
Chapter 6. Additional Topics on Linear Regression�

This chapter covers additional topics on linear regression. Related materials can be found in

Chapter 5 of Hansen (2007).

We �rst collect assumptions in the previous chapters:

Assumption OLS.0 (random sampling): (yi;xi), i = 1; � � � ; n, are i.i.d.

Assumption OLS.1 (full rank): rank(X) = k.

Assumption OLS.10: rank(E[xx0]) = k.

Assumption OLS.2 (�rst moment): E[yjx] = x0�.

Assumption OLS.20: y = x0� + u with E[xu] = 0.

Assumption OLS.3 (second moment): E[u2] <1:

Assumption OLS.30 (homoskedasticity): E[u2jx] = �2:

Assumption OLS.4 (normality): ujx � N(0; �2).

Assumption OLS.5: E[u4] <1 and E
h
kxk4

i
<1.

Di¤erent assumptions imply di¤erent properties of the LSE as summarized in Table 1.

y = x0� + u Implied Properties

E[xu] = 0 linear projection =) consistency

[
E[ujx] = 0 linear regression =) unbiasedness

[
E[ujx] = 0 and E[u2jx] = �2 homoskedastic linear regression =) Gauss-Markov Theorem

[
u is independent of x normal regression is a special case =) UMVUE

Table 1: Relationship between Di¤erent Models

�Email: pingyu@hku.hk

1



This chapter will examine the validity of these assumptions and cures when they fail. Two key

assumptions we will examine are OLS.2 and OLS.30. Assumption OLS.2 has many implications.

For example, it implies (i) the conditional mean of y given x is linear in x, and (ii) all relevant

regressors are included in x and are �xed. Section 1 and 2 examine the �rst implication: Section

1 tests whether E[yjx] is indeed x0� and Section 2 provides more �exible speci�cations of E[yjx].
Section 3 and 4 examine the second implication: Section 3 checks the bene�ts and costs of including

irrelevant variables or omitting relevant variables, and Section 4 provides some model selection

procedures based on information criteria. Section 5 and 6 examine Assumption OLS.30: Section 5

shows that there are more e¢ cient estimators of � when this assumption fails and Section 6 checks

whether this assumption fails. Finally, Section 7 examines the external validity of the model.

1 Tests for Functional Form Misspeci�cation

Misspeci�cation of E[yjx] may be due to omitted variables or misspeci�ed functional forms. In this
section, we only examine the second source of misspeci�cation and provide a general test of the

adequacy of the speci�cation of E[yjx].
One simple test for neglected nonlinearity is to add nonlinear functions of the regressors to the

regression, and test their signi�cance using a Wald test. Thus, if the model yi = x0i
b� + bui has

been �t by OLS, let zi = h(xi) denote functions of xi which are not linear functions of xi (perhaps

squares of non-binary regressors) and then �t yi = x0ie�+z0ie+eui by OLS, and form a Wald statistic
for  = 0.

Another popular approach is the REgression Speci�cation Error Test (RESET) proposed by

Ramsey (1969, 1970). The null model is

yi = x
0
i� + ui;

which is estimated by OLS, yielding predicted values byi = x0ib�. Now let
zi =

0BB@
by2i
...bymi
1CCA

be an (m� 1)-vector of powers of byi. Then run the auxiliary regression
yi = x

0
i
e� + z0ie + eui (1)

by OLS, and form the Wald statistic Wn for  = 0. byi�s are generated regressors in the term of

Pagan (1984) (see also Murphy and Topel, 1985). However, for testing purposes, using estimates

from earlier stages causes no complications (because under H0, the coe¢ cients associated with

generated regressors are zero). So under H0, Wn
d�! �2m�1. Thus the null is rejected at the � level

if Wn exceeds the upper � tail critical value of the �2m�1 distribution. To implement the test, m
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must be selected in advance. Typically, small values such as m = 2; 3; or 4 seem to work best.

The RESET test appears to work well as a test of functional form against a wide range of

smooth alternatives. It is particularly powerful in detecting the single-index model of Ichimura

(1993),

yi = G(x
0�) + ui;

where G(�) is a smooth "link" function. To see why this is the case, note that (1) may be written
as

yi = x
0
i
e� + �x0ib��2 e1 + � � �+ �x0ib��m em�1 + eui;

which has essentially approximated G(�) by an mth order polynomial.
(**)Another speci�cation test is White�s (1980a, 1981) version of Hausman�s (1978) test. The

idea of this test is that if the model is correctly speci�ed, then both the LSE and the WLS estimator

are consistent and their di¤erence should be close to zero. Speci�cally, under the null,

n
�b�OLS � b�WLS

�0 bV�1
�b�OLS � b�WLS

�
d�! �2k;

where bV is a consistent estimator of V, the asymptotic variance of
p
n
�b�OLS � b�WLS

�
under the

null. V generally takes a complicated form, but under the auxiliary assumption of homoskedasticity,

it takes a neat form,

V = n
h
AV ar(b�WLS)�AV ar

�b�OLS�i (2)

= E
�
wixix

0
i

��1
E
�
w2i xix

0
iu
2
i

�
E
�
wixix

0
i

��1 � �2E �xix0i��1 :
This simpli�cation is due to the fact that although both the LSE and the WLS estimator are

consistent under the null, the LSE is e¢ cient under homoskedasticity.

Exercise 1 (i) Suppose in model yi = x0i� + ui, E[uijxi] = 0 and E[u2i jxi] = �2. Show that

Avar
�p
n
�b�OLS � b�WLS

��
= V in (2). (ii) If E[u2i jxi] is not a constant, what is the expression

for Avar
�p
n
�b�OLS � b�WLS

��
? If wi = ��2i , what will the expression for Avar

�p
n
�b�OLS � b�WLS

��
change to?

V can be estimated by its sample analog. But such an estimator is generally consistent only under

the null (and the auxiliary assumption of homoskedasticity). A covariance matrix estimator that is

consistent regardless of misspeci�cation is given in White (1980b). Theorem 2.2 of Hausman (1978)

shows that the test statistic has a noncentral �2 distribution for a sequence of local alternative

hypotheses, with a noncentrality parameter depending on plim(b�OLS� b�WLS). To generate power,

the weights in b�WLS are important. White (1981) suggests to impose weights on the area where

the linear approximation is bad. Speci�cally, the weights are predicted bu2i using all non-redundant
elements of xi, its squares, and all cross-products.1

1So we should include 2(k�1)+C2k�1 nonconstant regressors on the right-hand side. But if xi includes polynomial
or dummy terms, we should adjust the number of regressors accordingly.
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All these tests mentioned above are special cases of the conditional moment (CM) test of Newey

(1985a) and Tauchen (1985).2 Speci�cally, under H0, E[ujx] = 0, so any function of x is orthogonal
to u. Di¤erent tests just pick di¤erent functions of x to form orthogonal moment conditions. But

all such tests can only detect some form of deviation from the null. To detect any possible deviation

from the null, we essentially need in�nite moment conditions, which seems formidable. Nevertheless,

Bierens (1982, 1990) extends the CM test to achieve this goal; see also Bierens and Ploberger (1997)

for the integrated conditional moment (ICM) test. Another test that can detect any deviation from

the null is proposed by Zheng (1996). The idea of his test is that

E[uE[ujx]f(x)] = E
�
E[ujx]2f(x)

�
=

Z �Z
uf(u;x)du

�2
dx � 0;

where f(x) is the density of x. Equality can be achieved only if E[ujx] = 0, so this test would

have power to detect any deviation from E[yjx] = x0�. f(x) is added in to o¤set the denominator
in E[ujx] =

R
uf(u;x)f(x) du.

3 This test is constructed under the null (e.g., ui is estimated in the null

model), so is similar to the score test in spirit; see Yu (2014) for more discussions. (**)

2 Nonlinear Least Squares

If the speci�cation test rejects the linear speci�cation in the least squares estimation, we may

consider to use a nonlinear setup for the regression function E[yjx]. Speci�cally, suppose E[yijxi =
x] = m(xj�). For a comprehensive treatment of nonlinear regression, see Seber and Wild (2003).
Nonlinear regression means thatm(xj�) is a nonlinear function of � (rather than x). The functional
form of m(xj�) can be suggested by an economic model, or as in the LSE, it can be treated as a
nonlinear approximation to a general conditional mean function (see White (1981)). Examples of

nonlinear regression functions include the following.

� m(xj�) = exp (x0�): Exponential Link Regression

The exponential link function is strictly positive, so this choice can be useful when it is desired

to constrain the mean to be strictly positive.

