Chapter 5. Least Squares Estimation — Large-Sample Properties*

In Section 3 of Chapter 3, we derived the mean and variance of the least-squares estimator in
the context of the linear regression model, but this is not a complete description of the sampling
distribution and is thus not sufficient for inference. Furthermore, the theory does not apply in
the context of the linear projection model, which is more relevant for empirical applications. In
Section 8 of Chapter 3, we assume u|x ~ N(0,02) and study the conditional distribution of B,
t-statistics and F-statistics given X. In general the distribution of u|x is unknown and even if
it were known, the unconditional distribution of B is hard to derive since ,@ = (X'X) X'y is a
complicated function of {x;};" ;. Perhaps we can view the results in the normal regression model
as some sort of approximation to the sampling distributions without requiring the assumption of
normality, but how can we be precise about this?

Take a simple example for illustration. Let y; and x; be drawn from the joint density

Fle0) = g exp { = oy~ og)*  exp { - log)?}

2y
and let BQ be the slope coefficient estimate from a least-squares regression of 4; on x; and a constant.
Using simulation methods, the density function of BQ was computed and plotted in Figure |1| for
sample sizes of n = 25, 100 and 1000. The vertical line marks the true projection coefficient. From
the Figure we can see that the density functions are dispersed and highly non-normal when n is
small. As the sample size increases the density becomes more concentrated about the population
coefficient and more like normality.

The asymptotic (or large sample) approach rigorizes the intuition above and tries to approximate
the sampling distribution of B based on the limiting experiment that the sample size n tends to
infinity. It aims to assess the distribution of ,@ in actual practical samples where n is finite. A
preliminary step in this approach is the demonstration that the estimator converges in probability
to the true parameter as the sample size gets large. The second step is to study the distributional
properties of B in the neighborhood of the true value, that is, the asymptotic normality of B
The final step is to estimate the asymptotic variance which is necessary in statistical inferences
such as hypothesis testing and confidence interval (CI) construction. In hypothesis testing, it is
necessary to construct test statistics and derive their asymptotic distributions under the null. We
will study the ¢-test and three asymptotically equivalent tests under both homoskedasticity and

heteroskedasticity. It is also standard to develop the local power function for illustrating the power
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Figure 1: Finite Sample Density of Bz When n = 25,100 and 1000

properties of the test.

This chapter concentrates on asymptotic properties related to the LSE. Related materials can
be found in Chapter 2 of Hayashi (2000), Chapter 4 of Cameron and Trivedi (2005), Chapter 4 of
Wooldridge (2010), and Chapters 7, 8 and 9 of Hansen (2022).

1 Asymptotics for the LSE

We first show that the LSE is CAN and then re-derive its asymptotic distribution by treating it as

a MoM estimator.

1.1 Consistency

It is useful to express B as
B=(X'X)"'X'y = (X'X)'X' (X8 +u) = B+(X'X)"'X'u. (1)

To show B is consistent, we impose the following additional assumptions.
Assumption OLS.1": rank(E[xx']) = k.
Assumption OLS.2": y = x'8 + u with E[xu| = 0.

Note that Assumption OLS.1" implicitly assumes that E [HXHQ] < 00. Assumption OLS.1" is the
large-sample counterpart of Assumption OLS.1, and Assumption OLS.2 is weaker than Assumption
OLS.2.



Theorem 1 Under Assumptions OLS.0, OLS.1, OLS.2 and OLS.3, B -2 3.

Proof. From l) to show B 2, B, we need only to show that (X'X)"1X"a -, 0. Note that

1 n -1 1 n
(X'X)"'X'u = (n Z xix;> (n Z xu)
=1 =1
1 n 1 n
~ o3t S 2 Bl b 0
i=1 i=1
Here, the convergence in probability is from (I) the WLLN which implies
I I
p ZXiX; — E[x;xj] and n inui — Elxiug; (2)

i=1 i=1

(IT) the fact that g(A,b) = A~!b is a continuous function at (E[x;x}], F[x;u;]). The last equality
is from Assumption OLS.2’.

(I) To apply the WLLN, we require (i) x;x; and x;u; are i.i.d., which is implied by Assumption
OLS.0 and that functions of i.i.d. data are also i.i.d.; (ii) E ||X||2:| < 00 (OLS.1') and E[||xul|] < oo.
Ef||xul||] < oo is implied by the Cauchy-Schwarz inequality

Bllxul) < B (2]~ B [up] ",

which is finite by Assumption OLS.1” and OLS.3. (II) To guarantee A~'b to be a continuous
function at (E[x;x}], E[x;u;]), we must assume that E[x;x;] ! exists which is implied by Assumption
OLS.I'Fl w

Exercise 1 Take the model y; = X),;8, +x5,85 +u; with E[x;u;] = 0. Suppose that B, is estimated
by regressing y; on X1; only. Find the probability limit of this estimator. In general, is it consistent

for 8,7 If not, under what conditions is this estimator consistent for 3,7
We can similarly show that the estimators 6> and s? are consistent for o2.
Theorem 2 Under the assumptions of Theorem 2 0% and s> 2 o2

Proof. Note that
=i~ xiB = wi + X8~ xiB =i — x} (B B).
Thus
a2 =u? —2ux (B 8) + (B B8) xx, (B 5) (3)

! Cauchy-Schwarz inequality: For any random m x n matrix X and m x k matrix Y, E[|XY]|] <

E[|1X]] V2 g (1Y %] 1/2, where F [||X"Y]|] can be interpreted as the absolute value of inner product, [(X,Y)]|.
’If z; € R, Elz;xj] ! = E[z?]7" is the reciprocal of E[z?] which is a continuous function of E[z2] only if E[x?] # 0.



and
5? = lzn:az
ni:l '
= iguf—z (i;ux> (B-8)+(B-8) (i;xx> (B-8)

L, 02,
where the last line uses the WLLN, , Theorem (1| and the CMT.
Finally, since n/(n — k) — 1, it follows that

n . p
2 0_2 0_2
n—=k

by the CMT. =m

One implication of this theorem is that multiple estimators can be consistent for the population
parameter. While 52 and s? are unequal in any given application, they are close in value when n
is very large.

1.2 Asymptotic Normality

To study the asymptotic normality of B, we impose the following additional assumption.
Assumption OLS.5: E[u?] < co and E {||x||4} < 0.

The assumption E[u?] < oo is stronger than Assumption 3 in Chapter 3 which states F[u?] < oo.

Theorem 3 Under Assumptions OLS.0, OLS.1', OLS.2, and OLS.5,
~ d
Vi (B-8) -4 N(o,V),
where V.= Q7 1QQ ™! with Q = E [x;x}] and @ = E [xzxguﬂ

(2

Proof. From ,
n -1 n
~ 1 , 1
vn (5 - 5) = <n ;Xixi> <\/ﬁ ;&%) .

Note first that

2

B ([exia]] < B[] " B (] 7% < B [Ill] " B (] 7 < oc, (@

where the first inequality is from the Cauchy-Schwarz inequality, the second inequality is from the



Schwarz matrix inequalityE] and the last inequality is from Assumption OLS.5. So by the CLT,
1 — d
vn i=1

Given that n=1 >0 | x;x] - Q,
Vi (B-8) -5 QN (0,2) = N(0,V)

by Slutsky’s theorem. m

From Assumption OLS.2', x’3 is the best linear projector of y on span (x) rather than the
conditional mean of y given x, so if we express y = m(x)+¢ = x'B+u with m(x) = E [y|x], then u =
m(x) —x'B+e. Evenif E [¢[x] =02, E [W?|x] = E [(m(x) —x'B+¢) ]x] = (m(x) — X'B)* + 02
depends on x if m(x) # x'3; in other words, the model is heteroskedastic. Another case where
heteroskedasticity would naturally arise is the random coefficient model discussed in Chapter 6.

If the model is indeed homoskedastic, V reduces to V? = 02Q~!. We call V° the homoskedas-
tic covariance matrix. Sometimes, to state the asymptotic distribution of part of B’ as in the

residual regression, we partition Q and €2 as

Q- Qu Qi Q- Q11 Qa2 . 5)
Qa1 Q2 Qo1 oo
Recall from the proof of the FWL theorem,

Q!= Q1_11.2 _Q1_11.2Q12Q2_21
_Qz_21.1Q21Q1_11 Q2_21.1 ’

where Q112 = Q11 — Q12Q2_21Q21 and Q2.1 = Qoo — Q21Q1_11Q12. Thus when the error is ho-
moskedastic, n - AVar (,@1> = O'ZQl_ﬁQ, and n - ACov (,@1,,@2) = —02Q1_11.2Q12Q2_21. We can also
derive the general formulas in the heteroskedastic case, but these formulas are not easily inter-
pretable and so less useful.

To understand the form of Q11 2, think about the projection of x; on span (x2) in the L? space.

The coefficient of the projection is
I = F [x2x5] 'F ES

and the error term is

/ J—
v=x1—I"xs =x19,

#Schwarz matrix inequality: For any random m x n matrices X and Y, || XY < ||X|| |'Y|l. This is a special form
of the Cauchy-Schwarz inequality, where ||X'Y]| can be interpreted as the absolute value of inner product, [(X,Y)]|.



SO

E [vv’] = F [xlxll] -T'E [X2X/1] - F [xlxé] r+r'E [XQXIQ] r
= F [X1X'1] - F [xlxé] FE [x2x’2]_1 E [xlel} = Qq1.0,

where we can get E [vv/] = E[x1x]] — E [xix] E [xoxy] ' E |:X2X,1i| directly by the intuition of
projection. In other words, Q1.2 is the error "length" in the projection of x; on span (x3). This
is reminiscent of the FWL theorem where the influence of x5 is excluded from x; to get ,@1, SO
Q = E[xx/] in the asymptotic variance of B should be replaced by Qii2 = E [x112X] ] in the
asymptotic variance of Bl.

Notice also that Q11 > Q11.2, so in the following two homoskedastic linear regression models,

My oyt =x18 +x58; +u,
My P =x18; +u,

where the same v appears in y' and yQEI and E[u|x] = 0, E[u?|x] = 02, the asymptotic variance of
LSE of 3; in M; is larger than that in Ms. Intuitively, 8; can only be less precisely estimated in

M due to the multicollinearity problem between x; and xs.

Exercise 2 Of the variables (y}, i, xi) only the pair (y;,x;) are observed. In this case, we say that

y; s a latent variable. Suppose

y: = X;B + Uy,
E[xu;] = 0,
yi = y; tui
where v; is a measurement error satisfying E[x;v;] = 0 and Elyfv;] = 0. Let B denote the OLS

coefficient from the regression of y; on x;.

(1) Is B the coefficient from the linear projection of y; on x;?
(ii) Is B consistent for B

(iii) Find the asymptotic distribution of \/n (,@ — ,8).

