(B — B) — 0.
i=1 i=1 i=1
Let
a=(z2'2)"'7% (12)

be from OLS regression of 7; on z;. Then

Vi(@-a)=vn(@-a)+(n'2z) 'n?Z¢ 5 N(0,V,). (13)

Thus the fact that n; is replaced with 7); is asymptotically irrelevantm We call the skedastic
regression, as it is estimating the conditional variance of the regression of y; on x;. We have
shown that « is consistently estimated by a simple procedure, and hence we can estimate a? =z«
by

Suppose that 5’? > 0 for all ¢. Then set

D = diag {5%,--- ,52}

'¥Such a result appears as early as in Amemiya (1977).
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and
3= <X’]5*1X>_1 <X’]5*1y> .

This is the feasible GLS, or FGLS, estimator of 3. In practice, we can iterate between D and ,B
until convergence. Specifically, we can start from a 3 estimate to get residuals which are used to
estimate D, and this D estimate is plugged in the FGLS formula to get a new estimate of 3. Repeat
this process until convergence. Since there is not a unique specification for the conditional variance
the FGLS estimator is not unique, and will depend on the model (and estimation method) for the
skedastic regression. Robinson (1987) shows that even if o2(-) is nonparametrically specified, 3
can be estimated as if o%(-) were known. In other words, the nonparametric estimation of o2(-)
does not affect the efficiency of the FGLS estimator or the FGLS estimator can achieve the same
efficiency as 3.

One typical problem with implementation of FGLS estimation is that in a linear regression
specification, there is no guarantee that 2 > 0 for all 7. If 37 < 0 for some 7, then the FGLS
estimator is not well defined. Furthermore, if 512 ~ 0 for some i, then the FGLS estimator will
force the regression equation to pass through the point (y;, x;), which is typically undesirable. This
suggests that there is a need to bound the estimated variances away from zero. A trimming rule

might make sense:

for some g2 > 0. Of course, we can assume o2 = h (a'z;) > 0 at the beginning, e.g., h (-) = exp {}
or h(-) = |-|™ with m a prespecified integer. If h is invertible such as exp {-}, we can regress h~1(a?)
on z; to get & and then estimate o2 by h (&/zi). If h is not invertible such as ||, we must estimate
« using the nonlinear least squares and lose the elegancy of the OLS estimation.

It is possible to show that if the skedastic regression is correctly specified, then FGLS is as-
ymptotically equivalent to GLS, but the proof of this can be tricky. Below we just state the result

without proof.
Theorem 2 If the skedastic regression is correctly specified,
Vi (B-B) 0

and thus
Vi (B-8) - N, V),
where V = E [Ji_QXiXZ'] !

Examining the asymptotic distribution in the above theorem, the natural estimator of the

( ZE_QXZ )1: <:LX’]5—1X>_1,
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which is consistent for V as n — oo. This estimator V© is appropriate when the skedastic regression
is correctly specified.

It may be the case that a/z; is only an approximation to the true conditional variance o%. In this
case we interpret a’z; as a linear projection of ul2 on z;. B should perhaps be called a quasi-FGLS

estimator of 3. Its asymptotic variance is not that given in the above theorem. Instead,

V = (E {(a'zi)_l Xixg] ) ! E {(a'zi) -2 U?Xixg] <E {(a'zi)_l XiX;D

as shown in Section 1.3 of the last chapter. V takes a sandwich form similar to the covariance

matrix of the OLS estimator. Unless o2

-1

= 'z, VO is inconsistent for V. An appropriate solution

is to use a White-type estimator in place of VO. This may be written as

v — ( Zgﬂxl > ( > 5 furxix )( Zla2xl ) B

- n(X’D X) (x'D" X) (X’f)—lx)

where D = diag{ﬂ%, e ,ﬁ%} This is an estimator proposed by Cragg (1992), which is robust to
misspecification of the conditional variance.