� m(xj�) = �1 + �2x�3 , x > 0: Power Transformed Regressors

A generalized version of the power transformation is the famous Box-Cox (1964) transformation,

where the regressor x�3 is generalized as x(�3) with

x(�) =

(
x��1
� ;

log x;

if � > 0;

if � = 0:

2Note that these authors consider the CM test in the context of likelihood models.
3 (*) This is essentially to avoid random denominators in the nonparametric kernel estimation of E[ujx] which will

not be covered in this course.
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Figure 1: Box-Cox Transformation for Di¤erent � Values

The function x(�) nests linearity (� = 1) and logarithmic (� = 0) transformations continuously.

Figure 1 shows the Box-Cox transformations for di¤erent � values. All transformations pass the

point (1; 0).

� m(xj�) = �1 + �2 exp (�3x): Exponentially Transformed Regressors

� m(xj�) = G(x0�), G known4

When G(�) = (1 + exp(��))�1, the regression with m(xj�) = G(x0�) is called the logistic link
regression; when G(�) = �(�) with �(�) being the cdf of standard normal, it is called the probit
link regression.

� m(xj�) = �01x1 + �02x1G
�
x2��3
�4

�
: Smooth Transition

� m(xj�) = �1 + �2x+ �3 (x� �4) 1(x > �4): Continuous Threshold Regression

� m(xj�) =
�
�01x1

�
1(x2 � �3) +

�
�02x1

�
1(x2 > �3): Threshold Regression

For surveys of the smooth transition model (STM), see Teräsvirta (1998), Teräsvirta et al.

(2010) and van Dijk et al. (2002); for the continuous threshold regression (CTR) model, see

Chan and Tsay (1998); for surveys of the threshold regression (TR) model, see Hansen (2011) and

Tong (1990). When �4 = 0, the STM reduces to the TR model, and when �4 = 1, the STM
reduces to linear regression. Figure 2 shows the di¤erence between the STM (x1 = (1; x)0, x2 = x,

4This is di¤erent from the single index model mentioned in the Introduction where G(�) is unknown.
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Figure 2: Di¤erence Between STM, CTR and TR

�1 = (1;�1)0, �2 = (�2; 2)0, �3 = 1; �4 = 0:1 in the top left panel and �4 = 10 in the top right

panel, and G(�) = �(�)), the CTR model ((�1; �2) = (1;�1) and (�3; �4) = (2; 1)) and the TR model
(�1 = (1;�1)0, �2 = (0; 1)0 and �3 = 1) for x 2 [0; 2].

In the �rst �ve examples, m(xj�) is (generically) di¤erentiable with respect to the parameters
�. In the last two examples, m is not di¤erentiable with respect to �4 and �3 which alters some of

the analysis. When it exists, let

m�(xj�) =
@

@�
m(xj�):

The least squares estimator b� minimizes the sum of squared errors

Sn(�) =

nX
i=1

(yi �m(xij�))2:

When the regression function is nonlinear, we call this the nonlinear least squares (NLLS) esti-
mator. The NLLS residuals are bui = yi�m(xijb�). One motivation for the choice of NLLS as the esti-
mation method is that the parameter is the solution to the population problemmin� E

�
(yi �m(xij�))2

�
.

Since sum-of-squared-errors function Sn(�) is not quadratic, b� must be found by numerical
methods (as in the ML estimation). Whenm(xj�) is di¤erentiable, then the FOCs for minimization
are

0 =

nX
i=1

m�(xijb�)bui:
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Theorem 1 If the model is identi�ed and m(xj�) is di¤erentiable with respect to �,

p
n
�b� � �0� d�! N (0;V) ;

where V = E [m�im
0
�i]
�1E

�
m�im

0
�iu

2
i

�
E [m�im

0
�i]
�1 with m�i =m�(xij�0).

Exercise 2 Prove the above theorem. (Hint: Note that b� is the MoM estimator associated with

the moment conditions E [m�iui] = 0.)

Based on this theorem, an estimate of the asymptotic variance V is

bV =

 
1

n

nX
i=1

bm�i bm0
�i

!�1 
1

n

nX
i=1

bm�i bm0
�ibu2i

!�1 
1

n

nX
i=1

bm�i bm0
�i

!�1
;

where bm�i =m�(xijb�).
(**) Identi�cation is often tricky in nonlinear regression models. Suppose that

m(xij�) = �01zi + �02xi();

where xi() is a function of xi with an the unknown parameter . Examples include xi() = x

i ,

xi() = exp (xi), xi() = xiG
�
xi�1
2

�
and xi() = xi1(g(xi) > ). The model is linear when

�2 = 0, and this is often a useful hypothesis (sub-model) to consider. Thus we want to test

H0 : �2 = 0:

However, under H0, the model is

yi = �
0
1zi + ui

and both �2 and  have dropped out. This means that under H0,  is not identi�ed. Such tests

are labeled as tests with nuisance parameter () unidenti�ed under the null. This renders the

distribution theory presented in the last chapter invalid. Thus when the truth is that �2 = 0,

the parameter estimates are not asymptotically normally distributed. Furthermore, tests of H0
do not have asymptotic normal or chi-square distributions. This kind of tests was �rst considered

by Davies (1977, 1987). More discussions on the asymptotic theory of such tests can be found in

Andrews (1993), Andrews and Ploberger (1994) and Hansen (1996) among others. In particular,

Hansen (1996) shows how to use simulation (similar to the bootstrap) to construct the asymptotic

critical values (or p-values) in a given application.

The asymptotic theory for b� may also be complicated when m(xj�) is not smooth in �. For
example, in threshold regression, m(xj�) is discontinuous in �3. The asymptotic distribution ofb�3 depends on the magnitude of the threshold e¤ect �2 � �1: when �2 � �1 shrinks to zero, the
asymptotic distribution is related to a two-sided Brownian motion, while when �2��1 is �xed, the
asymptotic distribution is related to a compound Poisson process; see Chan (1993), Hansen (2000)

and Yu (2012) for further discussions. (**)
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3 Omitted and Irrelevant Variables

Let the regressors be partitioned as

xi =

 
x1i

x2i

!
:

Suppose we are interested in the coe¢ cient on x1i alone in the regression of yi on the full set xi.

We can write the model as

yi = x01i�1 + x
0
2i�2 + ui; (3)

E[xiui] = 0;

where the parameter of interest is �1.

Now suppose that instead of estimating equation (3) by least-squares, we regress yi on x1i only.

This is estimation of the equation

yi = x01i1 + vi; (4)

E[x1ivi] = 0:

Notice that we have written the coe¢ cient on x1i as 1 rather than �1 and the error as vi rather

than ui. This is because the model being estimated is di¤erent from (3). Goldberger (1991) calls

(3) the long regression and (4) the short regression to emphasize the distinction.
Typically, �1 6= 1, except in special cases. To see this, we calculate

1 = E
�
x1ix

0
1i

��1
E[x1iyi]

= E
�
x1ix

0
1i

��1
E[x1i

�
x01i�1 + x

0
2i�2 + ui

�
]

= �1 + E
�
x1ix

0
1i

��1
E[x1ix

0
2i]�2

= �1 + ��2;

where � = E [x1ix01i]
�1�1E[x1ix02i] is the coe¢ cient from a regression of x2i on x1i.

Observe that 1 6= �1 unless � = 0 or �2 = 0. Thus the short and long regressions have the
same coe¢ cient on x1i only under one of two conditions. First, the regression of x2i on x1i yields

a set of zero coe¢ cients (they are uncorrelated), or second, the coe¢ cient on x2i in (3) is zero.

In general, least squares estimation of (4) is an estimate of 1 = �1 + ��2 rather than �1. The

di¤erence ��2 is known as omitted variable bias. It is the consequence of omitting a relevant
correlated variable. Intuitively, 1 includes both the direct e¤ect of x1 on y (�1) and the indirect

e¤ect (��2) through x2. Figure 3 illustrates these two e¤ects.

To avoid omitted variable bias the standard advice is to include potentially relevant variables

in the estimated model. By construction, the general model will be free of the omitted variables

problem. Typically there are limits, as many desired variables are not available in a given dataset.

In this case, the possibility of omitted variable bias should be acknowledged and discussed in the
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Figure 3: Direct and Indirect E¤ects of x1 on y

course of an empirical investigation.