1.3 LSE as a MoM Estimator

The LSE is a MoM estimator. The corresponding moment conditions are the orthogonal conditions

E [xu] =0,

‘Note that y' and y? are different!



where u = y — x’3. So the sample analog is the normal equation

1« ~
= in (yi — X;B) = E, [xu] =0,
i
the solution of which is exactly the LSE. Now, M = —E [x;x]] = —Q, and = E [x;x}u?], so
3 d
Vi (B-8) -5 N(©,V),

the same as in Theorem [3] Note that the asymptotic variance V takes the sandwich form. The
larger the E [x;x}], the smaller the V. Although the LSE is a MoM estimator, it is a special MoM
estimator because it can be treated as a "projection" estimator.

We provide more intuition on the asymptotic variance of ,[Ai below. Consider a simple linear
regression model

Yi = Pri + ui,
where E[z;] is normalized to be 0. From introductory econometrics,

7

LiYi e
B ey
%2 Var(z)

i=1
and under homoskedasticity,

2

~ o
o () - iy
Var{p nVar(x)

So the larger the Var(z), the smaller the AVar (B) Actually, Var(z) = ‘8%[;7“”]

, so the intuition
in introductory courses matches the general results of the MoM estimator.
Similarly, we can derive the asymptotic distribution of the weighted least squares (WLS)

estimator, a special GLS estimator with a diagonal weight matrix. Recall that
Beis = (X'WX) ' X'Wy,

which reduces to
n -1 n
BwLs = (Z wixixé) <Z WXi%)
i=1 i=1
when W = diag{wj, -+ ,wy,}. Note that this estimator is a MoM estimator under the moment

condition
E [wixiui] = 0,

SO

vn (BWLS - ﬂ) L N (0, Vw),



/,,2

where Vyw = F [wixixg]fl E [w?xixiui] E [wixix;]fl.

Exercise 3 Suppose w; = o; 2, where 07 = E[u?|x;]. Derive the asymptotic distribution of

ﬁ(BWLS—B)- i

2 Covariance Matrix Estimators

Since Q = E [x;x]] and = E [x;xju?],

and
1

Q= - lex;uf = EX’dlag {a3,- - @2} X = EX/DX (6)
are the MoM estimators for Q and €, where {@;};. ; are the OLS residuals. Given that V =
Q 'QQ!, it can be estimated by

v-q0g!
and AVar(B) is estimated by \Af/ n. As in , we can partition Q and Q accordingly and the

corresponding notations are just put a hat on. Recall from Exercise 8 of Chapter 3, Var (BJ|X) =
S wijo?/SSR;. Since V/n = (X’X)"! X'DX (X'X)" just replaces o? in Var (B|X> by @2,
AVar (BJ) = >0 wiui/SSR;, j =1, ,k, where w;; > 0, > ", w;; = 1, and SSR; is the SSR
in the regression of x; on all other regressors.

Although this estimator is natural nowadays, it took some time to come into existence because {2
is usually expressed as FE [xixgag] whose estimation requires estimating n conditional variances. \Y,
appeared first in the statistical literature Eicker (1967) and Huber (1967), and was introduced into
econometrics by White (1980c). So this estimator is often called the "Eicker-Huber-White formula"
or something of the kind. Other popular names for this estimator include the "heteroskedasticity-
consistent (or robust) convariance matrix estimator" or the "sandwich-form convariance matrix
estimator". The following theorem provides a direct proof of the consistency of \Y (although it is

a trivial corollary of the consistency of the MoM estimator).

Exercise 4 In the model

Y = X;,ﬁ + U,y
Exu;] = 0,Q=F [xlx;uﬂ ,

find the MoM estimators of (B, €2).

Theorem 4 Under the assumptions of Theorem @ V-V,



Proof. From the WLLN, Q is consistent. As long as we can show Q is consistent, by the CMT A
is consistent. Using

oy ]. n 1 ~2 1 n ) 2 n ’ o~ / 1 n , R / 2
Q= ;inxi“i = inxiui - inxi (,8 — ,8) X;u; + ginxi (,8 — ,8> x| .
=1 i=1 i=1 i—1
From “ E [||xixju?||] < oo, so by the WLLN, n= ' Y z;afu? 2, Q. We need only to prove the

remaining two terms are o,(1).

Note that the second term satisfies

Higxzxi (B—,B>/Xiui < ig XX, (B—,B>/Xiui
< Zzzn;HXinH ‘(B_B>,Xi || < <T2llzn;||xlu3|ul’> HB—ﬁ ’

where the first inequality is from the triangle inequalityﬂ and the second and third inequalities are

from the Schwarz matrix inequality. By Holder’s inequalityﬂ
3/4 1/4
B (Il [uil] < B |Ixll*] " B [Jwul*] " < o0,

so by the WLLN, n=' S |Ixi1° Jui| 2= E [HX,H3 \ul|] < 0o. Given that 8— 3 = op(1), the second
term is 0,(1)O,(1) = 0p(1). The third term satisfies

:L;Xixg <(Z§_B)/Xi>2 < ig || | ((B—B)/xi>2 < ;§||Xi’4 HB_BHQ — oy(1),

where the steps follow from similar arguments as in the second term. =
In the homoskedastic case, we can estimate V by VO = 82(3*1, and correspondingly, AVar (@) =

n 13" u?/SSR;. In other words, the weights in the general formula take a special form,

Wi = n~L. It is hard to judge which formula, homoskedasticity-only or heteroskedasticity-robust,
is larger (why?). Although either way is possible in theory, the heteroskedasticity-robust formula is
usually larger than the homoskedasticity-only one in practice; Kauermann and Carroll (2001) show
that the former is actually more variable than the latter in the normal regression model, which is

the price paid for robustness.

2.1 Alternative Covariance Matrix Estimators (*)

MacKinnon and White (1985) find that V can have a substantial small smaple downward bias and
suggest three small-sample corrected versions of V. The first is suggested in Hinkley (1977) and

’Triangle inequality: For any m x n matrices X and Y, ||X + Y| < ||IX]| + |[Y]|.
SHolder’s inequality: If p > 1 and ¢ > 1 and % + é = 1, then for any random m x n matrices X and Y,

EB[IXY|] < E[IX|[]V? B[]



simply replaces Q by ﬁﬁ This estimator simply adjusts the degrees of freedom (dof) of {4} ;,
termed as HC1. The second is based on the observation that E [a|X] = (1 — h;) 0% and replaces
@2 by 42/ (1 — h;), where h; = x;(X’X)"1x; is the leverage of x;. This estimator is termed as HC2,

denoted as
~ ~ 1< 02 N\ A
Vice =Q 7' [ =) —xixj | Q7.
HC2 Q n - 1— hz XiX; Q

The third is based on the jackknife principle which was introduced by Quenouille (1949, 1956) and
Tukey (1958) (see also Miller (1964, 1974)). Recall in Section 6 of Chapter 3 the definition of B(,i)
as the least-squares estimator with the i’th observation deleted. From equation (3.13) of Efron

(1982), the jackknife estimator of the variance matrix for 3 is

V= (n—1) Zn: (//B\(—i) - B) (B(—i) - B) ) (7)

where

Using formula (5) in Chapter 3, we can show that

V* — (n - 1) Q- '0"Q !, (8)

n

where

n n

/

~, 1 _ . 1 1~ 1 1o~

O = — Z( hz) 2X¢X;u? - < Z(l - hz) 1xiui) ( Z(l - hz) 1xiui> .
s s s

This estimator is termed as HC3. MacKinnon and White (1985) present numerical (simulation)

evidence that HC3 works the best among the four available estimators. They also suggest that the

scaling factor (n — 1)/n in (8)) can be omitted.
Exercise 5 Show that the two expressions of V* in (@ and (@ are equal.

To understand why n — 1 appears in , let’s consider a simple situation where the regressor
is a constant. In this case, E =7, and V = Var (y). It turns out that the jackknife estimator of

Var (y) is exactly the usual unbiased estimator. To be specific, the leave-one-out estimator is

_ 1 n 1
y(_i)zn_lgyj=n_1y—n_lyi-
j#i

The sample mean of the leave-one-out estimators is




The difference is )
Yoy —Y= 77 Y — i)

The jackknife estimate of Var (y) is then

n 2 n
m-0Y () Gl =

1=1

which is exactly the conventially unbiased estimator of Var (y). The downside of jackknife is that
it requires n separate estimations, which in some cases can be computationally costly. However,
it can be used when an explicit asymptotic variance formula is not available and can be used as a
check on the reliability of an asymptotic formula.

Andrews (1991) suggests a similar estimator based on cross-validation, which is defined by
replacing the OLS residual u; in @ with the leave-one-out estimator u; ; = (1 — h;)~'4;. With

this substitution, Andrews’ proposed estimator is
{\/** - Q—lﬁ**@—l
- )

where
~ 1 &
Q== E (1 — hi)72XiX2’l/jj?.
n
i=1

It is similar to the MacKinnon-White HC3 estimator, but omits the mean correction. Andrews
(1991) argues that simulation evidence indicates that V** is an improvement on V*.

The jackknife represents a linear approximation of the bootstrap proposed in Efron (1979).
See Hall (1994) and Horowitz (1997, 2001, 2003, 2019) for an introduction of the bootstrap in
econometrics and Efron and Gong (1983) and Efron and Tibshirani (1986) for an introduction in
statistics. Other popular books on the bootstrap and resampling methods include Efron (1982),
Hall (1992), Efron and Tibshirani (1993), Shao and Tu (1995), and Davison and Hinkley (1997).

Imbens and Kolesar (2016) use simulations to show that the confidence intervals based on a
degrees-of-freedom correction suggested by Bell and McCaffrey (2002, BM hereafter) perform the

best in coverage and length. BM approximate the distribution of
B, - 8,
V Viics
by a t-distribution with the dof Kgyr, where \Af{{j@ is the jth diagonal element of \A/'Hcg. In effect,

the BM standard error \/V%JM = \/{7{{]‘02“{‘3{.{%, where tx;,; 0.025 i the upper 0.025 quantile

of the tk,,, distribution. How to choose Kpn? It is chosen so that under homoskedasticity and

normality, the distribution of Ky - ngQ/ V;; has the first two moments in common with X%(Bn‘

Because E [Vf{jcgyx] = Vjj, the means automatically match. It remains to match the variances.

11



It turns out that

Viioy = ZA Zi,

where Z; ~ x?, and all Z;’s are independent. The weights \; are eigenvalues of the n x n matrix
o2 - G'G, with the ith column of the n x n matrix G, is equal to
1 1

Gi = 17—}7,1 (em — Pz) X; (XIX)_ ek,j,

where P; is the ith column of P, and ¢; 4 is the gth unit vector of R!. Solving

we have ) )
Koy = ——Vai (i )
Var <VH02> Z?:l )‘12

which depends only on X but not on o2, and may be different for different j’s. Note that if without
homoskedasticity, then ); should be the eigenvalues of G'Q2G. These weights are not feasible
because €2 is unknown in general. The feasible version of the Sattherthwaite (1946) dof suggestion
replaces 2 by Q dlag{u2 /(11— 1)} However, because Qisa noisy estimator of the conditional
variance, the resulting confidence intervals are often substantially conservative.