In the linear regression model, FGLS is asymptotically superior to OLS. Why then do we not
exclusively estimate regression models by FGLS? This is a good question. There are three reasons.
First, FGLS estimation depends on specification and estimation of the skedastic regression. Since
the form of the skedastic regression is unknown, and it may be estimated with considerable error, the
estimated conditional variances may contain more noise than information about the true conditional
variances. In this case, FGLS perfoms worse than OLS in practice. Second, individual estimated
conditional variances may be negative, and this requires trimming to solve. This introduces an
element of arbitrariness which is unsettling to empirical researchers. Third, OLS is a more robust
estimator of the parameter vector. It is consistent not only in the regression model (E[u|x] = 0),
but also under the assumptions of linear projection (E[xu] = 0). The GLS and FGLS estimators,
on the other hand, require the assumption of a correct conditional mean. If the equation of interest
is a linear projection, and not a conditional mean, then the OLS and FGLS estimators will converge
in probability to different limits, as they will be estimating two different projections. And the FGLS
probability limit will depend on the particular function selected for the skedastic regression. The
point is that the efficiency gains from FGLS are built on the stronger assumption of a correct

conditional mean, and the cost is a reduction of robustness to misspecification.

8 Testing for Heteroskedasticity

If heteroskedasticity is present, more efficient estimation is possible, so we discuss testing for het-
eroskedasticity in this section. Heteroskedasticity may come from many resources, e.g., random

coeflicients, misspecification, stratified sampling, etc. So rejection of the null may be an indication
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of other deviations from our basic assumptions.

The hypothesis of homoskedasticity is that E[u?|x] = 02, or equivalently that
Ho L] = 0

in the regression . We may therefore test this hypothesis by the estimation and constructing
a Wald statistic.

This hypothesis does not imply that £, is independent of x;. Typically, however, we impose
the stronger hypothesis and test the hypothesis that u; is independent of x;, in which case &; is
independent of x; and the asymptotic variance for a simplifies to

(2

Vo =E[zz] E[¢]. (15)

Hence the standard test of Hy is a classic F' (or Wald) test for exclusion of all regressors from the
skedastic regression . The asymptotic distribution and the asymptotic variance under

independence show that this test has an asymptotic chi-square distribution.
Theorem 3 Under Hy and u; independent of x;, the Wald test of Hy is asymptotically Xt21'

Most tests for heteroskedasticity take this basic form. The main difference between popu-
lar "tests" lies in which transformation of x; enters z;. Breusch-Pagan (1979) assume u; follows
N(0,h(c'z;)) for a general h(-) > 0, and use the LM test to check whether oy = OH Because
a and B are "informationally" independent and Hy involves only «, the LM test statistic can be

much simplified. It turns out that

n / n -1 n
LM = ;4 (Z Zifz’) (Z Zﬂ%) (Z Zifi) ;
7 \i=1 i=1 i=1

where f; = af — 02, This LM test statistic is similar to the Wald test statistic; a key difference is
that E [{ZQ] is replaced by 26* which is a consistent estimator of E [522] under Hy where u; follows
N(0,02). Koenker (1981) shows that the asymptotic size and power of the Breusch-Pagan test is
extremely sensitive to the kurtosis of the distribution of w;, and suggests to renormalize LM by
n~! Yo f2~2 rather than 26 to achieve the correct size. We denote the resulting LM test statistic
as LMp.
White (1980c) observes that when Hy holds, = n~? S xxiu? and 5°Q = (=130 ) (n Yo xix))
should have the same probability limit, so the difference of them should converge to zero. In
some sense, this is a Hausman-type test. Collecting non-redundant elements of x;x}, denoted as

z; = (1,2};) as above, we are testing whether D,, = n™* Y1 | zy; (42 —°) ~ 0. Under the

"The general form of heteroskedasticity h(-) does not play any role in their arguments because under the null, any
h(-) function reduces to a constant.
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auxiliary assumption that u; is independent of x;, we can show that under Hy,
I -1 d 2
nD;, B, "D, — xg,

where

~ I~ 5 o2 _ _
Bn = E Z; (u? — 0’2) (Zli — Zl) (le‘ — Z1)/
1=

is an estimator of the asymptotic variance matrix of v/nD,,. Given that u; is independent of x;,

ﬁn can be replaced by

I,y o2l & _ _
B, =Y (@ -8") - (21— %) (2~ 7).

i=1 =1

Exercise 12 Show that when z; = (1,z;) € R2, LM = (W' Du/0/4)?, where

D:diag{n(xi—m)/\/Zijl (zi — )% i=1, n}

Ifxi=1fori=1,--- ,ny andx; =0 fori=n1+1,--- ,n, show that LM reduces to

1 n 2 a2\

7
—— E — | —n
2n1(n —ny) ‘ <32> !