When �2 = 0 and �1 is the parameter of interest, x2i is "irrelevant". In this case, the estimator

of �1 from the short regression, �1 = (X01X1)
�1X01y, is consistent from the analysis above. So

we compare its e¢ ciency relative to the estimator from the long regression, b�1. The compari-
son between the two estimators is straightforward when the error is conditionally homoskedastic

E[u2i jxi] = �2. In this case,

n �AV ar
�
�1
�
= E

�
x1ix

0
1i

��1
�2 � Q�111 �2;

and

n �AV ar
�b�1� = Q�111:2�2 � �Q11 �Q12Q�122 Q21��1 �2

as discussed in Section 1.2 of the last chapter. If Q12 = E[x1ix
0
2i] = 0 (so the variables are

orthogonal) then these two variance matrices equal, and the two estimators have equal asymptotic

e¢ ciency. Otherwise, since Q12Q�122 Q21 > 0, Q11 > Q11:2 and consequently

Q�111 �
2 < Q�111:2�

2:

This means that �1 has a lower asymptotic variance matrix than b�1. We conclude that inclusion of
irrelevant variables reduces estimation e¢ ciency if these variables are correlated with the relevant

variables. Intuitively, the irrelevant variable does not provide information for yi, but introduces

multicollinearity to the system, so decreases the denominator of AV ar
�b�1� from Q11 to Q11:2

without decreasing its numerator �2. For example, take the model yi = �0+�1xi+ui and suppose
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that �0 = 0. Let b�1 be the estimate of �1 from the unconstrained model, and �1 be the estimate

under the constraint �0 = 0 (the least squares estimate with the intercept omitted.). Let E[xi] = �,

and V ar(xi) = �2x. Then we can show under homoskedasticity,

n �AV ar
�
�1
�
=

�2

�2x + �
2
;

while

n �AV ar
�b�1� = �2

�2x
:

When � = E[1 � x] 6= 0, we see that �1 has a lower asymptotic variance.
On the contrary, if x2 is relevant (�2 6= 0) and uncorrelated with x1, then it decreases the

numerator without a¤ecting the denominator of AV ar
�b�1�, so should be included in the regression.

For example, including individual characteristics in a regression of beer consumption on beer prices

leads to more precise estimates of the price elasticity because individual characteristics are believed

to be uncorrelated with beer prices but a¤ect beer consumption. The analysis above is summarized

in Table 2.

�2 = 0 �2 6= 0
Q12 = 0 �1 consistent �1 consistent

same e¢ ciency long more e¢ cient

Q12 6= 0 �1 consistent depends on Q12 � �2
short more e¢ cient undetermined

Table 2: Consistency and E¢ ciency with Omitted and Irrelevant Variables

Exercise 3 If �2 6= 0, Q12 6= 0, could Q12�2 be zero?

We have concentrated on the homoskedastic linear regression model. From Exercise 8 of the

last chapter, we know that when the model is heteroskedastic, it is possible that b�1 is more e¢ cient
than �1 (= b�1R) even if x2 is irrelevant, or adding irrelevant variables can actually decrease the
estimation variance. This result is strongly counter-intuitive. It seems to contradict our initial mo-

tivation for pursuing restricted estimation (or short regression) - to improve estimation e¢ ciency.

It turns out that a more re�ned answer is appropriate. Constrained estimation is desirable, but

not the RLS estimation. While least squares is asymptotically e¢ cient for estimation of the un-

constrained projection model, it is not an e¢ cient estimator of the constrained projection model;

the e¢ cient minimum distance estimator is the choice.

4 Model Selection

In the last section, we discussed the costs and bene�ts of inclusion/exclusion of variables. How

does a researcher go about selecting an econometric speci�cation, when economic theory does not

provide complete guidance? This is the question of model selection. Model selection is an important
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topic in linear regression analysis. In practice, a large number of variables usually are introduced at

the initial stage of modeling to attenuate possible modeling biases. On the other hand, to enhance

predictability and to select signi�cant variables, econometricians usually use stepwise deletion and

subset selection. See Miller (2002) for a comprehensive treatment of subset selection in regression.

It is important that the model selection question be well-posed. For example, the question:

"What is the right model for y?" is not well-posed, because it does not make clear the condition-

ing set. In contrast, the question, "Which subset of (x1; � � � ; xK) enters the regression function
E[yijx1i = x1; � � � ; xKi = xK ]?" is well posed.

4.1 Selection Among Nested Models

In many cases the problem of model selection can be reduced to the comparison of two nested

models, as the larger problem can be written as a sequence of such comparisons. We thus consider

the question of the inclusion of X2 in the linear regression

y = X1�1 +X2�2 + u;

where X1 is n� k1 and X2 is n� k2. This is equivalent to the comparison of the two models

M1 : y = X1�1 + u; E[ujX1;X2] = 0;
M2 : y = X1�1 +X2�2 + u; E[ujX1;X2] = 0:

Note that M1 � M2. To be concrete, we say that M2 is true if �2 6= 0. To �x notation,

models 1 and 2 are estimated by OLS, with residual vectors bu1 and bu2, estimated variances b�21 andb�22, etc., respectively. To simplify some of the statistical discussion, we will on occasion use the
homoskedasticity assumption E[u2i jx1i;x2i] = �2.

A model selection procedure is a data-dependent rule which selects one of the two models. We

can write this as cM. There are many possible desirable properties for a model selection procedure.

One useful property is consistency, i.e., it selects the true model with probability one if the sample

is su¢ ciently large. Formally, a model selection procedure is consistent if

P
� cM =M1jM1

�
! 1;

P
� cM =M2jM2

�
! 1:

However, this rule only makes sense when the true model is �nite dimensional. If the truth is

in�nite dimensional, it is more appropriate to view model selection as determining the best �nite

sample approximation.

A common approach to model selection is to use a statistical test such as the Wald Wn. The

model selection rule is as follows. For some signi�cance level �, let c� satisfy P
�
�2k2 > c�

�
= �.

Then select M1 if Wn � c�, else select M2. A major problem with this approach is that the

signi�cance level is indeterminate. The reasoning which helps guide the choice of � in hypothesis
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testing (controlling Type I error) is not relevant for model selection. That is, if � is set to be a small

number, then P (cM =M1jM1) � 1� � but P (cM =M2jM2) could vary dramatically, depending

on the sample size, etc. Another problem is that if � is held �xed, then this model selection

procedure is inconsistent, as P (cM =M1jM1)! 1� � < 1 although P (cM =M2jM2)! 1.

4.1.1 Information Criteria

Another common approach to model selection is to use an information criterion. The essential

intuition is that there exists a tension between model �t, as measured by the maximized log-

likelihood value, and the principle of parsimony that favors a simple model. The �t of the model

can be improved by increasing model complexity, but parameters are only added if the resulting

improvement in �t su¢ ciently compensates for loss of parsimony. One popular choice is the Akaike

Information Criterion (AIC) proposed in Akaike (1973). From the Technical Appendix A, the AIC

under normality for model m is

AICm = log
�b�2m�+ 2kmn ; (5)

where b�2m is the variance estimate for model m and is roughly �2`n (neglecting the constant term)
with `n being de�ned in the Introduction, and km is the number of coe¢ cients in the model. The

rule is to select M1 if AIC1 < AIC2, else select M2. AIC selection is inconsistent, as the rule

tends to over�t as observed in Shibata (1976). Indeed, since underM1, from Section 5 of Chapter

4,

LR = n
�
log
�b�21�� log �b�22�� d�! �2k2 ; (6)

then

P
� cM =M1jM1

�
= P (AIC1 < AIC2jM1)

= P

�
log
�b�21�+ 2k1n < log

�b�22�+ 2k1 + k2n

����M1

�
= P (LR < 2k2jM1)! P

�
�2k2 < 2k2

�
< 1:

Although the AIC tends to over�t, this need not be a defect of the AIC. This is because the AIC is

derived as an estimate of the Kullback-Leibler information distanceKLIC(M) = E [log f(yjX)� log f(yjX;M)]

between the true density and the model density.5 In other words, the AIC attempts to select a

good approximating model for inference. In contrast, other information criteria as mentioned below

attempt to estimate the "true" model. Figure 4 intuitively shows the di¤erence between the AIC

and other information criteria.

Many other criteria similar to the AIC have been proposed, the most popular is the Bayes

Information Criterion (BIC) introduced by Schwarz (1978). The BIC is based on approximating

5This is also the term "information criterion" originated.
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Figure 4: Di¤erence Between AIC and Other IC

the Bayes factor; from the Technical Appendix B, it turns out to be

BICm = log
�b�2m�+ log nkmn : (7)

Since log(n) > 2 (if n > 8), the BIC places a larger penalty than the AIC on the number of

estimated parameters and is more parsimonious. Another criterion, which is often cited but seems

to have seen little use in practice, is the HQIC by Hannan and Quinn (1979). This criterion replaces

log n in BICm by Q log log n for some Q > 2. This criterion imposes a penalty larger than the AIC

and smaller than the BIC.

In contrast to the AIC, the BIC and HQIC model selection procedures are consistent. Take the

BIC as an example since the argument for the HQIC is similar. Because (6) holds underM1,

LR

log(n)

p�! 0;

so

P
� cM =M1jM1

�
= P (BIC1 < BIC2jM1) = P (LR < log (n) k2jM1)

= P

�
LR

log (n)
< k2jM1

�
! P (0 < k2) = 1:

Also underM2, one can show that
LR

log(n)

p�!1;

thus

P
� cM =M2jM2

�
= P

�
LRn
log(n)

> k2

����M2

�
! 1:

Essentially, to consistently select M1, we must let the signi�cance level of the LR test approach

zero to asymptotically avoid choosing a model that is too large, so the critical value (or the penalty)

13



must diverge to in�nity. On the other hand, to consistently select M2, the penalty must be o(n)

so that LR divided by the penalty converges in probability to in�nity underM2. Compared with

the �xed penalty scheme such as the AIC, the consistent selection procedures sacri�ce some power

to exchange for an asymptotically zero type I error.