Chesher and Jewitt (1987) show that the EWH estimator can be biased substantially even with
moderately large samples if the distribution of the regressors is skewed, so it is the combination of
the sample size and the distribution of the regressors that determines the accuracy of the EWH
estimator in finite samples. The degrees-of-freedom correction of BM captures the skewness of
regressors in G; when the distribution of regressors is skewed (e.g., the regressor of interest follows

a log-normal distribution), the effective dof will be smaller.

3 Restricted Least Squares Revisited (*)

In Chapter 2, we derived the RLS estimator. We now study the asymptotic properties of the RLS
estimator. Since the RLS estimator is a special MD estimator, we concentrate on the MD estimator
under the constraints R’3 = c in this section. From Exercise 26 and the discussion in Section 5.1

of Chapter 2, we can show
Bup=B-W,'R(R'W,'R)™ (RB-c).

To derive its asymptotic distribution, we impose the following regularity conditions.

Assumption RLS.1: R'3 = ¢ where R is k x ¢ with rank(R) = g.

12



Assumption RLS.2: W, 2, W > 0.

Theorem 5 Under the Assumptions of Theorem |1, RLS.1 and RLS.2, BMD 2, B. Under the
Assumptions of Theorem[3, RLS.1 and RLS.2,

Vit (Bup — B) = N (0, Vw),
where

Vw = V-W IRRW!R)'RV-VRRW !R)'RW!
+WIR(R'WIR)'R'VR(R'W'R)"'RW,

and V=Q1QQ".

From this theorem, the RLS estimator is CAN and its asymptotic variance is Vq. Unless the model

is homoskedastic, it is hard to compare Vq and V.
Exercise 6 Prove the above theorem.

The asymptotic distribution of B wp depends on W. A natural question is which W is the
best in the sense of minimizing V. This turns out to be V™! as shown in the following theorem.
Since V™! is unknown, we can replace V™! with a consistent estimate V! and the asymptotic
distribution (and efficiency) are unchanged. We call the MD estimator setting W,, = V-1 the

efficient minimum distance (EMD) estimator, which takes the form
Bpup =B - VR (R’\?R)*l (R’B—c). 9)
Theorem 6 Under the Assumptions of Theorem[3 and RLS.1,
vn <BEMD - 5) ~L N (0,V%),

where

V*=V - VR(R'VR)'R'V.

Since
Vi<V,

B eMmp has lower asymptotic variance than the unrestricted estimator. Furthermore, for any W,
V* < Vw,
S0 EEMD is asymptotically efficient in the class of MD estimators.

Exercise 7 (i) Show that Vy-1 = V*. (it*) Show that V* < Vw for any W.

13



Exercise 8 Consider the exclusion restriction By = 0 in the linear regression model y; = X108, +

x589 + u;.

(i) Derive the asymptotic distribution of El, EllR and ,@LEMD and show that AVar(BLEMD) <
AV@T(Bl) and AVar(BLEMD) < AVar(BlR).

(ii) When the model is homoskedastic, show that AVar(ELEMD) — AVar(B,5) < AVar(B,).
When will the equality hold? (Hint: Q12 = 0)

(iii) When the model is heteroskedastic, provide an example where AVar(BlR) > AVCLT‘(Bl).

This theorem shows that the MD estimator with the smallest asymptotic variance is B EMD-
One implication is that the RLS estimator is generally inefficient. The interesting exception is the
case of conditional homoskedasticity, in which the optimal weight matrix is W = V?{l and thus
the RLS estimator is an efficient MD estimator. When the error is conditionally heteroskedastic,
there are asymptotic efficiency gains by using minimum distance rather than least squares.

The fact that the RLS estimator is generally inefficient appears counter-intuitive and requires
some reflection to understand. Standard intuition suggests to apply the same estimation method
(least squares) to the unconstrained and constrained models, and this is the most common empirical
practice. But the above theorem shows that this is not the efficient estimation method. Instead,
the EMD estimator has a smaller asymptotic variance. Why? Consider the RLS estimator with
the exclusion restrictions. In this case, the least squares estimation does not make use of the
regressor Xo;. It ignores the information E [x2;u;] = 0. This information is relevant when the error
is heteroskedastic and the excluded regressors are correlated with the included regressors.

Finally, note that all asymptotic variances can be consistently estimated by their sample analogs,
e.g.,

V'=V-VR(RVR) RV,

where V is a consistent estimator of V.

3.1 Orthogonality of Efficient Estimators

One important property of an efficient estimator is the following orthogonality property popularized
by Hausman (1978)/]

Theorem 7 (Orthogonality of Efficient Estimators) Let B and B be two CAN estimators of
3, and,@ 1s efficient. Then the limiting distributions of \/ﬁﬁ and \/n (,B — ,8) have zero covariance,

where A = B—B

"See also Lehmann and Casella (1998, Theorem 1.7, p. 85) and Rao (1973, Theorem 51.2.(1), p. 317) for a similar
result. Lehmann and Casella cite Barankin (1949), Stein (1950), Bahadur (1957), and Luenberger (1969) as early

references.
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Proof. Suppose A and ,B are not orthogonal. Since plim(ﬁ) = 0, consider a new estimator

8= ,B + aAﬁ, where a is a scalar and A is an arbitrary matrix to be chosen. The new estimator

is CAN with asymptotic variance
Var(B) = Var(8) + aACov(B, A) + aCov(B, A)Y A’ + a?AVar(A)A'.

Since ,Ct} is efficient, the minimizer of Var(B) with respect to a is achieved at a = 0. Taking the

first-order derivative with respect to a yields
AC + C'A’ + 2aAVar(A)A/,
where C = COU(B, 3) Choosing A = —C’, we have
—2C'C + 2aC'Var(A)C.

Therefore, at a = 0, this derivative is equal to —2C’'C < 0. Unless C = 0, we may have a better
estimator than B by choosing a a little bit deviating from 0. =

Exercise 9 (Finite-Sample Orthogonality of Efficient Estimators) In the homoskedastic lin-
ear regression model, check Cov (,@ — BR, BR‘ X) = 0 directly. (Hint: recall that BR = PSLX/XSB—i—
(I-Psixxs)s.)

A direct corollary of the above theorem is as follows.

Corollary 1 Let B and ,B be two CAN estimators of 3, and B 1s efficient. Then AVaT(B — E) =

o~ ~

AVar(B) — AVar(B).

3.2 Misspecification

We usually have two methods to study the effects of misspecification of the restrictions. In Method
I, we assume the truth is R’3 = ¢* with ¢* # ¢; in Method II, we assume the truth is R'3, =
¢ + n~1/2§. The specification in Method II need some explanation. In this specification, the
constraint is "close" to correct, as the difference R'3,, — ¢ = n~1/2§ is "small" in the sense that
it decreases with sample size n. We call such a misspecification as local misspecification. The
reason why the deviation is proportional to n~1/2 is because this is the only choice under which
the localizing parameter & appears in the asymptotic distribution but does not dominate it. We
will give more discussions on this choice of rate in studying the local power of tests.

First discuss Method I. From the expression of ,@ MD> it is not hard to see that
Bup = Biup =B - WIRRWIR)(c" - c).

The second term, W IR(R'WIR)~!(c* — c), shows that imposing an incorrect constraint leads

to inconsistency - an asymptotic bias. We call the limiting value 3};p the minimum-distance
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projection coefficient or the pseudo-true value implied by the restriction. There are more to say.
Define
B, =B- W, RR'W,'R)"(c" — c).

(Note that 8; is different from B3,p.) Then

Vit (Bup —B8:) = Vi (B-8) - W RR'W,'R) "V (RB-¢") (10)
= (I- W,'R(R'W,'R)"'R)) v (B - 8)

L (I-WR(R'W'R)"'R') N(0,V) = N(0, V).

In particular,
Vit (Bewp - B;) —5 N0, V).
This means that even when the constraint R/3 = c is misspecified, the conventional covariance
matrix estimator is still an appropriate measure of the sampling variance, though the distribution is
centered at the pseudo-true values (or projections) @) rather than 3. The fact that the estimators
are biased is an unavoidable consequence of misspecification.
In Method II, since the true model is y; = x3,, + w;, it is not hard to show that

Vi (B-8,) -4 N, V) (11)
which is the same as when 3 is fixed. A difference arises in the constrained estimator. Since
c=R/'B, —n 24,

RB-c=R (B-8,)+n "%,
and
Bup = B-W,RR'W,'R]" (RB-c)

1

~ B-W,;'R(R'W,'R) 'R/ (B _ 5n) +n2W IR (R'W,;'R) ' 6.

It follows that
Vit (Bap = B,) 5 (1- WIR(R'W,'R)'R) v (B - 8,) + W, 'R (R'W,'R) 5.

The first term is asymptotically normal by (11)). The second term converges in probability to a
constant. This is because the n~1/2 local scaling is exactly balanced by the /n scaling of the
estimator. No alternative rate would have produced this result. Consequently, we find that the

asymptotic distribution equals

Vi (Bup = 8,) = NO.Vw) + WIR(R'W'R) 6= N (@ Vw),  (12)
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where

=W IRRWIR) 5.

The asymptotic distribution is an approximation of the sampling distribution of the re-
stricted estimator under misspecification. The distribution contains an asymptotic bias com-
ponent 6*. The approximation is not fundamentally different from - they both have the same
asymptotic variances, and both reflect the bias due to misspecification. The difference is that
puts the bias on the left-side of the convergence arrow, while has the bias on the right-side.
There is no substantive difference between the two, but is more convenient for some purposes,

such as the analysis of the power of tests, as we will explore in the last section of this chapter.

3.3 Nonlinear and Inequality Restrictions

In some cases it is desirable to impose nonlinear constraints on the parameter vector 3. They can

be written as

r(8) =0, (13)

where r: R¥ — RY. This includes the linear constraints as a special case. An example of which
cannot be written in a linear form is 5,5 = 1, which is with r(3) = 8,85 — 1.
The RLS and MD estimators of 8 subject to solve the minimization problems

B, = arg min SSR ,
Br g min (8)

Bup = arg [oin ,Jn(B)-
The solutions can be achieved by the Lagrangian method. Computationally, there is in general no
explicit expression for the solutions so they must be found numerically. Algorithms to numerically
solve such Lagrangian problems are known as constrained optimization methods, and are available
in programming languages such as Matlab.
The asymptotic distributions of B r and B ump are the same as in the linear constraints case
except that R is replaced by dr(8)' /98, but the proof is more delicate.

We sometimes impose inequality constraints on 3,

r() > 0.

The most common example is a non-negative constraint 8; > 0. The RLS and MD estimators of

B can be written as
AB = a min SSR ,8
R rg r( )1> ( )7

3 - in J,.(3).
Brp arg min (B)

Except in special cases the constrained estimators do not have simple algebraic solutions. An
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important exception is when there is a single non-negativity constraint, e.g., 5; > 0 with ¢ = 1.
In this case the constrained estimator can be found by a two-step approach. First compute the
unconstrained estimator B If @1 > 0 then BR = BM D = B Second, if Bl < 0 then impose
B1 = 0 (eliminate the regressor z1) and re-estimate. This yields the constrained least-squares
estimator. While this method works when there is a single non-negativity constraint, it does not
immediately generalize to other contexts. The computational problems with inequality constraints
are examples of quadratic programming problems. Quick and easy computer algorithms are available

in programming languages such as Matlab.