=1

2

Exercise 13 (i) Show that &% LM is one half of the explained sum of squares in the regression of
u? upon z;. (ii) Show that LMk = nR% = nR?, where R2 is the uncentered R? in the regression of
fi onz;, and R? is the centered R? in the regression ofﬁ? on z;. (i1i) Show that nDﬁl]A?;;an =nR?,

where R? is the centered R* in the regression of Us on z;.

The Breusch-Pagan and White tests have degrees of freedom that depend on the number of
regressors in E[y|x]. Sometimes we want to conserve on degrees of freedom. A test that combines
features of the Breusch-Pagan and White tests but has only two dfs takes zy; = (7;,%7)’, where 7;
are the OLS fitted values. This reduced White test has some similarity to the RESET test. y; are
generated regressors, but as argued in the RESET test, this will causes no complications in the
testing environment. So nR? from @? on 1,7;, %2 has a limiting x3 distribution under Hj.

(**) All the above tests are based on a key assumption under Hy that u; is independent of
x;, especially, F[u}|x;] is constant. This assumption is usually called the homokurtosis (constant
conditional fourth moment) assumption. When this assumption fails, Wooldridge (1990) proposes a
heterokurtosis-robust test for heteroskedasticity, which is very similar to the heteroskedasticity-
robust LM test.

There are some alternative tests of heteroskedasticity in the literature. Koenker and Bassett
(1982) propose a robust test of heteroskedasticity based on quantile regression. For testing a more

general deviation from homoskedasticity, i.e., E[u?|x;] = 0?(x;) for a general o2(+), see Zheng (2009)
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Figure 5: Typical Regression Intervals

where the testing idea follows from Zheng (1996). (**)

9 Regression Intervals and Forecast Intervals

All previous sections consider the internal validity. This section considers the external validity, i.e.,
prediction. We specifically concentrate on regression intervals and forecast intervals. First note
that for prediction, misspecification is less important.

In the linear regression model the conditional mean of y; given x; = x is
m(x) = Ely;|x; = x| =x'3.

In some cases, we want to estimate m(x) at a particular point x (which may or may not be the
same as some X;). Notice that this is a (linear) function of 3. Letting r(8) = x'8 and 6 = r(3), we
see that Mm(x) = 6 = x'B and R = x, so 8(5) = Vn~1x'Vx. Thus an asymptotic 95% confidence

[x'f'] + 2V n_lx’i\fx} .

It is interesting to observe that if this is viewed as a function of x, the width of the confidence

interval for m(x) is

set is dependent on x. Typical regression intervals are shown in Figure |5 where the nonconstant
covariate is only one-dimensional. Notice that the confidence bands take a hyperbolic shape. This

means that the regression line is less precisely estimated for very large and very small values of x.
Exercise 14 In the wage equation, logwage = 3, + B4 - educ + B5 - exper + By - exper? + u, how
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to construct regression intervals for experience when education is fixed at its mean?

Exercise 15 In the linear regression log(y) = x'B + u, denote lgg\y = x’,@. If we want to predict
Ely;|x; = x|, is exp {log y} suitable? If not, does this predictor under- or over-estimate Ely;|x; =
x|? Can you provide a more suitable predictor under the additional assumption that u is independent
of x?

For a given value of x; = x, we may want to forecast (guess) y; out-of-sampleﬂ A reasonable
rule is the conditional mean m(x) as it is the mean-square-minimizing forecast. A point forecast is
the estimated conditional mean m(x) = x’ B We would also like a measure of uncertainty for the
forecast.

The forecast error is u; = y;—m(x) = u;—x’ (B— B3). As the out-of-sample error u; is independent

of the in-sample estimate B, this has variance

B[@}] = Blllxi=x+xE[B-B)B-0)]x

= o?(x) +n 'x'Vx.

Assuming E [u?|xl] = 02, the natural estimate of this variance is 62 + n~'x’ \A/'x, so a standard
error for the forecast is $(x) = V62 + n—1x’Vx. Notice that this is different from the standard
error for the conditional mean. If we have an estimate of the conditional variance function, e.g.,
52(x) = &'z from , then the forecast standard error is 5(x) = \/52(x) +n1x'Vx.

It would appear natural to conclude that an asymptotic 95% forecast interval for y; is

[X'B + 2§(x)] ,

but this turns out to be incorrect. In general, the validity of an asymptotic confidence interval is
based on the asymptotic normality of the studentized ratio. In the present case, this would require

the asymptotic normality of the ratio

U; — X,(B - B)
5(x) '

But no such asymptotic approximation can be made. The only special exception is the case where
u; has the exact distribution N (0, 0?), which is generally invalid.