We have discussed model selection between two models. The methods extend readily to the

issue of selection among multiple regressors. The general problem is the model

yi = �1x1i + �2x2i + � � � ; �KxKi + ui; E[uijxi] = 0

and the question is which subset of the coe¢ cients are non-zero (equivalently, which regressors

enter the regression). There are two leading cases: ordered regressors and unordered regressors. In

the ordered case, the models are

M1 : �1 6= 0; �2 = �3 = � � � = �K = 0;
M2 : �1 6= 0; �2 6= 0; �3 = � � � = �K = 0;

...

MK : �1 6= 0; �2 6= 0; � � � ; �K 6= 0;

which are nested. The AIC estimates the K models by OLS, stores the residual variance b�2 for
each model, and then selects the model with the lowest AIC (5). Similarly, the BIC selects based on

(7). In the unordered case, a model consists of any possible subset of the regressors fx1i; � � � ; xKig,
and the AIC or BIC in principle can be implemented by estimating all possible subset models.

However, there are 2K such models, which can be a very large number. For example, 210 = 1024,

and 220 = 1; 048; 576. So in the unordered case, a full-blown implementation of these information

criteria would seem computationally prohibitive.

Exercise 4 In the ordered regressors case, compare the di¤erence between the AIC, the BIC and
the LR test in the conclusion of model selection.

4.1.2 Limitation and Extension of Information Criteria

Given their simplicity, penalized likelihoood criteria are often used for selecting "the best model".

However, there is no clear answer as to which criterion, if any, should be preferred. Considerable

approximation is involved in deriving the formulas for the AIC and related measures and other

criteria than the AIC and BIC might be more appropriate. From a decision-theoretic viewpoint,

the choice of the model from a set of models should depend on the intended use of the model. For

example, the purpose of the model may be to summarize the main features of a complex reality,

or to predict some outcome, or to test some important hypothesis. In applied work it is quite rare

to see an explicit statement of the intended use of an econometric model. Recently, Claeskens and

Hjort (2003) propose the focused information criterion (FIC) that focuses on the parameter singled

out for interest. This criterion seems close to the target-based principle mentioned above.
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(**) Another serious drawback of the information criteria (and many other subset variable se-

lection procedures) is their lack of stability as analyzed in Breiman (1996). That is, a small change

of data may cause large changes in selected variables. To avoid such a problem, recent statisti-

cal literature on model selection proposes penalty-function-based criteria where penalty functions

continuously shrink the coe¢ cients rather than discretely select the variables. Di¤erent penalty

functions induce di¤erent selection criteria; outstanding examples include the least absolute shrink-

age and selection operator (LASSO) of Tibshirani (1996), Lq-penalty of Frank and Friedman (1993),

the smoothly clipped absolute deviation (SCAD) penalty function of Fan and Li (2001), adaptive

LASSO of Zou (2006) and the minimax concave penalty (MCP) of Zhang (2010) among others.

Another strand of literature uses so-called model averaging to alleviate model misspeci�cation on

estimation. The idea of model averaging was �rst put forward in Hjort and Claeskens (2003) and

applied in least squares estimation by Hansen (2007b).

Finally, because k and its estimate bk are integers, all the established asymptotic theory when k
is known applies also when bk can consistently estimate k. However, see Leeb and Pötscher (2005)
for cautions on this result. (**)

4.2 Tests against Nonnested Alternatives (*)

In the model selection procedures above, the model to be selected can be nonnested, i.e., the null is

not a special case of the alternative, e.g., y = x0�+u vs y = z0+v with x and z not covering each

other completely. Nevertheless, the dependent variable should be the same to de�ne b�2m in (5) or

(7) in the same scale for di¤erent m�s. In some cases, nonnested models have di¤erent dependent

variables, e.g., y = x0� + u vs log y = x0 + v. How to choose among such nonnested models is

challenging.

Tests against nonnested alternatives date back at least to Cox (1961, 1962) and Atkinson

(1969, 1970). Breusch and Pagan (1980) interpret Cox�s LR test as a LM test. Cox�s basic ideas

were adapted to linear regression models by Pesaran (1974) and to nonlinear regression models

by Pesaran and Deaton (1978). Vuong (1989) provides a very general distribution theory for the

LR test statistic that covers both nested and nonnested models and more remarkably permits the

DGP to be an unknown density that di¤ers from both the densities under the null and alternative.

However, all these methods are restricted to fully parametric models. Tests in the nonlikelihood

case often take one of two approaches. Arti�cial nesting, proposed in Dividson and MacKinnon
(1981, 1984), embeds the two nonnested models into a more general arti�cial model, which leads to

so-called J tests and P tests and related tests. The encompassing principle, proposed by Mizon
and Richard (1986), leads to a quite general framework for testing one model against a competing

nonnested model. White (1994) links this approach with CM tests. We will present Cox�s LR test

and Breusch and Pagan�s LM interpretation for a taste. See Gourieroux and Monfort (1994, 1995

Ch. 22) and Pesaran and Weeks (2001) for a summary of literature.
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4.2.1 Cox�s LR Test

Consider choosing between two parametric models. Let model F� have density f(yjx;�) and model
G have density g(yjx;). A likelihood ratio test of the model F� against G is based on

LR = 2
�
Lf (b�)� Lg(b)� = 2 nX

i=1

ln
f(yijxi; b�)
g(yijxi; b) ;

where Lf and Lg are log likelihood functions under F� and G , and b� and b are the corresponding
MLEs. If G is nested in F� then LR is chi-square distributed under the null that F� = G .

However, this result no longer holds if the models are nonnested.

Cox proposed solving this problem in the special case that F� is the true model but the models

are not nested, by applying a CLT under the assumption that F� is the true model. To understand

Cox�s statistic, we will use Breusch and Pagan�s LM interpretation. The connection between the

LM and Cox�s statistic was mentioned in Atkinson (1970, pp332-335) and discussed in more details

in Breusch and Pagan (1980). Let L0(�) and L1() be the likelihoods under H0 and H1. To

make a choice between H0 and H1, one procedure would be to form a joint likelihood of the form

L =
�R
L�0L

1��
1

��1
L�0L

1��
1 and test if � = 0 or 1, where the factor

R
L�0L

1��
1 makes this a proper

pdf. The log likelihood is then L = �L0 + (1 � �)L1 � log
R
L�0L

1��
1 , where Lj = logLj , and the

LM test would be based upon @L=@�. It is not hard to show that

@L
@�

= L0 � L1 � E [L0 � L1] = L01 � E [L01] ;

where E[�] is the expectation with respect to the parameters � and , and L01 = L0�L1. The LM
test for � = 1 is based upon the score L0 � L1. To do so joint distribution of the scores under H0
is required and it is instructive to observed that

@L
@

= (1� �)@L1
@

�
�Z

L�0L
1��
1

��1 Z
L�0(1� �)

@L1
@

= 0

when � = 1. Therefore the relevant parts of the information matrix are (when evaluated under H0)

J�� = �E0
�
@2L
@�@�0

�
= E0

h
(L01 � E [L01])2

i
= V ar0 (L01) � V0 (L01) ;

J�� = �E0
�
@2L
@�@�0

�
= �E0

�
@L01
@�0

�
= �0;

J�� = �E0
�
@2L
@�@�0

�
= �E0

�
@2L0
@�@�0

�
= Q;

which follows by noting that @L1=@� = 0, � = 1 and E [@L0=@�] = 0, where E0[�] is the expectation
with respect to the randomness in the data when they follow the distribution under H0. Thus the
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LM statistic becomes� bL01 � E0 h bL01i�0 �V0 (L01)� �0Q�1���1 � bL01 � E0 h bL01i� ;
which is Cox�s test in the type of notation in Pesaran and Deaton (1978, p681), where bL01 =
L0
�b�� � L1 (b) � bL0 � bL1 is exactly Lf (b�) � Lg(b) in the LR statistic of Cox. Cox (1961)

showed that bL01 � E0 h bL01i is asymptotically normally distributed with mean zero and variance
V0 (L10)� �0Q�1�.