Exercise 10 (Ridge Regression) Suppose the nonlinear constraints are 3'AB < B, where A >
0 and B > 0. Show that )
B = (X’X n XA) X'y,

where \ is the Lagrange multiplier for the constraint 3'AB < B.

Inference on inequality-constrained estimators is unfortunately quite challenging. The conven-
tional asymptotic theory gives rise to the following dichotomy. If the true parameter satisfies the
strict inequality r(3) > 0, then asymptotically the estimator is not subject to the constraint and
the inequality-constrained estimator has an asymptotic distribution equal to the unconstrained one.
However if the true parameter is on the boundary, e.g., r(3) = 0, then the estimator has a truncated
structure. This is easiest to see in the one-dimensional case. If we have an estimator B which satisfies
vn (B - [3) 7= N(0,V) and 8 = 0, then the constrained estimator BR(: BMD): max {B, 0}

will have the asymptotic distribution \/ﬁB R @, max {Z,0}, a “half-normal” distribution.

4 Functions of Parameters

Sometimes we are interested in some lower-dimensional function of the parameter vector 3 =
(B4, ,B%)". For example, we may be interested in a single coefficient B; or a ratio ﬂj/ﬁl. In
these cases we can write the parameter of interest as a function of 3. Let r: R¥ — R? denote this

function and let

6 =r(B3)

denote the parameter of interest. A natural estimate of 0 is 0=r (,@) To derive the asymptotic

distribution of 5, we impose the following assumption.

Assumption RLS.1: r(-) is continuously differentiable at the true value 3 and R = %r(,@)' has
rank q.

This assumption is an extension of Assumption RLS1.

Theorem 8 Under the assumptions of Theorem[3 and Assumption RLS.1',
\/5(5—0) 4, N(0,Ve).
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where Vg = R'VR.

Proof. By the CMT, 6 is consistent for 6. By the Delta method, if r(-) is differentiable at the

true value 3,

~

\/ﬁ(§—0> - \/ﬁ(r (ﬁ) —r(ﬁ)) 4, R'N(0,V) =N (0,Vg).

A natural estimator of Vg is
Vo =R'VR, (14)

- N/ ~
where R = Or <,6') /0B. If r(-) is a C) function, then by the CMT, Vg - Vg (why?).

In many cases, the function r(8) is linear:
r(8) =R'B

for some k x ¢ matrix R. In this case, %r(,@)’ =Rand R = R, so {79 = R'VR. For example, if

R is a "selector matrix"
0(k—q)xq

so that if 8= (87,3,)’, then 8 = R'3 = 3, and

the upper-left block of V. When g = 1 (so r(B) is real-valued), the standard error for 9 is the
square root of n_l%, that is, s (5) =n"12V/R/'VR.
5 The t Test

Let 0 = r(B): RF — R be any parameter of interest (for example, 6 could be a single element of

3), 0 its estimate and s (9) its asymptotic standard error. Consider the studentized statistic
66
(%)

Since \/n (@ - 9) A, N(0,Vp) and /ns (@) 2, \/Vy, by Slutsky’s theorem, we have

tn (0) =

Theorem 9 Under the assumptions of Theorem@ if Vo = R'VR > 0, then t, () LR N(0,1).

Given that R has full rank 1, Q > 0 and V = Q'QQ™ !, a sufficient condition for Vg > 0 is
Q > 0. Under this condition, the asymptotic distribution of the ¢-ratio ¢, (6) is the standard
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normal. Since the standard normal distribution does not depend on the parameters, we say that
t, () is asymptotically pivotal. In special cases (such as the normal regression model), the
statistic £, has an exact ¢ distribution, and is therefore exactly free of unknowns. In this case, we
say that ¢, is an exactly pivotal statistic. In general, however, pivotal statistics are unavailable
and so we must rely on asymptotically pivotal statistics.

The most common one-dimensional hypotheses are the null
H() 10 = 90, (15)

against the alternative
H1 10 75 90, (16)

where 6 is some pre-specified value. The standard test for Hy against H; is based on the absolute

value of the t-statistic,
0 — 6o

(7))

Under Hy, tn, -5 Z ~ N(0,1), 5o [t,| = |Z| by the CMT. G(u) = P(|Z] < u) = ®(u) — (1 —

®(u)) =2P(u) — 1 = ®(u) is called the asymptotic null distribution.
The asymptotic size of the test is defined as the asymptotic probability of a Type I error:

tn =tn (00) =

lim P(|t,| > ¢|Hp true) = P(|Z] > ¢) =1 — ®(c).
n—oo

We see that the asymptotic size of the test is a simple function of the asymptotic null distribution G
and the critical value c. As mentioned in Chapter 3, in the dominant approach to hypothesis testing,
the researcher pre-selects a significance level a € (0,1) and then selects ¢ so that the (asymptotic)
size is no larger than a. We call ¢ the asymptotic critical value because it has been selected
from the asymptotic null distribution. Let z,/5 be the upper a/2 quantile of the standard normal
distribution. That is, if Z ~ N(0,1), then P(Z > z,/2) = /2 and P(|Z] > 2z4/2) = a. For
example, z 025 = 1.96 and 295 = 1.645. A test of asymptotic significance a rejects Ho if [tn] > 24/2-
Otherwise the test does not reject, or "accepts" Hp.

The alternative hypothesis is sometimes called a “two-sided” alternative. Sometimes we

are interested in testing for one-sided alternatives such as
Hq: 0> 6 (17)

or

Hiy: 0 < 6. (18)

Tests of against or are based on the signed t-statistic ¢,,. The hypothesis is
rejected in favor of if t,, > ¢ where c satisfies « = 1 — ®(c). Negative values of ¢,, are not taken

as evidence against Hy, as point estimates 0 less than 0y do not point to . Since the critical
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values are taken from the single tail of the normal distribution, they are smaller than for two-sided
tests. Specifically, the asymptotic 5% critical value is ¢ = 1.645. Thus, we reject in favor of
if ¢, > 1.645. Testing against can be conducted in a similar way.

There seems to be an ambiguity. Should we use the two-sided critical value 1.96 or the one-
sided critical value 1.6457 The answer is that we should use one-sided tests and critical values
only when the parameter space is known to satisfy a one-sided restriction such as 8 > 6. This
is when the test of against makes sense. If the restriction 8 > 6y is not known a priori,
then imposing this restriction to test against does not make sense. Since linear regression
coefficients typically do not have a priori sign restrictions, we conclude that two-sided tests are

generally appropriate.

Exercise 11 Prove that if an additional regressor Xy 1 is added to X, Theil’s adjusted R increases
if and only if |tg+1| > 1, where tg1 = Bk+1/3 (BkH) is the t-ratio for Bk-‘,—l and

s <Bk+1) - <32 {(X/X)I]kﬂ,ﬁl)m

is the homoskedasticity-formula standard error. (Hint: Use the FWL theorem)

6 p-Value

An alternative approach, associated with R.A. Fisher, is to report an asymptotic p-value. The
asymptotic p-value for |¢,| is constructed as follows. Define the tail probability, or asymptotic
p-value function

p(t)=P(|Z]|>1)=1-G(t) =2(1 - 2(@)),

where G(+) is the cdf of |Z|. Then the asymptotic p-value of the statistic |t,| is

Pn :p(‘tnD'

So the p-value is the probability of obtaining a test statistic result at least as extreme as the one
that was actually observed or the smallest significance level at which the null would be rejected,
assuming that the null is true. Since the distribution function G is monotonically increasing, the
p-value is a monotonically decreasing function of ¢, and is an equivalent test statistic. Figure
shows how to find p,, when |¢,| = 1.85 (the left panel) and p,, as a function of |¢,| (the right panel).
An important caveat is that the p-value p,, should not be interpreted as the probability that either
hypothesis is true. For example, a common mis-interpretation is that p,, is the probability “that the
null hypothesis is true.” This is incorrect. Rather, p, is a measure of the strength of information

against the null hypothesis.

A researcher will often "reject the null hypothesis" when the p-value turns out to be less than

a predetermined significance level, often 0.05 or 0.01. Such a result indicates that the observed
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Figure 2: Obtaining the p-Value in a Two-Sided ¢-Test

result would be highly unlikely under the null hypothesis. In a sense, p-values and hypothesis tests
are equivalent since p,, < a if and only if |t,| > z, s2- Thus an equivalent statement of a Neyman-
Pearson test is to reject at the « level if and only if p, < a. The p-value is more general, however,
in that the reader is allowed to pick the level of significance «, in contrast to Neyman-Pearson
rejection/acceptance reporting where the researcher picks the level.

Another helpful observation is that the p-value function has simply made a unit-free transforma-
tion of the test statistic. That is, under Hy, p, 4, UJ0, 1], so the "unusualness" of the test statistic
can be compared to the easy-to-understand uniform distribution, regardless of the complication of
the distribution of the original test statistic. To see this fact, note that the asymptotic distribution
of [tn] is G(z) = 1 — p(x). Thus

P(l=py<u) = P =p(ta]) <u) =P (G(|tn]) < u)

P
P (|ta] < G w)) — G(C () = u,

establishing that 1 — p, 4y [0, 1], from which it follows that p, 4, Ulo, 1].

7 Confidence Interval

A confidence interval (CI) C), is an interval estimate of # € R which is assumed to be fized. It is a
function of the data and hence is random. So it is not correct to say that "6 will fall in C), with
high probability", rather, C), is designed to cover § with high probability. Either 6 € C,, or 6 ¢ C,,.
The coverage probability is P(6 € Cy,).
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Figure 3: Test Statistic Inversion

We typically cannot calculate the exact coverage probability P(6 € C,,). However we often can
calculate the asymptotic coverage probability lim,, ., P(f € C,,). We say that C,, has asymptotic
(1 — a) coverage for 6 if P(0 € C;,)) — 1 — a as n — oo.

A good method for constructing a confidence interval is collecting parameter values which are
not rejected by a statistical test, so-called "test statistic inversion" method. The t-test in Section
rejects Ho: 0 = 0 if |t, (00)| > 24/2- A confidence interval is then constructed using the values

for which this test does not reject:

~

C, = {9\ ltn (0)] < za/g} =90 |—2z42 < j(%)g < 2o ¢ = P— Za /28 (5) ,5—1— Za /28 (/05)} .

Figure [3|illustrates the idea of inverting a test statistic. In Figure [3] the acceptance region for 0 at
0 is [9 — 2q/28 (@) 0+ 228 (@)} , which is the region for 0 such that the hypothesis that the true
value is 6 cannot be rejected or is "accepted".

While there is no hard-and-fast guideline for choosing the coverage probability 1 — «, the most
common professional choice is 95%, or a = .05. This corresponds to selecting the confidence interval
[@:l: 1.96s (@)} R~ [/H\j: 2s (5)] Thus values of 6 within two standard errors of the estimated §
are considered "reasonable" candidates for the true value 6, and values of 6 outside two standard
errors of the estimated @ are considered unlikely or unreasonable candidates for the true value.