To get an accurate forecast interval, we need to estimate the conditional distribution of u; given
x; = X, which is a much more difficult task. Given the difficulty, many applied forecasters focus on

the simple approximate interval [x’ B+ 2§(x)].

Exercise 16 In the homoskedastic regression model y = X3 +u with E[u;|x;] = 0 and E[u?|x;] =

o2, suppose El is the OLS estimate with covariance matriz {\7, based on a sample of size n. Let 52

be the estimate of 0. You wish to forecast an out-of-sample value of yni1 given that X, 1 = X.

20x cannot be the same as any x; observed, why?
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Thus the available information is the sample (y,X), the estimates (3,9,32), the residuals U, and

the out-of-sample value of the regressors, X41.

(i) Find a point forecast of yp+1.

(ii) Find an estimate of the variance of this forecast.

Exercise 17 (Empirical) Reconsider Nerlove’s dataset in the last chapter, where you estimated

a cost function on a cross-section of electric companies. The equation you estimated was
logT'C; = By + By log Qi + B3log PL; + B4log PK; + B5log PF; + u;. (16)

(a) Following Nerlove, add the variable (logQ;)?* to the regression. Assess the merits of this new
specification using (i) a hypothesis test; (ii) AIC criterion; (iii) BIC criterion. Do you agree
with this modification?

(b) Now try a non-linear specification. Consider model (@ plus the extra term [gz;, where

zi = log Qi (1 + exp(—(log Q; — 57)))71.

In addition, impose the restriction 83 + B4+ B5 = 1. This is the smooth transition model.
The model works best when [, is selected so that several values (in this example, at least 10

to 15) of logQ; are both below and above B~. Examine the data and pick an appropriate range
for By.

(c) Estimate the model by non-linear least squares. I recommend the concentration method: Pick
10 (or more or you like) values of By in this range. For each value of By, calculate z; and
estimate the model by OLS. Record the sum of squared errors, and find the value of B, for

which the sum of squared errors is minimized.

(d) Calculate standard errors for all the parameters (B1,--- , 7).

Exercise 18 (Empirical) The data file cps78.dat contains 550 observations on 20 variables taken
from the May 1978 current population survey. Variables are listed in the file cps78.pdf. The goal
of the exercise is to estimate a model for the log of earnings (variable LNWAGE) as a function of

the conditioning variables.

(a) Start by an OLS regression of LNWAGE on the other variables. Report coefficient estimates

and standard errors.

(b) Consider augmenting the model by squares and/or cross-products of the conditioning variables.

FEstimate your selected model and report the results.

(c) Are there any variables which seem to be unimportant as a determinant of wages? You may

re-estimate the model without these variables, if desired.
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(d) Test whether the error variance is different for men and women. Interpret.
(e) Test whether the error variance is different for whites and nonwhites. Interpret.

(f) Construct a model for the conditional variance. Estimate the model, test for general het-

eroskedasticity and report the results.

(g) Using this model for the conditional variance, re-estimate the model from part (c¢) using FGLS.
Report the results.

(h) Do the OLS and FGLS estimates differ greatly? Note any interesting differences.

(i) Compare the estimated standard errors. Note any interesting differences.

Appendix A: Derivation of the AIC

We first derive AIC in a general model and then apply it to the normal regression model. An
alternative simplified derivation can be found in Amemiya (1980). The AIC is used to select the
model whose estimated density is closest to the true density. It is designed for parametric models
estimated by maximum likelihood.

Recall from Chapter 4 that the Kullback-Leibler information distance (or the relative
entropyEI) between probability densities ¢ and p is defined as

D(q,p) = /10g (CJ(:C)) q(z)dz.

p(z)

From Jensen’s inequality, we know that (i) D (¢q,p) > 0 for all probability densities ¢ and p;
(ii) D(q,p) = 0 iff ¢ = p. So we can treat D as a criterion to measure a difference between two
densities@ The AIC is just an estimate of D when g is the true density while p is an approximation
of g. The rough idea is that we estimate D (q,p) by D (q,p), where p is an estimator of p. Since
D (q,p) is random, we take expectation of D (g, p) to get

Bl = [ q(m)logq(m)dw—E[qm / 1ogﬁ<m>dx]
— O Ellogp(®)].

where T is an independent copy of y. In other words, E [D (q,p)] is the expected log-likelihood fit
using the estimated model p of an out-of-sample realization z; thus, F [D (¢, p)] can be interpreted

as an expected predictive log likelihood.