This approach is computationally awkward to implement if one cannot analytically obtain

E0

h bL01i. Note that bL01 = bL0 � bL1 and E0 h bL01i = bL0 � E0 h bL1i so that bL01 � E0 h bL01i =
�
� bL1 � E0 h bL1i�, i.e., the test is based on comparing the observed value of bL1 with its expected

vlaue if H0 were true. But L1 is a function of  and  does not appear under H0 so that it
is not entirely clear how to evaluate bL1. In fact two methods have been adopted. Cox formsbL1�E0 h bL1 (b0)i where b0 is the plim of b underH0, whereas Atkinson forms L1 (b0)�E0 h bL1 (b0)i.
It would seem logical to adopt the latter from an LM viewpoint as the score is then unbiased, but

de Pereira (1977) claims that the resulting test statistic is inconsistent, whereas Cox�s is consistent.

Another problem of Cox�s test is that if a similar test statistic is obtained with the roles of F�
and G reversed it is possible to �nd both that model F� is rejected in favor of G and that model

G is rejected in favor of F�. The test is therefore not necessarily for model selection as it does not

necessarily select one or the other; instead it is a model speci�cation test that zero, one, or two of

the models can pass.

The Cox statistic has been obtained analytically in some cases. For nonnested linear regression

models y = x0� + u and y = z0 + v with homoskedastic normally distributed errors, see Pesaran

(1974). For nonnested transformation models h(y) = x0�+u and g(y) = z0+v, where h(y) and g(y)

are known transformations, see Pesaran and Pesaran (1993), who use a simulation-based approach.

This permits, for example, discrimination between linear and log-linear parametric models, with

h(�) the identity transformation and g(�) the log transformation. Pesaran and Pesaran (1993) apply
the idea to choose between logit and probit models.

4.2.2 log(y) versus y as Dependent Variable

We brie�y discuss choice between log(y) versus y as the dependent variable. There is a large

literature on this subject, much of it quite misleading. The plain truth is that either regression is

"okay", in the sense that both E[yijxi] and E[log(yi)jxi] are well-de�ned (so long as yi > 0). It

is perfectly valid to estimate either or both regressions. They are di¤erent regression functions,

neither is more nor less valid than the other. To test one speci�cation versus the other, or select one

speci�cation over the other, requires the imposition of additional structure, such as the assumptions

that the conditional expectation is linear in xi, and ui � N(0; �2).6

6For example, under such assumptions, Amemiya (1980) shows that R2 and R
2
based on log(y) are larger than

those based on y.
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There still may be good reasons for preferring the log(y) regression over the y regression. First,

it may be the case that E[log(yi)jxi] is roughly linear in xi over the support of xi, while the
regression E[yijxi] is non-linear, and linear models are easier to report and interpret. Second, it
may be the case that the errors in ui = log(yi) = E[log(yi)jxi] may be less heteroskedastic than the
errors from the linear speci�cation (although the reverse may be true!). Finally, and probably most

importantly, if the distribution of yi is highly skewed (as the wage example in the Introduction), the

conditional mean E[yijxi] may not be a useful measure of central tendency, and estimates will be
undesirably in�uenced by extreme observations ("outliers"). In this case, the conditional mean-log

E[log(yi)jxi] may be a better measure of central tendency, and hence more interesting to estimate
and report. In the classical return-to-schooling example, it is commonly believed that the wage rate

follows the log-normal distribution which is highly skewed, while the log-wage follows the normal

distribution which is symmetric.

Log transformation is often used for a percentage interpretation of the coe¢ cients. This is

because log(y+�)�log(y) � �=y which is the percentage change of y. When the log transformation
is also conducted to x, the coe¢ cients are elasticities of y with respect to x. Finally, note that

variables measured in units such as years or in percentage points should not be logged.

5 Generalized Least Squares

In the linear projection model, we know that the least squares estimator is semi-parametrically

e¢ cient for the projection coe¢ cient. However, in the linear regression model

yi = x0i� + ui;

E[uijxi] = 0;

the least squares estimator may not be e¢ cient. The theory of Chamberlain (1987) can be used

to show that in this model the semiparametric e¢ ciency bound is obtained by the weighted least

squares (WLS) estimator

� =
�
X0D�1X

��1 �
X0D�1y

�
; (8)

where D = diag
�
�21; � � � ; �2n

	
and �2i = �2(xi) = E[u2i jxi]. We provide some intuition for this

result. Note that

� = argmin
�

nX
i=1

�
yi � x0i�

�2 1
�2i
= argmin

�

nX
i=1

�
yi
�i
� x

0
i

�i
�

�2
,

where the objective function takes the form of weighted sum of squared residuals, and the model

yi
�i
=
x0i
�i
� +

ui
�i
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is homoskedastic (why?). Under homoskedasticity, the Gauss-Markov theorem implies the e¢ ciency

of the LSE which is the WLS estimator in the original model. An interesting aspect of this e¢ ciency

result is that only the second moment of ui is relevant and higher moments are not. Of course, this

is because we are comparing the asymptotic variance which involves only the second moment of ui.

Exercise 5 Consider the WLS estimator (8) with D = diag
n
x2j1; � � � ; x2jn

o
, where xji is one of

xi. (i) Is this estimator unbiased and consistent? (ii) Using your intuition, in which situations

would you expect that this estimator would perform better than OLS?

The GLS estimator (8) is infeasible since the matrix D is unknown. A feasible GLS (FGLS)

estimator replaces the unknown D with an estimate bD = diag
�b�21; � � � ; b�2n	. We now discuss this

estimation problem. As in Goldfeld and Quandt (1972, Ch.3), we model the conditional variance

using the parametric form

�2i = �0 + z
0
1i�1 = �

0zi;

where z1i is some q � 1 function of xi. Typically, z1i are squares (and perhaps levels) of some (or
all) elements of xi. Often the functional form is kept simple for parsimony. Let �i = u

2
i . Then

E [�ijxi] = �0 + z01i�1

and we have the regression equation

�i = �0 + z
0
1i�1 + �i; (9)

E [�ijxi] = 0:

This regression error �i is generally heteroskedastic and has the conditional variance

V ar (�ijxi) = V ar
�
u2i jxi

�
= E

�
u4i jxi

�
�
�
E
�
u2i jxi

��2
:

Suppose ui (and thus �i) were observed. Then we could estimate � by OLS:

� =
�
Z0Z

��1
Z0�

and
p
n (���) d�! N (0;V�) ;

where

V� =
�
E
�
ziz

0
i

���1 �
E
�
ziz

0
i�
2
i

�� �
E
�
ziz

0
i

���1
: (10)

Exercise 6 Take the model

yi = x0i� + ui; E[xiui] = 0;

u2i = z0i + �i; E[zi�i] = 0:
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Find the MoM estimators
�b�; b� for (�;).

While ui is not observed, we have the OLS residual bui = yi � x0ib� = ui � xi(b� � �). Thus
�i = b�i � �i = bu2i � u2i = �2uix0i(b� � �) + (b� � �)0xix0i(b� � �):

And then

1p
n

nX
i=1

zi�i = �
2

n

nX
i=1

ziuix
0
i

p
n(b� � �) + 1

n

nX
i=1

zi(b� � �)0xix0ipn(b� � �) p�! 0:

Let e� = �Z0Z��1 Z0b� (11)

be from OLS regression of b�i on zi. Then
p
n (e���) = pn (���) + �n�1Z0Z��1 n�1=2Z0� d�! N (0;V�) : (12)

Thus the fact that �i is replaced with b�i is asymptotically irrelevant.7 We call (11) the skedastic
regression, as it is estimating the conditional variance of the regression of yi on xi. We have
shown that � is consistently estimated by a simple procedure, and hence we can estimate �2i = z

0
i�

by e�2i = e�0zi: (13)

Suppose that e�2i > 0 for all i. Then set
eD = diag

�e�21; � � � ; e�2n	
and e� = �X0 eD�1X

��1 �
X0 eD�1y

�
:

This is the feasible GLS, or FGLS, estimator of �. In practice, we can iterate between eD and e�
until convergence. Speci�cally, we can start from a � estimate to get residuals which are used to

estimateD, and thisD estimate is plugged in the FGLS formula to get a new estimate of �. Repeat

this process until convergence. Since there is not a unique speci�cation for the conditional variance

the FGLS estimator is not unique, and will depend on the model (and estimation method) for the

skedastic regression. Robinson (1987) shows that even if �2(�) is nonparametrically speci�ed, �
can be estimated as if �2(�) were known. In other words, the nonparametric estimation of �2(�)
does not a¤ect the e¢ ciency of the FGLS estimator or the FGLS estimator can achieve the same

e¢ ciency as �.