Finally, the interval has been constructed so that as n — oo,

P(0€Cp) =P (|tn(9)] < za/g) — P(|Z] < za/2) =1-a,
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so Cy, is indeed an asymptotic (1 — ) confidence interval. This justifies the duality between the
confidence interval and inverting tests of each possible parameter value.

(*) Coverage accuracy is a basic requirement for a CI. Another property of a CI is its length (if
it is fixed) or expected length (if it is random). Since at most one point of the interval is the true
value, the expected length of the interval is a measure of the "average extent" of the false values

included. In Appendix A, we discuss this issue following Pratt (1961).

8 Edgeworth Expansion (*)

Theorem |§| showed that the ¢-ratio ¢, (0) is asymptotically normal. In practice this means that we
use the normal distribution to approximate the finite sample distribution of ¢, (#). How good is
this approximation? Some insight into the accuracy of the normal approximation can be obtained
by an Edgeworth expansion which is a higher-order approximation to the distribution of ¢, (6).

The following result is an application of Theorem 13 of Chapter 4.

Theorem 10 Under the assumptions of Theorem@ if B [u'f] < o0, E [Hx”w} < o0, r(u) have five

continuous derivatives in a neighborhood of B, and lim;_ s ‘E [exp (it <u4 + Hx||4))” <B<l,
as n — oo,
P (tn (6) < x) = ® () + 0 2p1(2)¢ (2) + 0~ 'pa(2)d () + 0 (n7")

uniformly in x, where pi(x) is an even polynomial of order 2, and pa(x) is an odd polynomial of

degree 5, with coefficients depending on the moments of g(X) up to order 16.

Theorem [10] shows that the finite sample distribution of the ¢-ratio can be approximated up to
0 (nfl) by the sum of three terms, the first being the standard normal distribution, the second a
O (nfl/z) adjustment, and the third a O (nfl) adjustment.

First consider a one-sided confidence interval C,, = [5 — 28 <§) ,00). It has coverage

POEC) = Plta(6) < 2)
= ®(2a) + 10 2p1(2a)¢ (20) + O (”_1)

= 1—a+0(n_1/2).

This means that the actual coverage is within O (n_l/ 2) of the desired 1 — « level. Next consider

N

a two-sided interval C,, = [(/9\ — Za/28 (9) ,/9\ + 24/28 (@)} . It has coverage

= 2® (Za/Q) + n712p2(2a/2)¢ (Za/2) to (nil)
= 1—a+0(n71).

This means that the actual coverage is within O (nfl) of the desired 1 — « level. The accuracy

is better than the one-sided interval because the O (n_l/ 2) term in the Edgeworth expansion has
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offsetting effects in the two tails of the distribution.

9 The Wald Test

Sometimes 6 = r(8) is a ¢ x 1 vector, and it is desired to test the joint restrictions simultaneously.

In this case the t-statistic approach does not work. We have the null and alternative
H0:0:00VSH1:07£00E]

The natural estimate of 8 is 8 = r (,@) Suppose {79 is an estimate of the asymptotic covariance

matrix of 5, e.g., {\/'g in ; then the Wald statisticﬂ for Hy against H; is
~ o~ —
Wo=n(0-8,) Vy' (8-060).

We have known that /n (5 — 00> AN (0,Vyg), and {79 L, Vg under the null. So by Example

2 of Chapter 4, W, 4, XZ under the null. We have established:

Theorem 11 Under the assumptions of Theorem@ Whn 4, X?] under Hy.

When r is a linear function of 3, i.e., r(3) = R’3, the Wald statistic takes the form
~ / ~ N1 ~
W, = n (R’ﬁ _ 90) (R’VR) (R’B _ 00) .

When q = 1, W,, = t2. Correspondingly, the asymptotic distribution x? = N (0, 1)2.

An asymptotic Wald test rejects Hg in favor of Hy if W, exceeds Xaa, the upper-a quantile
of the xﬁ distribution. For example, X%,-OS = 3.84 = 22,-. The Wald test fails to reject if W, is
less than X;a. The asymptotic p-value for W, is p,, = p(W,,), where p(z) = P(X(QI > x) is the tail
probability function of the XZ distribution. As before, the test rejects at the « level if p, < a, and
pn is asymptotically U[0, 1] under Hp.

(*) The Wald test can only determine whether 6 is equal to 8y completely or some elements of
0 are not equal to the counterparts of 8y. In the latter case, one may want to know which element
of @ is not equal to that of 8y. This is related to the multiple testing or multiple comparisons
problem. See Chapter 9 of Lehmann and Romano (2005), Chapter 19 of Gourieroux and Monfort
(1995) and the Handbook of Econometrics Chapter by Savin (1984) for an introduction.

Different from t-tests, Wald tests are hard to apply for one-sided alernatives although not impossible.

¥ Abraham Wald (1902-1950) was a statistician at Columbia University. He is most famous for his work on decision
theory and statistical sequential analysis. He and his wife died in an airplane crash while on an extensive lecture tour
at the invitation of the Indian government.

25



10 Confidence Region

Similarly, we can construct confidence regions for multiple parameters, e.g., 8 = r(3) € R?. By the

test statistic inversion method, an asymptotic (1 — «) confidence region for 6 is
C, = {BIWn(B) < Xg,a},

where W,,(0) =n (5 — 0)/{\7;1 (5 — 0). Since Vg > 0, C,, is an ellipsoid in the 6 plane.

To show C,, intuitively, assume ¢ = 2 and 8 = (81,08,)". In this case, C,, is an ellipse in
the (8;,85) plane as shown in Figure In Figure Bl and BQ are positively correlated. For
comparison, we also show the (1 — «) CIs for 5; and 5 in Figure It is tempting to use the
rectangular region, say C, as a confidence region for (8, [55). However, P((8y,08,) € C.) may
not converge to 1 — «. For example, suppose Bl and Bz are asymptotically independent; then
P((By4,By) € C!) — (1—a)? < (1—a). Note also that the ellipse C,, cannot be completely contained

in C],. This is because if we reverse the roles of 3 and ,@ in the figure, then P (,@ € Cn> =1-—a,
while P (Bl € AB, B, € R) —1—a.

Exercise 12 (*) (i) Show that 1 — 2a < limy, oo P((81,62) € C,) < 1 — «. (ii) When will
limp oo P((By,By) € C,) = 1—a? (iii) Show that when B, and By are asymptotically independent,
lim,, oo P((B1,82) € CL) = (1 —a)?. (iv) Is lim,, o0 P((B1,35) € C.) = 1 —2a achievable? What

is the ezact lower bound of lim, .o P((81,82) € CL)? (v) Show that CD/AB = /X3 (a) /x? ()
in Figure[4 (vi) Is it possible that C}, C C,,?

Figure 4: Confidence Region for (8, 35)
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11 Problems with Tests of Nonlinear Hypotheses

While the ¢ test and Wald tests work well when the hypothesis is a linear restriction on 3, they
can work quite poorly when the restrictions are nonlinear. This can be seen in a simple example
introduced by Lafontaine and White (1986). Take the model

Yi :5+ul7ul NN(0702)

and consider the hypothesis
Hy: p=1.

Let E and 52 be the sample mean and variance of y;. The standard Wald test for Hy is

~ 2
w01

6_\2

Now notice that Hy is equivalent to the hypothesis

for any positive integer s. Letting r(3) = £, and noting R = s3°71, we find that the standard
Wald test for Hy(s) is

~ 2

(F-1)

Wh(s) =n 55
52523

While the hypothesis 8° = 1 is unaffected by the choice of s, the statistic W, (s) varies with s. This
is an unfortunate feature of the Wald statistic.

To demonstrate this effect, we plot in Figure |5 the Wald statistic W;,(s) as a function of s,
setting n/ 62 = 10. The increasing solid line is for the case B = 0.8 and the decreasing dashed line
is for the case B = 1.6. It is easy to see that in each case there are values of s for which the test
statistic is significant relative to asymptotic critical values, while there are other values of s for
which the test statistic is insigniﬁcantF_U] This is distressing since the choice of s is arbitrary and
irrelevant to the actual hypothesis.

Our first-order asymptotic theory is not useful to help pick s, as W, (s) N x3 under Hy for any
s. This is a context where Monte Carlo simulation can be quite useful as a tool to study and
compare the exact distributions of statistical procedures in finite samples. The method uses random
simulation to create artificial datasets, to which we apply the statistical tools of interest. This
produces random draws from the statistic’s sampling distribution. Through repetition, features
of this distribution can be calculated. In the present context of the Wald statistic, one feature

of importance is the Type I error of the test using the asymptotic 5% critical value 3.84 - the

'"Breusch and Schmidt (1988) show that any positive value for the Wald test statistic is possible by rewriting Ho
in an algebraically equivalent form.
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1 2 3 4 5 6 7 8 9 10

Figure 5: Wald Statistic as a function of s

probability of a false rejection, P(W,,(s) > 3.84|3 = 1). Given the simplicity of the model, this
probability depends only on s, n, and 2. In Table 1 we report the results of a Monte Carlo
simulation where we vary these three parameters: the value of s is varied from 1 to 10, n is varied
among 20, 100 and 500, and o is varied among 1 and 3. The table reports the simulation estimate
of the Type I error probability from 50,000 random samples. Each row of the table corresponds
to a different value of s - and thus corresponds to a particular choice of test statistic. The second
through seventh columns contain the Type I error probabilities for different combinations of n and
0. These probabilities are calculated as the percentage of the 50,000 simulated Wald statistics
Wy (s) which are larger than 3.84. The null hypothesis ° = 1 is true, so these probabilities are
Type I error.
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oc=1 oc=3
s |m=20 n=100 n=500 | n=20 n=100 n=>500
1 .06 .05 .05 .07 .05 .05
2 .08 .06 .05 15 .08 .06
3 .10 .06 .05 21 12 .07
4 .13 .07 .06 .25 15 .08
5 15 .08 .06 .28 18 .10
6 A7 .09 .06 .30 .20 11
7 .19 10 .06 31 22 .13
8 .20 12 .07 .33 .24 .14
9 .22 13 .07 .34 .25 .15
10 .23 14 .08 .35 .26 .16

Table 1: Type I Error Probability of Asymptotic 5% W, (s) Test

Note: Rejection frequencies from 50,000 simulated random samples

To interpret the table, remember that the ideal Type I error probability is 5%(.05) with devia-
tions indicating distortion. Type I error rates between 3% and 8% are considered reasonable. Error
rates above 10% are considered excessive. Rates above 20% are unacceptable. When comparing
statistical procedures, we compare the rates row by row, looking for tests for which rejection rates
are close to 5% and rarely fall outside of the 3% — 8% range. For this particular example the only
test which meets this criterion is the conventional W,, = W,,(1) test. Any other choice of s leads
to a test with unacceptable Type I error probabilities.