2 Entropy is defined as —FE[log p(X|6)], and is a measurement of the disorder of a system.

22D cannot serve as a metric in the space of densities in a strict sense, since it does not satisfy the symmetricity
and triangle inequality. However, the plausibility of D as a criterion of difference between densities can be justified
by Shannon’s information theory, and the theory of information geometry (Efron (1978) and Amari (1985)).
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Suppose we want to pick up some py that minimizes D out of the set of densities P = {py : 0 € O},

where © C RF is a parameter space. Let

- argmin/log [ a(z) ] g (z)dz,

) po ()

and then, we have (d/df) [log (q(z) /ps (z)) ¢ (x) dz = 0. By the second order Taylor approxima-
tion around 6,

D(q;ps) =~ DI(q:pp) + % (60— 0)"H (pg) (60— 0)

— [ osa@la@)do— [ logps (@)a@)do+ 5 (60-0) H ) (0-5) (1)

0000’
We consider the minimization of the RHS in with respect to 6. The first term of the

RHS in is independent of @ and 6, so can be ignored. The second term is independent of 6,
but is related to the model parameter 6, so needs to be estimated. — [ [logpg (z)] ¢ (z) dz can be

where H (pg) = — / {0210*5199(96)} q (z) dz.

estimated by

- %Zlogpg (X)). (18)
=1

This is a consistent and unbiased estimator. But, 6 is still unknown; we estimate it by

- 1 &
arg min n; og pe (Xi)

Expanding around 6, we get

n

1< i 1< L/ o\ 1= 0%logpg (X:)
—n;logpg(Xi)N—n;bgpé(Xi)—2(9—9> n;%%’

since %2?21 (0/00)log pg (Xi)lg_g = 0 Only the third term % (6 - @)/H (pg) (0 — 0) depends

on 6, which is minimized at 6. Since 6 is unknown, we estimate it by 6. So the third term can be
estimated by
1z 1 o= 8 logpy (X2)
R /. 9) il 2 o0\
2 ( n Z 0000’

(é - é) (20)

=0

?% A naive estimator of — [ log [ps ()] ¢ (z) dz would be —n ™' 3°""  log p; (X;). But this is a biased estimator (the
bias comes from the nonlinearity of p in ). So, can be interpreted as a bias corrected estimator.
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In summary, we have

min D (g, p) = D(q,pa)
0% log py (X;) 77
where C is some constant. Compared to the straightforward estimator —= ZZ 1 log ps (X;) of

— [ [log pg (z)] g (x) dz, the second term of (21) is a penalty term. It comes from two resources -
one half is from in-sample over-fitting in and another half is from parameter estimation in
. The RHS is random (and involves the unknown ), so we take expectation to further simplify
the formula.

Taking the expectation of the both sides of , we have

D(q,p5) = E[D(q pp)]
N 1 — -\ 1 = 9logpy (X;) 55
~ n;logpé(X (9-9) n;aeae' 9:9(9_0> +C.

For large n, n™1 Y"1 | logp; (X;) is close to its expectation. From White (1982), the asymptotic

distribution of 0 is
Vi |0 —0] <5 N (0, H (pg) ™" T (vg) H (pp) ") (22)

1 1
where J (pg) = / [8 0%@1;9 (z) 9 O%Z? (x)} q (z) dz. Using the approximation of

0? logpg

we have

s\ 1. %1 X;
(0-0) 5> T

It holds
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From this and , we have

B|(6-0) 19 (5-0)] = «{mnene|(-9)(0-0)]}

o {7 p) H ()

Q

If pg is close to the true model g, then we can say H (pz) ~ J (pg) by the usual information equality.

As a result,
tr{J (pg) H (pg) "} = tx {I1} = (= dim (6)).

. <é—e>] ~

Therefore,

B (5_9>’1i8210gp9()9‘) (24)

n< 9000

3|

In summary, we have the estimator of D (¢, pp) as
1< k
—=> logps (Xi) + — +C,
n n

and we minimize D (q,pg) with respect to k to select the correct model. In the normal regression

model,

1 ¢ k 1 R 1
_ﬁ ;log [pa (Xi)] + o = §log (27“72) + 5 4

k

o

so minimize D (¢,pg) is equivalent to minimize log (82) + %, which is the AIC in the main text.
From the proof above, there are some errors in approximating D (q,ps) by the AIC. First, we

use a quadratic approximation to the log likelihood. Second, we use a normal approximation to

the distribution of 8. Third, we have assumed that the true model is in the choice set to apply the

information equality although the target of AIC is to choose the best approximation model rather

than select the true model.