One typical problem with implementation of FGLS estimation is that in a linear regression

speci�cation, there is no guarantee that e�2i > 0 for all i. If e�2i < 0 for some i, then the FGLS

7Such a result appears as early as in Amemiya (1977).
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estimator is not well de�ned. Furthermore, if e�2i � 0 for some i, then the FGLS estimator will

force the regression equation to pass through the point (yi;xi), which is typically undesirable. This

suggests that there is a need to bound the estimated variances away from zero. A trimming rule

might make sense:

�2i = max
�e�2i ; �2	

for some �2 > 0. Of course, we can assume �2i = h (�
0zi) > 0 at the beginning, e.g., h (�) = exp f�g

or h (�) = j�jm withm a prespeci�ed integer. If h is invertible such as exp f�g, we can regress h�1(bu2i )
on zi to get e� and then estimate �2i by h �e�0zi�. If h is not invertible such as j�jm, we must estimate
� using the nonlinear least squares and lose the elegancy of the OLS estimation.

It is possible to show that if the skedastic regression is correctly speci�ed, then FGLS is as-

ymptotically equivalent to GLS, but the proof of this can be tricky. Below we just state the result

without proof.

Theorem 2 If the skedastic regression is correctly speci�ed,

p
n
�
� � e�� p�! 0;

and thus
p
n
�e� � �� d�! N(0;V);

where V = E
�
��2i xixi

��1
.

Examining the asymptotic distribution in the above theorem, the natural estimator of the

asymptotic variance of e� is
eV0 =

 
1

n

nX
i=1

e��2i xix0i
!�1

=

�
1

n
X0 eD�1X

��1
;

which is consistent forV as n!1. This estimator eV0 is appropriate when the skedastic regression

(9) is correctly speci�ed.

It may be the case that �0zi is only an approximation to the true conditional variance �2i . In this

case we interpret �0zi as a linear projection of u2i on zi. e� should perhaps be called a quasi-FGLS
estimator of �. Its asymptotic variance is not that given in the above theorem. Instead,

V =
�
E
h�
�0zi

��1
xix

0
i

i��1
E
h�
�0zi

��2
�2ixix

0
i

i �
E
h�
�0zi

��1
xix

0
i

i��1
as shown in Section 1.3 of the last chapter. V takes a sandwich form similar to the covariance

matrix of the OLS estimator. Unless �2i = �
0zi, eV0 is inconsistent for V. An appropriate solution
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is to use a White-type estimator in place of eV0. This may be written as

eV =

 
1

n

nX
i=1

e��2i xix0i
!�1 

1

n

nX
i=1

e��4i bu2ixix0i
! 

1

n

nX
i=1

e��2i xix0i
!�1

= n
�
X0 eD�1X

��1 �
X0 eD�1 bDeD�1X

��
X0 eD�1X

��1
where bD = diag

�bu21; � � � ; bu2n	. This is an estimator proposed by Cragg (1992), which is robust to
misspeci�cation of the conditional variance.

In the linear regression model, FGLS is asymptotically superior to OLS. Why then do we not

exclusively estimate regression models by FGLS? This is a good question. There are three reasons.

First, FGLS estimation depends on speci�cation and estimation of the skedastic regression. Since

the form of the skedastic regression is unknown, and it may be estimated with considerable error, the

estimated conditional variances may contain more noise than information about the true conditional

variances. In this case, FGLS perfoms worse than OLS in practice. Second, individual estimated

conditional variances may be negative, and this requires trimming to solve. This introduces an

element of arbitrariness which is unsettling to empirical researchers. Third, OLS is a more robust

estimator of the parameter vector. It is consistent not only in the regression model (E[ujx] = 0),
but also under the assumptions of linear projection (E[xu] = 0). The GLS and FGLS estimators,

on the other hand, require the assumption of a correct conditional mean. If the equation of interest

is a linear projection, and not a conditional mean, then the OLS and FGLS estimators will converge

in probability to di¤erent limits, as they will be estimating two di¤erent projections. And the FGLS

probability limit will depend on the particular function selected for the skedastic regression. The

point is that the e¢ ciency gains from FGLS are built on the stronger assumption of a correct

conditional mean, and the cost is a reduction of robustness to misspeci�cation.

6 Testing for Heteroskedasticity

If heteroskedasticity is present, more e¢ cient estimation is possible, so we discuss testing for het-

eroskedasticity in this section. Heteroskedasticity may come from many resources, e.g., random

coe¢ cients, misspeci�cation, strati�ed sampling, etc. So rejection of the null may be an indication

of other deviations from our basic assumptions.

The hypothesis of homoskedasticity is that E[u2jx] = �2, or equivalently that

H0 : �1 = 0

in the regression (9). We may therefore test this hypothesis by the estimation (11) and constructing

a Wald statistic.

This hypothesis does not imply that �i is independent of xi. Typically, however, we impose

the stronger hypothesis and test the hypothesis that ui is independent of xi, in which case �i is
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independent of xi and the asymptotic variance (10) for e� simpli�es to
V� = E

�
ziz

0
i

��1
E
�
�2i
�
: (14)

Hence the standard test of H0 is a classic F (or Wald) test for exclusion of all regressors from the

skedastic regression (11). The asymptotic distribution (12) and the asymptotic variance (14) under

independence show that this test has an asymptotic chi-square distribution.

Theorem 3 Under H0 and ui independent of xi, the Wald test of H0 is asymptotically �2q.

Most tests for heteroskedasticity take this basic form. The main di¤erence between popu-

lar "tests" lies in which transformation of xi enters zi. Breusch-Pagan (1979) assume ui follows

N(0; h(�0zi)) for a general h(�) > 0, and use the LM test to check whether �1 = 0.8 Because � and

� are "informationally" independent and H0 involves only �, the LM test statistic can be much

simpli�ed. It turns out that

LM =
1

2b�4
 

nX
i=1

zifi

!0 nX
i=1

ziz
0
i

!�1 nX
i=1

zifi

!
;

where fi = bu2i � b�2. This LM test statistic is similar to the Wald test statistic; a key di¤erence is

that bE ��2i � is replaced by 2b�4 which is a consistent estimator of E ��2i � under H0 where ui follows
N(0; �2). Koenker (1981) shows that the asymptotic size and power of the Breusch-Pagan test is

extremely sensitive to the kurtosis of the distribution of ui, and suggests to renormalize LM by

n�1
Pn
i=1 f

2
i rather than 2b�4 to achieve the correct size. We denote the resulting LM test statistic

as LMK .

White (1980c) observes that whenH0 holds, b
 = n�1Pn
i=1 xix

0
ibu2i and b�2 bQ =

�
n�1

Pn
i=1 bu2i � �n�1Pn

i=1 xix
0
i

�
should have the same probability limit, so the di¤erence of them should converge to zero. In

some sense, this is a Hausman-type test. Collecting non-redundant elements of xix0i, denoted as

zi = (1; z01i)
0 as above, we are testing whether Dn = n�1

Pn
i=1 z1i

�bu2i � b�2� � 0. Under the

auxiliary assumption that ui is independent of xi, we can show that under H0,

nD0
n
bB�1n Dn

d�! �2q ;

where bBn = 1

n

nX
i=1

�bu2i � b�2�2 (z1i � z1) (z1i � z1)0
is an estimator of the asymptotic variance matrix of

p
nDn. Given that ui is independent of xi,

8The general form of heteroskedasticity h(�) does not play any role in their arguments because under the null, any
h(�) function reduces to a constant.
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bBn can be replaced by
eBn = 1

n

nX
i=1

�bu2i � b�2�2 1n
nX
i=1

(z1i � z1) (z1i � z1)0 :

Exercise 7 Show that when zi = (1; xi)0 2 R2, LM = (bu0Dbu=bu0bu)2, where
D = diag

�
n (xi � x) =

r
2
Xn

i=1
(xi � x)2; i = 1; � � � ; n

�
:

If xi = 1 for i = 1; � � � ; n1 and xi = 0 for i = n1 + 1; � � � ; n, show that LM reduces to

1

2

n

n1(n� n1)

"
n1X
i=1

�bu2ib�2
�2
� n1

#2
:

Exercise 8 (i) Show that b�4 �LM is one half of the explained sum of squares in the regression of bu2i
upon zi. (ii) Show that LMK = nR

2
u = nR

2, where R2u is the uncentered R
2 in the regression of fi

on zi, and R2 is the centered R2 in the regression of bu2i on zi. (iii) Show that nD0
n
eB�1n Dn = nR

2,

where R2 is the centered R2 in the regression of bu2i on zi.
The Breusch-Pagan and White tests have degrees of freedom that depend on the number of

regressors in E[yjx]. Sometimes we want to conserve on degrees of freedom. A test that combines
features of the Breusch-Pagan and White tests but has only two dfs takes z1i = (byi; by2i )0, where byi
are the OLS �tted values. This reduced White test has some similarity to the RESET test. byi are
generated regressors, but as argued in the RESET test, this will causes no complications in the

testing environment. So nR2 from bu2i on 1; byi; by2i has a limiting �22 distribution under H0.
(**) All the above tests are based on a key assumption under H0 that ui is independent of

xi, especially, E[u4i jxi] is constant. This assumption is usually called the homokurtosis (constant
conditional fourth moment) assumption. When this assumption fails, Wooldridge (1990) proposes a

heterokurtosis-robust test for heteroskedasticity, which is very similar to the heteroskedasticity-
robust LM test.