In Table 1 you can also see the impact of variation in sample size. In each case, the Type I
error probability improves towards 5% as the sample size n increases. There is, however, no magic
choice of n for which all tests perform uniformly well. Test performance deteriorates as s increases,
which is not surprising given the dependence of W,,(s) on s as shown in Figure

In this example it is not surprising that the choice s = 1 yields the best test statistic. Other
choices are arbitrary and would not be used in practice. While this is clear in this particular
example, in other examples natural choices are not always obvious and the best choices may in fact
appear counter-intuitive at first. This point can be illustrated through another example which is

similar to one developed in Gregory and Veall (1985). Take the model

yi = Bo + 7181 + 2if2 + ui, E[x;u;) = 0 (19)
and the hypothesis
H[)Z g; = 00

where 6 is a known constant. Equivalently, define 6 = 3,/f3,, so the hypothesis can be stated as
~ PR N
Hy: 0 =060y. Let 8= (50, B1, 52) be the least-squares estimates of , Va be an estimate of the
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covariance matrix for 3 and 6 = Bl / 52 Define

~ !/
~ 1
R1 — (0, =, —%>
52 ﬁQ
~ ~ o~ N\ 1/2
so that the standard error for 6 is s(f) = (R’lVRl) . In this case, a t-statistic for Hy is

_ By /By — 0o
s(0)

in

An alternative statistic can be constructed through reformulating the null hypothesis as

Hy: 31 — 0085 = 0.

A t-statistic based on this formulation of the hypothesis is

ty — By — 005,
' (R' \AARQ) v
275
where Ry = (0,1, —60)’".
n = 100 n = 500
P(t, < —1.645) | P(t, > 1.645) | P(tn, < —1.645) | P(t, > 1.645)
Ba | tin ton tin ton tin ton tin ton
.10 A7 .06 .00 .06 .28 .05 .00 .05
.25 .26 .06 .00 .06 .15 .05 .00 .05
.50 .15 .06 .00 .06 .10 .05 .00 .05
.75 12 .06 .00 .06 .09 .05 .00 .05
1.00 | .10 .06 .00 .06 .07 .05 .02 .05

Table 2: Type I Error Probability of Asymptotic 5% t-tests

To compare t1, and t9, we perform another simple Monte Carlo simulation. We let x1; and
T9; be mutually independent N(0,1) variables, u; be an independent N(0,02) draw with o = 3,
and normalize 85 = 1 and ; = 1. This leaves 34 as a free parameter, along with sample size n.
We vary B, among .1,.25,.50,.75, and 1.0 and n among 100 and 500. The one-sided Type I error
probabilities P(t, < —1.645) and P(t, > 1.645) are calculated from 50,000 simulated samples.
The results are presented in Table 2. Ideally, the entries in the table should be 0.05. However,
the rejection rates for the t1,, statistic diverge greatly from this value, especially for small values of
By. The left tail probabilities P(t1, < —1.645) greatly exceed 5%, while the right tail probabilities

P(t1, > 1.645) are close to zero in most cases. In contrast, the rejection rates for the linear tg,

1If V is used to estimate the asymptotic variance of \/n (B - B), then {75 = \7/71
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statistic are invariant to the value of 35, and are close to the ideal 5% rate for both sample sizes.
The implication of Table 2 is that the two t-ratios have dramatically different sampling behaviors.

The common message from both examples is that Wald statistics are sensitive to the algebraic
formulation of the null hypothesis. In all cases, if the hypothesis can be expressed as a linear
restriction on the model parameters, this formulation should be used. If no linear formulation
is feasible, then the "most linear" formulation should be selected (as suggested by the theory of
Phillips and Park (1988)), and alternatives to asymptotic critical values should be considered. It
is also prudent to consider alternative tests to the Wald statistic, such as the minimum distance
statistic developed in Section

12 Monte Carlo Simulation

In Section [11] we introduced the method of Monte Carlo simulation to illustrate the small sample
problems with tests of nonlinear hypotheses. In this section we describe the method in more detail.

Recall, our data consist of observations (y;,x;) which are random draws from a population
distribution F. Let 6 be a parameter and let T, = T}, ((y1,%X1),- - , (Yn,Xn) ,0) be a statistic of

interest, for example an estimator 0 or a t-statistic <5 — 0) /s (5) The exact distribution of T;, is
Gn(u, F)=P (T, <u|F).

While the asymptotic distribution of 7}, might be known, the exact (finite sample, i.e., n is fixed)
distribution G,, is generally unknown.

Monte Carlo simulation uses numerical simulation to compute G, (u, F) for selected choices
of F. This is useful to investigate the performance of the statistic 7,, in reasonable situations
and sample sizes. The basic idea is that for any given F, the distribution function Gy, (u, F') can
be calculated numerically through simulation. The name Monte Carlo derives from the famous
Mediterranean gambling resort where games of chance are played.

The method of Monte Carlo is quite simple to describe. The researcher chooses F' (the dis-
tribution of the data) and the sample size n. A “true” value of € is implied by this choice, or
equivalently the value 0 is selected directly by the researcher which implies restrictions on F'. Then

the following experiment is conducted by computer simulation:

1. n independent random pairs (y;,x}), ¢ = 1,---,n, are drawn from the distribution F' using

the computer’s random number generator.

2. The statistic T, = T}, ((y1,%x7),---, (y%, %), 0) is calculated on this pseudo data.

For step 1, most computer packages have built-in procedures for generating U[0,1] and N(0, 1)
random numbers, and from these most random variables can be constructed. (For example, a
chi-square can be generated by sums of squares of normals.) For step 2, it is important that the

statistic be evaluated at the “true” value of 8 corresponding to the choice of F.
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The above experiment creates one random draw from the distribution Gy, (u, F'). This is one
observation from an unknown distribution. Clearly, from one observation very little can be said.
So the researcher repeats the experiment B times, where B is a large number. Typically, we set
B = 1000 or B = 5000. We will discuss this choice later. Notationally, let the bth experiment
result in the draw T}, b = 1,--- , B. These results are stored. After all B experiments have been
calculated, these results constitute a random sample of size B from the distribution of G,, (u, F') =
P (T, <u)=P(T, <ul|F).

From a random sample, we can estimate any feature of interest using (typically) a method of
moments estimator. We now describe some specific examples.

Suppose we are interested in the bias, mean-squared error (MSE), and/or variance of the dis-

tribution  — 6. We then set T, = (= f, run the above experiment, and calculate

PR 1 E 1 B

Bias(é’) = =X Tw=5 > 00,
b=1 b=1

s 1 E ) 1 B 2

MSE(H) - B;Tnb:B;(eb_9>’

var (5) = m@)_@(af.

Suppose we are interested in the Type I error associated with an asymptotic 5% two-sided t-test.
We would then set T, = )5 — 0’ /s <§> and calculate

1

B
== > 1T, > 1.96), (20)

b=1

)

the percentage of the simulated ¢-ratios which exceed the asymptotic 5% critical value.

Suppose we are interested in the 5% and 95% quantile of T,, = 0 or T, = (@— 9) /s (5), we
then compute the 5% and 95% sample quantiles of the sample {7,;}. The ath sample quantile is a
number ¢, such that 100« percent of the sample are less than ¢g,. A simple way to compute sample
quantiles is to sort the sample {7},;} from low to high. Then g, is the N’th number in this ordered
sequence, where N = (B + 1) . It is therefore convenient to pick B so that N is an integer. For
example, if we set B = 999, then the 5% sample quantile is 50’th sorted value and the 95% sample
quantile is the 950’th sorted value.

The typical purpose of a Monte Carlo simulation is to investigate the performance of a statistical
procedure (estimator or test) in realistic settings. Generally, the performance will depend on n and
F. In many cases, an estimator or test may perform wonderfully for some values, and poorly for
others. It is therefore useful to conduct a variety of experiments, for a selection of choices of n and
F.

As discussed above, the researcher must select the number of experiments, B. Often this is

called the number of replications. Quite simply, a larger B results in more precise estimates of
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the features of interest of G,,, but requires more computational time. In practice, therefore, the
choice of B is often guided by the computational demands of the statistical procedure. Since the
results of a Monte Carlo experiment are estimates computed from a random sample of size B, it
is straightforward to calculate standard errors for any quantity of interest. If the standard error is
too large to make a reliable inference, then B will have to be increased.

In particular, it is simple to make inferences about rejection probabilities from statistical tests,
such as the percentage estimate reported in . The random variable 1(7},; > 1.96) is iid Bernoulli,
equalling 1 with probability p = E [1(T},;, > 1.96)]. The average is therefore an unbiased estima-
tor of p with standard deviation s (p) = m . As p is unknown, this may be approximated
by replacing p with p or with an hypothesized value. For example, if we are assessing an asymptotic
5% test, then we can set s (p) = 1/(.05) (.95) /B. Hence, standard errors for B = 100, 1000, and
5000, are, respectively, s (p) = .022,.007, and .003. See also Davidson and MacKinnon (1981a) for
a more efficient estimator of p and its standard deviation.

Most papers in econometric methods, and some empirical papers, include the results of Monte
Carlo simulations to illustrate the performance of their methods. When extending existing results, it
is good practice to start by replicating existing (published) results. This is not exactly possible in the
case of simulation results, as they are inherently random. For example suppose a paper investigates
a statistical test, and reports a simulated rejection probability of 0.07 based on a simulation with
B = 100 replications. Suppose you attempt to replicate this result, and find a rejection probability
of 0.03 (again using B = 100 simulation replications). Should you conclude that you have failed in
your attempt? Absolutely not! Under the hypothesis that both simulations are identical, you have
two independent estimates, p; = 0.07 and pa = 0.03, of a common probability p. The asymptotic
(as B — oo) distribution of their difference is v/ B (p1 — p2) — N (0,2p (1 — p)), so a standard error
for p1 — pa = 0.04 is 3 = /2p(1 — p) /B = 0.03 using the estimate p = (p1 + pa) /2. Since the
t-ratio 0.04/0.03 = 1.3 is not statistically significant, it is incorrect to reject the null hypothesis
that the two simulations are identical. The difference between the results p1 = 0.07 and p; = 0.03
is consistent with random variation.

What should be done? The first mistake was to copy the previous paper’s choice of B = 100.
Instead, suppose you set B = 5000. Suppose you now obtain py = 0.04. Then p; — p2 = 0.03 and
a standard error is 3 = /p (1 — p) (1/100 + 1/5000) = 0.02. Still we cannot reject the hypothesis
that the two simulations are different. Even though the estimates (0.07 and 0.04) appear to be

quite different, the difficulty is that the original simulation used a very small number of replications
(B = 100) so the reported estimate is quite imprecise. In this case, it is appropriate to conclude
that your results “replicate” the previous study, as there is no statistical evidence to reject the
hypothesis that they are equivalent.

Most journals have policies requiring authors to make available their data sets and computer
programs required for empirical results. They do not have similar policies regarding simulations.
Nevertheless, it is good professional practice to make your simulations available. The best practice
is to post your simulation code on your webpage. This invites others to build on and use your

results, leading to possible collaboration, citation, and/or advancement.