Appendix B: Derivation of the BIC

The derivation in this appendix follows from Robert (2001). The BIC is related to the asymptotic
approximation to the Bayes factor (see Lavine and Schervish (1999) for an elementary exposition
for Bayes factors). We will first review Bayesian factors and Laplace expansion, and then show
that BIC is a natural corollary of this expansion.

The Bayes factor is the ratio of posterior odds to prior odds, that is,

P =" MO (M) p (g Ma) p(Ma) fp(y) s

Here, p(M;) is the prior probability of model i, p (M;|y) is the posterior probability of model ¢,
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p(y|M;) is the marginal likelihood of y in MZ@Z = 1,2, and y is the data set. Intuitively, if
By > 1, i.e., Mj can explain the data better than My, then we prefer model 1. If p(M;) = p(Ma),
then Bjs is actually the posterior odds, so we are selecting the model with the highest approximate
probability of being the true model.

Laplace expansion is used to approximate some integrals like the numerator and denominator

of equation by normal density functions. The procedure is as follows,

fp(y|0i,/\/li) p(92|./\/l1)d9, = fexp {—nh(@z)} d@l

= [ {-an@— 5 (5:-5.) 1 (3) (5. 5.) fane+ 0 (1)
= exp { -nh(@)} / exp {_; (0: - ) [Hn@)] B (6: - ) } do; +0 (1)

H=Y(
n

)
-
N—

= exp {—nh(b\z)} (277)ki/2
= L;(6;) (%)ki/2 [H (@)}

where k; is the dimension of 6;, @ is the minima of h(@i) H is the Hessian matrix of A, and L; (@)

is the likelihood function of model i evaluated at its maxima. The second equality is from the second

—1/2
+0(3),

n

order Taylor expansion at the maxima of —nh(6;), or minima of h(6;), and the fourth equailty is

from the definition of the density function of mutivariate nomral. So we could approximate equation

@) =

3 1y (01,0 e
_ Lin(bhn) ‘ L\"Ln (k2—k1)/2
s L;n@;n) 115 (7. (37)

The subscript n is to emphasize the fact that we based our inference on a size n sample. Therefore,

ko — k
log(Bi2) ~ log(A\,) + 2 1

log(n) + R(011,02.0)

where A, is the standard likelihood ratio for the comparison of M; with Mg, A, = L1 (/él’n)/ngn(/ézm,),
and R(§17n,/9\27n) denotes the remainder term.

This approximation leads to Schwartz’s criterion,

ko — ky

BIC =log(A\n) + 5

log(n)

when M7 C My, if the remainder term R(/H\l,n,@g,n) is negligible compared with both other terms
(i.e., R(§1,n,§2,n) = 0(1)). Obviously, when BIC > 0, we should select model 1.
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marginal" here means that 6; is integrated out.
*Note that the prior p(6;|M;) is asymptotically neglectable, so we can let p(6;|M;) = 1 on the parameter space
and 6; as the MLE.
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Applying this criterion to the normal regression model, we have

BIC

]

Sua (B) /n " Snz (B) /n ]
_ _n ~2 N Mol =2y, "\ ) 2
- 5 log (01) + 8% + log(n) - log (02) + 33 + log(n) -

01

= —g (BIC; — BICS),

where S, ; is the sum of squared residuals in model %, 812 = Sn (,@Z) /n, and BIC; = log (822) +

log(n)%. We could see that BIC' > 0 is equivalent to 6%—1—1{:1% < 3%—}—/@@, that is, Schwartz’s
criterion is equivalent to the BIC in the main text. Here, we should note that the dimension of

2 is an extra

parameter in model 7 is (k; + 1), where k; is the dimension of 3;, i = 1,2, because o
parameter. Similarly, k in Appendix A should be the dimension of 8 plus 1. However, the AIC is

equivalent to the criterion with k replaced by the dimension of 5.
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. 1 ~ . 1 ~ ky+1)— (k1 +1
(—Zlog (27T0’%) — 27257%1 (51)> — <_Zlog (QWU%) _ ang <52>> 4 (k2 +1) > (k1+1)

log(n)
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