There are some alternative tests of heteroskedasticity in the literature. Koenker and Bassett

(1982) propose a robust test of heteroskedasticity based on quantile regression. For testing a more

general deviation from homoskedasticity, i.e., E[u2i jxi] = �2(xi) for a general �2(�), see Zheng (2009)
where the testing idea follows from Zheng (1996). (**)

7 Regression Intervals and Forecast Intervals

All previous sections consider the internal validity. This section considers the external validity, i.e.,

prediction. We speci�cally concentrate on regression intervals and forecast intervals. First note

that for prediction, misspeci�cation is less important.
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Figure 5: Typical Regression Intervals

In the linear regression model the conditional mean of yi given xi = x is

m(x) = E[yijxi = x] = x0�:

In some cases, we want to estimate m(x) at a particular point x (which may or may not be the

same as some xi). Notice that this is a (linear) function of �. Letting r(�) = x0� and � = r(�), we

see that bm(x) = b� = x0b� and R = x, so s(b�) = pn�1x0 bVx. Thus an asymptotic 95% con�dence

interval for m(x) is h
x0b� � 2pn�1x0 bVxi :

It is interesting to observe that if this is viewed as a function of x, the width of the con�dence

set is dependent on x. Typical regression intervals are shown in Figure 5, where the nonconstant

covariate is only one-dimensional. Notice that the con�dence bands take a hyperbolic shape. This

means that the regression line is less precisely estimated for very large and very small values of x.

Exercise 9 In the wage equation, logwage = �1 + �2 � educ+ �3 � exper + �3 � exper2 + u, how to
construct regression intervals for experience when education is �xed at its mean?

Exercise 10 In the linear regression log(y) = x0� + u, denote dlog y = x0b�. If we want to predict
E[yijxi = x], is exp

ndlog yo suitable? If not, does this predictor under- or over-estimate E[yijxi =
x]? Can you provide a more suitable predictor under the additional assumption that u is independent

of x?
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For a given value of xi = x, we may want to forecast (guess) yi out-of-sample.9 A reasonable

rule is the conditional mean m(x) as it is the mean-square-minimizing forecast. A point forecast is

the estimated conditional mean bm(x) = x0b�. We would also like a measure of uncertainty for the
forecast.

The forecast error is bui = yi� bm(x) = ui�x0(b���). As the out-of-sample error ui is independent
of the in-sample estimate b�, this has variance

E
�bu2i � = E

�
u2i jxi = x

�
+ x0E

h
(b� � �)(b� � �)0ix

= �2(x) + n�1x0Vx:

Assuming E
�
u2i jxi

�
= �2, the natural estimate of this variance is b�2 + n�1x0 bVx, so a standard

error for the forecast is bs(x) = pb�2 + n�1x0 bVx. Notice that this is di¤erent from the standard

error for the conditional mean. If we have an estimate of the conditional variance function, e.g.,e�2(x) = e�0z from (13), then the forecast standard error is bs(x) =qe�2(x) + n�1x0 bVx.
It would appear natural to conclude that an asymptotic 95% forecast interval for yi ish

x0b� � 2bs(x)i ;
but this turns out to be incorrect. In general, the validity of an asymptotic con�dence interval is

based on the asymptotic normality of the studentized ratio. In the present case, this would require

the asymptotic normality of the ratio

ui � x0(b� � �)bs(x) :

But no such asymptotic approximation can be made. The only special exception is the case where

ui has the exact distribution N(0; �2), which is generally invalid.

To get an accurate forecast interval, we need to estimate the conditional distribution of ui given

xi = x, which is a much more di¢ cult task. Given the di¢ culty, many applied forecasters focus on

the simple approximate interval
h
x0b� � 2bs(x)i.

Exercise 11 In the homoskedastic regression model y = X�+u with E[uijxi] = 0 and E[u2i jxi] =
�2, suppose b� is the OLS estimate with covariance matrix bV, based on a sample of size n. Let b�2
be the estimate of �2. You wish to forecast an out-of-sample value of yn+1 given that xn+1 = x.

Thus the available information is the sample (y;X), the estimates (b�; bV; b�2), the residuals bu, and
the out-of-sample value of the regressors, xn+1.

(i) Find a point forecast of yn+1.

(ii) Find an estimate of the variance of this forecast.

9x cannot be the same as any xi observed, why?
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Exercise 12 (Empirical) Reconsider Nerlove�s dataset in the last chapter, where you estimated
a cost function on a cross-section of electric companies. The equation you estimated was

log TCi = �1 + �2 logQi + �3 logPLi + �4 logPKi + �5 logPFi + ui: (15)

(a) Following Nerlove, add the variable (logQi)2 to the regression. Assess the merits of this new
speci�cation using (i) a hypothesis test; (ii) AIC criterion; (iii) BIC criterion. Do you agree

with this modi�cation?

(b) Now try a non-linear speci�cation. Consider model (15) plus the extra term �6zi, where

zi = logQi(1 + exp(�(logQi � �7)))�1:

In addition, impose the restriction �3 + �4 + �5 = 1. This is the smooth transition model.

The model works best when �7 is selected so that several values (in this example, at least 10

to 15) of logQi are both below and above �7. Examine the data and pick an appropriate range

for �7.

(c) Estimate the model by non-linear least squares. I recommend the concentration method: Pick
10 (or more or you like) values of �7 in this range. For each value of �7, calculate zi and

estimate the model by OLS. Record the sum of squared errors, and �nd the value of �7 for

which the sum of squared errors is minimized.

(d) Calculate standard errors for all the parameters (�1; � � � ; �7).

Exercise 13 (Empirical) The data �le cps78.dat contains 550 observations on 20 variables taken
from the May 1978 current population survey. Variables are listed in the �le cps78.pdf. The goal

of the exercise is to estimate a model for the log of earnings (variable LNWAGE) as a function of

the conditioning variables.

(a) Start by an OLS regression of LNWAGE on the other variables. Report coe¢ cient estimates
and standard errors.

(b) Consider augmenting the model by squares and/or cross-products of the conditioning variables.
Estimate your selected model and report the results.

(c) Are there any variables which seem to be unimportant as a determinant of wages? You may

re-estimate the model without these variables, if desired.

(d) Test whether the error variance is di¤erent for men and women. Interpret.

(e) Test whether the error variance is di¤erent for whites and nonwhites. Interpret.

(f) Construct a model for the conditional variance. Estimate the model, test for general het-

eroskedasticity and report the results.

27



(g) Using this model for the conditional variance, re-estimate the model from part (c) using FGLS.
Report the results.

(h) Do the OLS and FGLS estimates di¤er greatly? Note any interesting di¤erences.

(i) Compare the estimated standard errors. Note any interesting di¤erences.

Technical Appendix A: Derivation of the AIC

We �rst derive AIC in a general model and then apply it to the normal regression model. An

alternative simpli�ed derivation can be found in Amemiya (1980).

Recall from Chapter 4 that the Kullback-Leibler information distance (or the relative
entropy10) between probability densities q and p is de�ned as

D (q; p) �
Z
log

�
q (x)

p (x)

�
q (x) dx:

From Jensen�s inequality, we know that (i) D (q; p) � 0 for all probability densities q and p; (ii)

D (q; p) = 0 i¤ q = p. So we can treat D as a criterion to measure a di¤erence between two

densities.11 The AIC is just an estimate of D as shown below.