33



13 Minimum Distance Test (*)

The likelihood ratio (LR) test is valid only under homoskedasticity. The counterpart of the LR
test in the heteroskedastic environment is the minimum distance test. Based on the idea of the LR

test, the minimum distance statistic is defined as

Jp = min J, — minJ, = min J, 3 ,
Jain T (8) — mino (8) = min . (Basn)

where n%ian (B) = 0 if no restrictions are imposed (why?). J, > 0 measures the cost (on J, (3))

of imposing the null restriction r(3) = 0. Usually, W, in J,,(3) is chosen to be the efficient weight

matrix V*I, and the corresponding J,, is denoted as J;; with
~ ~ [APN ~ ~
Jp=n (5 - ﬁEMD) v (,3 - ﬁEMD) :

Consider the class of linear hypotheses Hy: R’3 = c¢. In this case, we know from @ that

~

B-Buyp=VR (R’\AfR)_l (R’B _ c> ,
SO

J o= n (R’B . c)l (R’\?R) TRVV-IVR (R’\?R) - (R’B _ c)

n (R’B . c)' (R’VR) - (R’B _ c) —W,.

Thus for linear hypotheses, the efficient minimum distance statistic J¥ is identical to the Wald

statstic W,, which is heteroskedastic-robust.

Exercise 13 Show that J: = W under homoskedasticity when the null hypothesis is Hy: R'3 = c,
where W is the homoskedastic form of the Wald statistic defined in Chapter 4.

For nonlinear hypotheses, however, the Wald and minimum distance statistics are different.
We know from Section [I1] that the Wald statistic is not robust to the formulation of the null
hypothesis. However, like the LR test statistic, the minimum distance statistic is invariant to
the algebraic formulation of the null hypothesis, so is immune to this problem. Consequently, a
simple solution to the problem associated with W, in Section [11]is to use the minimum distance
statistic J,,, which equals W,, with s = 1 in the first example, and |2, | in the second example there.

Whenever possible, the Wald statistic should not be used to test nonlinear hypotheses.

Exercise 14 Show that J) = W,(1) in the first ezample and J} = t3, in the second example of
Section [11l.

Newey and West (1987a) established the asymptotic null distribution of .J;} for linear and non-
linear hypotheses.
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Theorem 12 Under the assumptions of Theorem@ gy 4, x§ under Hy.

14 The Heteroskedasticity-Robust LM Test (*)

The validity of the LM test in the normal regression model depends on the assumption that the
error is homoskedastic. In this section, we extend the homoskedasticity-only LM test to the
heteroskedasticity-robust form. Suppose the null hypothesis is Hy: B9 = 0, where 8 is decom-
posed as (81,8,), B, and By are k1 x 1 and ko x 1 vectors, respectively, k = ki + k2, and x is

decomposed as (x},x5)" correspondingly with x; including the constant.

Exercise 15 Show that testing any linear constraints R'3 = c is equivalent to testing some original

coefficients being zero in a new regression with redefined X and y, where R € R¥2*¥ js full rank.

After some algebra we can write

n / n -1 n
LM = <n1/2 ZEE) (52711 ZE?;) <n1/2 ZEE) ;
i=1 i=1

=1

2

where 6% = n~1 3" | %2 and each T; is a kg x 1 vector of OLS residuals from the (multivariate)

regression of x;o on x;1, 4 = 1,--- ,n. This statistic is not robust to heteroskedasticity because the
matrix in the middle is not a consistent estimator of the asymptotic variance of n~1/2 Yo Tl

under heteroskedasticity. A heteroskedasticity-robust statistic is
n ! n -1 n
i=1 i=1 i=1

n / n -1 n
_ ~ ~ ~D~ ~) ~ ~
= r;u; E U, r;x; r;u; | .
=1 i=1 =1

Dropping the i subscript, this is easily obtained as n — SSRy from the OLS regression (without

intercept |7
1ona- T, (21)

where % - ¥ = (U - 71, ,U-Tk,) is the ky x 1 vector obtained by multiplying % by each element
of T and SSRy is just the usual sum of squared residuals from the regression. Thus, we first
regress each element of x onto all of x; and collect the residuals in ¥. Then we form w - T
(observation by observation) and run the regression in ; n — SSRy from this regression is
distributed asymptotically as X%Q- For more details, see Davidson and MacKinnon (1985, 1993) or
Wooldridge (1991, 1995).

121f there is an intercept, then the regression is trivial.
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15 Test Consistency

We now define the test consistency against fixed alternatives. This concept was first introduced by
Wald and Wolfowitz (1940).

Definition 1 A test of Hy: 8 € ©q is consistent against fixed alternatives if for all 8 € O,
P (Reject Hyl0) — 1 as n — oo.

To understand this concept, consider the following simple example. Suppose that y; isi.i.d. N(u,1).
Consider the t-statistic ¢,(u) = v/n (¥ — p), and tests of Hy: p = 0 against Hy: p > 0. We reject
Hy if t,, = t,(0) > c. Note that

tn = tn (1) + Vnp

and t,(u) = Z has an exact N(0,1) distribution. This is because t, (1) is centered at the true
mean p, while the test statistic ¢,,(0) is centered at the (false) hypothesized mean of 0. The power
of the test is

P(tp>clp)=P(Z+Vnu>c)=1—-® (c—+/np).

This function is monotonically increasing in p and n, and decreasing in c¢. Notice that for any ¢
and p # 0, the power increases to 1 as n — oo. This means that for y € Hy, the test will reject Hy
with probability approaching 1 as the sample size gets large. This is exactly test consistency.

For tests of the form “Reject Hg if T}, > ¢”, a sufficient condition for test consistency is that
T, diverges to positive infinity with probability one for all 8 € ©1. In general, the t-test and Wald
test are consistent against fixed alternatives. For example, in testing Hy: 6 = 6,

p _0=00_6-0 vu(®—6) (22)

NN ORENG

since s <9) = 4/Vp/n. The first term on the right-hand-side converges in distribution to N(0,1).

The second term on the right-hand-side equals zero if 8 = 6, converges in probability to 4oo if

0 > 0y, and converges in probability to —oo if 8 < 0y. Thus the two-sided t-test is consistent
against Hi: 0 # 0, and one-sided t-tests are consistent against the alternatives for which they are
designed. For another example, the Wald statistic for Hy: 6 = r(3) = 8¢ against Hyi: 0 # 0 is

I~

Wo=n(0-8,) V5' (8- 060).
Under Hy, 8 2 0 # 6. Thus (8- 90)'\751 (6-80) - (080 V;" (6~ 00) > 0. Hence
under Hy, W,, -2 cc. Again, this implies that Wald tests are consistent tests.
(*) Andrews (1986) introduces a testing analogue of estimator consistency, called complete
consistency, which he shows is more appropriate than test consistency. It is shown that a sequence
of estimators is consistent, if and only if certain tests based on the estimators (such as Wald or

likelihood ratio tests) are completely consistent, for all simple null hypotheses.
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16 Asymptotic Local Power

Consistency is a good property for a test, but does not give a useful approximation to the power of
a test. To approximate the power function we need a distributional approximation. The standard
asymptotic method for power analysis uses what are called local alternatives. This is similar
to our analysis of restriction estimation under misspecification. The technique is to index the
parameter by sample size so that the asymptotic distribution of the statistic is continuous in a
localizing parameter. We first consider the ¢-test and then the Wald test.
In the t-test, we consider parameter vectors 3, which are indexed by sample size n and satisfy
the real-valued relationship
0, =1(8,) = 0o +n"?h, (23)

where the scalar h is called a localizing parameter. We index 3,, and 6, by sample size to
indicate their dependence on n. The way to think of is that the true value of the parameters
are B, and 6,. The parameter 6, is close to the hypothesized value 6y, with deviation n=1/2hp.
Such a sequence of local alternatives 6, is often called a Pitman (1949) drif@r a Pitman
sequenceE We know for a fixed alternative, the power will converge to 1 as n — oo. To offset
the effect of increasing n, we make the alternative harder to distinguish from Hp as n gets larger.
The rate n~1/2 is the correct balance between these two forces. In the statistical literature, such
alternatives are termed as "contiguous" local alternatives.

The specification states that for any fixed h, 6, approaches 0y as n gets large. Thus 6,
is “close” or “local” to 0y. The concept of a localizing sequence might seem odd at first as
in the actual world the sample size cannot mechanically affect the value of the parameter. Thus
(23) should not be interpreted literally. Instead, it should be interpreted as a technical device
which allows the asymptotic distribution of the test statistic to be continuous in the alternative

hypothesis.
Similarly as in ,

o 0—6, n(,—6)

00 v

under the local alternative , where Z ~ N(0,1) and 6 = h/\/Vp. In testing the one-sided

alternative Hy: 6 > 0q, a t-test rejects Hy for ¢, > z,. The asymptotic local power of this test
is the limit of the rejection probability under the local alternative ,

tn BN/

lim P (Reject Hol0 = 6,,) = lim P (t, > 24|60 = 0,)
= P(Z+40>24)=1—P(24—0) =P(0 — 24) =70 (9).

Y Edwin J.G. Pitman (1897-1993) was an Australian mathematician who made significant contributions to statistics
and probability theory. In particular, he is remembered primarily as the originator of the Pitman permutation test,
Pitman nearness and Pitman efficiency, where Pitman efficiency is briefly discussed in Appendix B.

See McManus (1991) for who invented local power analysis and Noether (1955) for exposition.
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Figure 6: Asymptotic Local Power Function of One-Sided ¢-Test

We call 7, (0) the local power function.

Exercise 16 Derive the local power function for the two-sided t-test.

In Figure [6] we plot the local power function m, (§) as a function of § € [0,4] for tests of
asymptotic size o = 0.10,a = 0.50, and o = 0.01. We do not consider § < 0 since 6,, should be
greater than 3. § = 0 corresponds to the null hypothesis so 7, (0) = a. The power functions
are monotonically increasing in both § and «. The monotonicity with respect to « is due to the
inherent trade-off between size and power. Decreasing size induces a decrease in power, and vice

versa. The coefficient § can be interpreted as the parameter deviation measured as a multiple of

the standard error s (5) To see this, recall that s (5) = n_l/Q\/ ‘/}g ~ n_1/2\/Vg and then note

that
h o n'2h 6,6

N s(0)  s(0)

0=

A~

meaning that § equals the deviation 0, — 6y expressed as multiples of the standard error s (9)
Thus as we examine Figure @ we can interpret the power function at 6 = 1 (e.g., 26% for a 5% size

test) as the power when the parameter 6, is one standard error above the hypothesized value.

Exercise 17 Suppose we have ng data points, and we want to know the power when the true value
of 0 is 9. Which § we should confer in Figure [6?