Consider q as the true density, and we want to pick up some p� that minimizes D out of the

set of densities P = fp� : � 2 �g, where � � Rk is a parameter space. Let

�� = argmin
�2�

Z
log

�
q (x)

p� (x)

�
q (x) dx;

and then, we have (d=d�)
R
log (q (x) =p�� (x)) q (x) dx = 0. By the second order Taylor approxima-

tion around ��;

D (q; p�) � D (q; p��) +
1

2

�
� � ��

�0
H (p��)

�
� � ��

�
=

Z
[log q (x)] q (x) dx�

Z
[log p�� (x)] q (x) dx+

1

2

�
� � ��

�0
H (p��)

�
� � ��

�
(16)

where H (p�) � �
Z �

@2 log p� (x)

@�@�0

�
q (x) dx:

We consider the minimization of the RHS in (16) with respect to �. The �rst term of the

RHS in (16) is independent of � and ��, so can be ignored. The second term is independent of �,

but is related to the model parameter ��, so needs to be estimated. �
R
[log p�� (x)] q (x) dx can be

10Entropy is de�ned as �E[log p(Xj�)], and is a measurement of the disorder of a system.
11D cannot serve as a metric in the space of densities in a strict sense, since it does not satisfy the symmetricity

and triangle inequality. However, the plausibility of D as a criterion of di¤erence between densities can be justi�ed
by Shannon�s information theory, and the theory of information geometry (Efron (1978) and Amari (1985)).
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estimated by

� 1

n

nX
i=1

log p�� (Xi) : (17)

This is a consistent and unbiased estimator. But, �� is still unknown; we estimate it by

~� = argmin
�2�

� 1
n

nX
i=1

log p� (Xi) :

Expanding (17) around ~�, we get

� 1

n

nX
i=1

log p�� (Xi) � �
1

n

nX
i=1

log p~� (Xi)�
1

2

�
~� � ��

�0 1
n

nX
i=1

@2 log p� (Xi)

@�@�0

����
�=~�

�
~� � ��

�
(18)

since
1

n

Pn
i=1 (@=@�) log p� (Xi)j�=~� = 0.12 Only the third term

1

2

�
� � ��

�0
H (p��)

�
� � ��

�
depends

on �, which is minimized at ��. Since �� is unknown, we estimate it by ~�. So the third term can be

estimated by

�1
2

�
~� � ��

�0 1
n

nX
i=1

@2 log p� (Xi)

@�@�0

����
�=~�

�
~� � ��

�
In summary, we have

min
�
D (q; p�) = D (q; p��)

� � 1
n

nX
i=1

log p~� (Xi)�
�
~� � ��

�0 1
n

nX
i=1

@2 log p� (Xi)

@�@�0

����
�=~�

�
~� � ��

�
+ C; (19)

where C is some constant. We approximate D (q; p��) further to simplify the formula.

Taking the expectation of the both sides of (19), we have

D (q; p��) � E [D (q; p��)]

� �E
"
1

n

nX
i=1

log p~� (Xi)

#
� E

"�
~� � ��

�0 1
n

nX
i=1

@2 log p� (Xi)

@�@�0

����
�=~�

�
~� � ��

�#
+ C.

For large n, n�1
Pn
i=1 log p~� (Xi) is close to its expectation. From White (1982), the asymptotic

distribution of ~� is
p
n
h
~� � ��

i
d�! N

�
0;H (p��)

�1 J (p��)H (p��)
�1
�

(20)

12A naive estimator of �
R
log [p�� (x)] q (x) dx would be �n�1

Pn
i=1 log p~� (Xi). But this is a biased estimator (the

bias comes from the nonlinearity of p in �). So, (18) can be interpreted as a bias corrected estimator.
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where J (p�) �
Z �

@ log p� (x)

@�

@ log p� (x)

@�0

�
q (x) dx. Using the approximation of

� 1
n

nX
i=1

@2 log p� (Xi)

@�@�0

����
�=~�

� H (p��) ;

we have

� E
"�
~� � ��

�0 1
n

nX
i=1

@2 log p� (Xi)

@�@�0

����
�=~�

�
~� � ��

�#
� E

��
~� � ��

�0
H (p��)

�
~� � ��

��
: (21)

It holds �
~� � ��

�0
H (p��)

�
~� � ��

�
| {z }

1�1

= tr
��
~� � ��

�0
H (p��)

�
~� � ��

��

= tr
�
H (p��)

�
~� � ��

��
~� � ��

�0�
:

From this and (20), we have

E

��
~� � ��

�0
H (p��)

�
~� � ��

��
= tr

�
H (p��)E

��
~� � ��

��
~� � ��

�0��
� 1

n
tr
n
J (p��)H (p��)

�1
o

If p�� is close to the true model q, then we can say H (p��) � J (p��) by the usual information equality.
As a result,

tr
n
J (p��)H (p��)

�1
o
= tr fIkg = k(= dim (�)):

Therefore,

� E
"�
~� � ��

�0 1
n

nX
i=1

@2 log p� (Xi)

@�@�0

����
�=~�

�
~� � ��

�#
� k

n
(22)

In summary, we have the estimator of D (q; p��) as

� 1
n

nX
i=1

log p~� (Xi) +
k

n
+ C,

and we minimize D (q; p��) with respect to k to select the correct model. In the normal regression

model,

� 1
n

nX
i=1

log
�
p~� (Xi)

�
+
k

n
=
1

2
log
�
2�b�2�+ 1

2
+
k

n
;

so minimize D (q; p��) is equivalent to minimize log
�b�2�+ 2k

n , which is the AIC in the main text.
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Technical Appendix B: Derivation of the BIC

The derivation in this appendix follows from Robert (2001). The BIC is related to the asymptotic

approximation to the Bayes factor (see Lavine and Schervish (1999) for an elementary exposition

for Bayes factors). We will �rst review Bayesian factors and Laplace expansion, and then show

that BIC is a natural corollary of this expansion.

The Bayes factor is the ratio of posterior odds to prior odds, that is,

B12 =
p (M1jy) =p(M2jy)
p(M1)=p(M2)

=
p (yjM1) p(M1)=p(y)

p (yjM2) p(M2)=p(y)

�
p(M1)

p(M2)
=
p(yjM1)

p (yjM2)
=

R
p(yj�1;M1) � p(�1jM1)d�1R
p(yj�2;M2) � p(�2jM2)d�2

:

(23)

Here, p(Mi) is the prior probability of model i, p (Mijy) is the posterior probability of model i,
i = 1; 2, and y is the data set. Intuitively, if B12 > 1, then we prefer model 1.

Laplace expansion is used to approximate some integrals like the numerator and denominator

of equation (23) by normal density functions. The procedure is as follows,Z
p(yj�i;Mi) � p(�ijMi)d�i

=

Z
exp f�nh(�i)g d�i

=

Z
exp

�
�nh(b�i)� n

2

�
�i � b�i�0H �b�i���i � b�i�� d�i +O� 1

n

�

= exp
n
�nh(b�i)oZ exp

8><>:�12
�
�i � b�i�0

24H�1
�b�i�
n

35�1 ��i � b�i�
9>=>; d�i +O

�
1

n

�

= exp
n
�nh(b�i)o (2�)ki=2

������
H�1

�b�i�
n

������
1=2

+O

�
1

n

�

= Li(b�i)�2�
n

�ki=2 h
H
�b�i�i�1=2 +O� 1

n

�
;

where ki is the dimension of �i, b�i is the minima of h(�i),13 H is the Hessian matrix of h, and Li(b�i)
is the likelihood function of model i evaluated at its maxima. The second equality is from the second

order Taylor expansion at the maxima of �nh(�i), or minima of h(�i), and the fourth equailty is
from the de�nition of the density function of mutivariate nomral. So we could approximate equation

(23) as

B12 �
L1;n(b�1;n)
L2;n(b�2;n)

24
���H1 �b�1;n�������H2 �b�2;n����

35�1=2 � n
2�

�(k2�k1)=2
13Note that the prior p(�ijMi) is asymptotically neglectable, so we can let p(�ijMi) = 1 on the parameter space

and b�i as the MLE.
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The subscript n is to emphasize the fact that we based our inference on a size n sample. Therefore,

log(B12) � log(�n) +
k2 � k1
2

log(n) +R(b�1;n;b�2;n)
where �n is the standard likelihood ratio for the comparison ofM1 withM2, �n � L1;n(b�1;n)=L2;n(b�2;n),
and R(b�1;n;b�2;n) denotes the remainder term.

This approximation leads to Schwartz�s criterion,

BIC = log(�n) +
k2 � k1
2

log(n)

whenM1 �M2, if the remainder term R(b�1;n;b�2;n) is negligible compared with both other terms
(i.e., R(b�1;n;b�2;n) = O (1)) . Obviously, when BIC > 0, we should select model 1.

Applying this criterion to the normal regression model, we have

BIC =

�
�n
2
log
�
2�b�21�� 1

2b�21Sn;1
�b�1��� ��n2 log �2�b�22�� 1

2b�22Sn;2
�b�2��+ (k2 + 1)� (k1 + 1)2

log(n)

= �n
2

240@log �b�21�+ Sn;1
�b�1� =nb�21 + log(n)

k1
n

1A�
0@log �b�22�+ Sn;2

�b�2� =nb�22 + log(n)
k2
n

1A35
= �n

2
(BIC1 �BIC2) ;

where Sn;i is the sum of squared residuals in model i, b�2i = Sn;i

�b�i� =n, and BICi � log
�b�2i � +

log(n)kin . We could see that BIC > 0 is equivalent to b�21+k1 log(n)n < b�22+k2 log(n)n , that is, Schwartz�s

criterion is equivalent to the BIC in the main text. Here, we should note that the dimension of

parameter in model i is (ki + 1), where ki is the dimension of �i, i = 1; 2, because �
2 is an extra

parameter. Similarly, k in Appendix A should be the dimension of � plus 1. However, the AIC is

equivalent to the criterion with k replaced by the dimension of �.
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