The difference between power functions can be measured either vertically or horizontally. For

example, in Figure [] there is a vertical dotted line at § = 1, showing that the asymptotic local
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power 7, (1) equals 39% for a = 0.10, equals 26% for a = 0.05 and equals 9% for o = 0.01. This is
the difference in power across tests of differing sizes, holding fixed the parameter in the alternative.
A horizontal comparison can also be illuminating. To illustrate, in Figure [6] there is a horizontal
dotted line at 50% power. 50% power is a useful benchmark, as it is the point where the test has
equal odds of rejection and acceptance. The dotted line crosses the three power curves at § = 1.29
(e = 0.10), 6 = 1.65 (a = 0.05), and 6 = 2.33 (o = 0.01). This means that the parameter 6
must be at least 1.65 standard errors above the hypothesized value for the one-sided test to have
50% (approximate) power. The ratio of these values (e.g., 1.65/1.29 = 1.28 for the asymptotic 5%
versus 10% tests) measures the relative parameter magnitude needed to achieve the same power.
(Thus, for a 5% size test to achieve 50% power, the deviation 60, — 6y must be 28% larger than
for a 10% size test.) Even more interesting, the square of this ratio (e.g., (1.65/1.29)? = 1.64)
can be interpreted as the increase in sample size needed to achieve the same power under fixed
parameters. That is, to achieve 50% power, a 5% size test needs 64% more observations than
a 10% size test. This interpretation follows by the following informal argument. By definition
and § = h/VVa = /n (0, —60) /\/Vy. Thus holding 6 and Vj fixed, we can see that 62 is
proportional to n.

We next generalize the local power analysis to the case of vector-valued alternatives. Now the

local parametrization takes the form
0, =r(3,) =60y + n"?h, (24)
where h is a ¢ X 1 vector. Under ,
\/ﬁ(é—eo) - \/ﬁ(é—an) +h - Zy ~ N(h, Vy),

a normal random vector with mean h and variance matrix Vg. Applied to the Wald statistic we
find
—~ A —~
W, = n (0 _ 90) v,? (0 — 90) L 2LV i ~ 2.

where XZ()\) is a non-central chi-square distribution with ¢ degrees of freedom and non-central
parameter (or noncentrality) A\ = h’V;lh Under the null, h = 0, and the Xg()\) distribution
then degenerates to the usual x2 distribution. In the case of ¢ = 1, |Z + 8% ~ x3(\) with A = 62,
The asymptotic local power of the Wald test at the level « is

P (Xg()\) > Xg,a) =Tga ().

Figure [7| plots 74 05 (A) (the power of asymptotic 5% tests) as a function of A for ¢ = 1, 2 and 3.
The power functions are monotonically increasing in A and asymptote to one. Figure [7] also shows
the power loss for fixed non-centrality parameter A as the dimensionality of the test increases. The

power curves shift to the right as ¢ increases, resulting in a decrease in power. This is illustrated by

5See formula (26.4.25) in Abramowitz and Stegun (1965) for the infinite series representation of the noncentral
chi-square.
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Figure 7: Asymptotic Local Power Function of the Wald Test

the dotted line at 50% power. The dotted line crosses the three power curves at A = 3.85 (¢ = 1),
A =496 (¢ =2), and A = 5.77 (¢ = 3). The ratio of these A values correspond to the relative
sample sizes needed to obtain the same power. Thus increasing the dimension of the test from
g =1 to ¢ = 2 requires a 28% increase in sample size, or an increase from g = 1 to ¢ = 3 requires
a 50% increase in sample size, to obtain a test with 50% power. Intuitively, when testing more
restrictions, we need more deviation from the null (or equivalently, more data points) to achieve

the same power.

Exercise 18 (i) Show that Vg 2> Vg under the local alternative 8, = Bo +n~Y?b. (ii) If the

local alternative B,, is specified as as in (i), what is the local power?

Exercise 19 (*) Derive the local power function of the minimum distance test with local alterna-
tives . Is it the same as the Wald test?

(*) From the discussion above, we define the asymptotic relative efficiency (ARE) of any

two tests.

Definition 2 (ARE) For any two tests of the same hypothesis, the same size, and same power
with respect to the same alternative: if the first test requires ny observations and the second requires
ny observations, then the relative efficiency of the second test with respect to the first is ni/no. The
limit of this ratio as both numerator and demominator tend to infinity is the asymptotic relative

efficiency of the two tests.

It turns out that for two t-tests with different Vy’s, say V(,1 and V6.2, Pitman’s ARE of the second test
with respect to the first is V91 / V92, independent of h. While for the Wald test, the corresponding
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ARE is A1/A2 which generally depends on h. See Pitman (1979) and Rao (1973) for additional
details. In Appendix B, we review other approaches, besides Pitman’s, toward assessment of the
ARE of any two tests.

Exercise 20 (Empirical) The data set invest.dat contains data on 565 U.S. firms extracted from

Compustat for the year 1987. The variables, in order, are

e [; Investment to Capital Ratio (multiplied by 100).
e QQ; Total Market Value to Asset Ratio (Tobin’s Q).
o C; Cash Flow to Asset Ratio.

e D; Long Term Debt to Asset Ratio.
The flow variables are annual sums for 1987. The stock variables are beginning of year.

(a) Estimate a linear regression of I; on the other variables. Calculate appropriate standard errors.
(b) Calculate asymptotic confidence intervals for the coefficients.

(c) This regression is related to Tobin’s q theory of investment, which suggests that investment
should be predicted solely by Q;. Thus the coefficient on Q); should be positive and the others
should be zero. Test the joint hypothesis that the coefficients on C; and D; are zero. Test the
hypothesis that the coefficient on Q; is zero. Are the results consistent with the predictions of
the theory?

(d) Now try a non-linear (quadratic) specification. Regress I; on Q;, Ci, D;, Q%, C?, D?, Q;C;,
QiD;, C;D;. Test the joint hypothesis that the siz interaction and quadratic coefficients are

ZETO.

Exercise 21 (Empirical) In a paper in 1963, Marc Nerlove analyzed a cost function for 145
American electric companies. The data file nerlov.dat contains his data. The variables are described

as follows,

o Column 1: total costs (call it TC) in millions of dollars

Column 2: output (@) in billions of kilowatt hours

Column 3: price of labor (PL)

Column 4: price of fuels (PF)

Column 5: price of capital (PK)

Nerlove was interested in estimating a cost function: TC = f(Q, PL, PF, PK).
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(a) First estimate an unrestricted Cobb-Douglas specification
logTC; = 1 + Bylog Qi + B3 log PL; + B4 log PK; + (5 log PF; + u;. (25)

Report parameter estimates and standard errors.
(b) Using a Wald statistic, test the hypothesis Ho: B3 + B4 + B5 = 1.

(c) Estimate by least-squares imposing this restriction by substitution. Report your parameter

estimates and standard errors.

(d) Estimate subject to B3 + B4 + Bs = 1 using the RLS estimator. Do you obtain the same

estimates as in part (c)?

Appendix A: Expected Length of a Confidence Interval

Suppose L < 0 < U is a CI for 6, where L and U are random. The expected length of the interval
is E[U — L], which turns out equal to

P(L<6<U)ds,
0400

the integrated probability of the interval covering the false value, where P(-) is the probability

measure under the truth 6y. To see why, note that

EU-1] = //1(LgegU)dedp

= // (L<60<U)dPdb

:/ L<9<U)d0_/ P(L<6<U)db.
0060

So minimizing the expected length of a CI is equivalent to minimizing the coverage probability for

each 0 # 0. From the discussion in the main text,
P(LLO<U)=P(XeA(9)),

where X is the data and A (0) is the acceptance region for the null that 6 is the true value. As a
result, for 0 # 0y, P (L <60 < U) is the type II error in testing Hy : 6 vs H; : 0y, and minimizing

P (L <60 <U) is equivalent to maximizing the power. By the Neyman-Pearson Lemma, the most

f(X)

where f(X) is the true density of X (or density under ), and ¢(#) is the critical value for Hy : 6.

Collecting all 0’s such that / (( )) < ¢(#) is the length minimizing CI.

powerful test is
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The arguments above assume 8y were known, but if it were known, why do we need a CI for it?
A more natural measure for the interval length is the average expected length [ Ey[U — L] dv (9),
where 9 is the parameter in the model and v (-) is a measure for ¢ representing some prior infor-

mation. Similarly, we can show

/EﬁU L) dv (¥ //PﬁXGA ) dv () d6.

Minimizing the average expected length is equivalent to maximizing the power in testing Hy : 0 vs
Hy : P(-), where P (X € A) = [ Py(X € A)dv (9) has the density [ fy(X)dv (9) with fy(-) being
the density associated with Py(-). For any test ¢, the average power

[ Bt @)= [ [enoixarw = [¢ [ feowwax = [ )

is just the power in the above test, so the test maximizing the power against P(-) is equivalent

to maximizing the average power [ Ey[p)dv (9). The corresponding test is the same as (26]) but
replaces f(X) by [ fo(X)dv (9).

Appendix B: Approaches Toward ARE

Our discussions in this appendix follow Chapter 10 of Serfling (1980). Besides the earliest approach
of ARE by Pitman (1949), there are five other approaches due to Chernoff (1952), Bahadur (1960),
Hodges and Lehmann (1956), Hoeffing (1965), and Rubin and Sethuraman (1965). To understand
the difference of these approaches, we first introduce some notations.

In Section 7 of Chapter 3, we represent Hy and Hi as Oy and ©g. For more general setups, we
usually represent Hy and H; as Fy and F; for specified families of distributions for the data. For

any test procedure T, define the function
Vo (T, F) = Pp (T, reject Hp),

where Pp (-) means P (-|F is the truth), and the subscript n in T}, indicates the version of T' based
on a sample of size n. For F' € Fy, ~,, (T, F) represents the probability of a Type I error, and for
F € Fi, it is the power function. The size of the test is

Qo (vao) = Sup 7, (TaF)a
FeFo

and the probability of a Type II error is
ﬁn(TaF) = 1*7n(T’F)'

We shall consider several performance criteria. Each entails specifications regarding

(a) a = lim, o ap (T7 fU) s
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(b) an alternative distribution F(™ allowed to depend on n,

With respect to (a), the cases & = 0 and a > 0 are distinguished. With respect to (c), the cases
B =0and 8 > 0 are distinguished. With respect to (b), the cases F(") = F (fixed), and F(" — F
in some sense, are distinguished.

The following Table 3 summarizes relevant details and notation regarding the six approaches of
ARE. Each of the approaches has its own special motivation and appeal. In an actual econometric
problem, which approach to apply usually involves a trade-off between relevant intuitive considera-
tions and availability of mathematical tools suitable for derivation of relevant e (-, -). In the Pitman
approach, the key mathematical tool is central limit theory. In the Rubin-Sethuraman approach,
the theory of moderate deviations is used. In the other approaches, the theory of large deviations

is employed.

Names of Behavior of Behavior of Behavior of Notation
Contributors oy, B Alternatives for ARE
Pitman ap,—-a>0 [,—pF>0 F — F ep(+y-)
Chernoff an — 0 B, —0 F) = F (fixed) ec(-,-)
Bahadur oy — 0 B, — >0 F) = F (fixed) eg(-,-)
Hodges and Lehmann | o, —a >0 (3, —0 F) = F (fixed) eyyp(-,)
Hoeffing a, — 0 B, —0 F) = F (fixed) epy(--)
Rubin and Sethuraman | a;, — 0 B, —0 FM - F ers (+,)

Table 3: Summary of Six Approaches of ARE
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