
Chapter 4. An Introduction to Asymptotic Theory�

We introduce some basic asymptotic theory in this chapter, which is necessary to understand

the asymptotic properties of the LSE. For more advanced materials on the asymptotic theory,

see Dudley (1984), Shorack and Wellner (1986), Pollard (1984, 1990), Van der Vaart and Wellner

(1996), Van der Vaart (1998), Van de Geer (2000) and Kosorok (2008). For reader-friendly versions

of these materials, see Gallant (1987), Gallant and White (1988), Newey and McFadden (1994),

Andrews (1994), Davidson (1994) and White (2001). Our discussion is related to Section 2.1 and

Chapter 7 of Hayashi (2000), Appendix C and D of Hansen (2007) and Chapter 3 of Wooldridge

(2010). In this chapter and the next chapter, k�k always means the Euclidean norm.

1 Five Weapons in Asymptotic Theory

There are �ve tools (and their extensions) that are most useful in asymptotic theory of statistics and

econometrics. They are the weak law of large numbers (WLLN, or LLN), the central limit theorem

(CLT), the continuous mapping theorem (CMT), Slutsky�s theorem,1 and the Delta method. We

only state these �ve tools here; detailed proofs can be found in the techinical appendix.

To state the WLLN, we �rst de�ne the convergence in probability.

De�nition 1 A random vector Zn converges in probability to Z as n!1, denoted as Zn
p�! Z,

if for any � > 0,

lim
n!1

P (kZn � Zk > �) = 0:

Although the limit Z can be random, it is usually constant. The probability limit of Zn is often

denoted as plim(Zn). If Zn
p�! 0, we denote Zn = op(1). When an estimator converges in

probability to the true value as the sample size diverges, we say that the estimator is consistent.
This is a good property for an estimator to possess. It means that for any given distribution of the

data, there is a sample size n su¢ ciently large such that the estimator will be arbitrarily close to the

true value with high probability. Consistency is also an important preliminary step in establishing

other important asymptotic approximations.

�Email: pingyu@hku.hk
1Eugen Slutsky (1880-1948) was a Russian/Soviet mathematical statistician and economist, who is also famous

for the Slutsky equation in microeconomics.
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Theorem 1 (WLLN) Suppose X1; � � � ; Xn; � � � are i.i.d. random vectors, and E [kXk] <1; then
as n!1,

Xn �
1

n

nX
i=1

Xi
p�! E [X] :

The CLT tells more than the WLLN. To state the CLT, we �rst de�ne the convergence in

distribution.

De�nition 2 A random k vector Zn converges in distribution to Z as n!1, denoted as Zn
d�!

Z, if

lim
n!1

Fn(z) = F (z);

at all z where F (�) is continuous, where Fn is the cdf of Zn and F is the cdf of Z.

Usually, Z is normally distributed, so all z 2 Rk are continuity points of F . If Zn converges in
distribution to Z, then Zn is stochastically bounded and we denote Zn = Op(1). Rigorously,

Zn = Op(1) if 8" > 0, 9M" < 1 such that P (kZnk > M") < " for any n. If Zn = op(1), then

Zn = Op(1). We can show that op(1)+op(1) = op(1), op(1)+Op(1) = Op(1), Op(1)+Op(1) = Op(1),

op(1)op(1) = op(1), op(1)Op(1) = op(1), and Op(1)Op(1) = Op(1).

Exercise 1 (i) If Xn
d�! X, and Yn � Xn = op(1), then Yn

d�! X. (ii) Show that Xn
p�! c if

and only if Xn
d�! c. (iii) Show that op(1)Op(1) = op(1).

Theorem 2 (CLT) Suppose X1; � � � ; Xn; � � � are i.i.d. random variables, E [X] = 0, and V ar(X) =
1; then

p
nXn

d�! N(0; 1):

p
nXn

d�! N(0; 1) implies Xn
p�! 0, so the CLT is stronger than the WLLN. Xn

p�! 0

means Xn = op(1), but does not provide any information about
p
nXn. The CLT tells that

p
nXn = Op(1) or Xn = Op(n

�1=2). But the WLLN does not require the second moment �nite;

that is, a stronger result is not free. This result can be extended to the multi-dimensional case

with nonstandardized mean and variance: suppose X1; � � � ; Xn; � � � are i.i.d. random k vectors,

E [X] = �, and V ar(X) = �; then
p
n
�
Xn � �

� d�! N(0;�):

Theorem 3 (CMT) Suppose X1; � � � ; Xn; � � � are random k vectors, and g is a continuous func-

tion on the support of X (to Rl) a.s. PX ; then

Xn
p�! X =) g(Xn)

p�! g(X);

Xn
d�! X =) g(Xn)

d�! g(X):

The CMT was �rst proved by Mann and Wald (1943) and is therefore sometimes referred to as

the Mann-Wald Theorem. Note that the CMT allows the function g to be discontinuous but
the probability of being at a discontinuity point is zero. For example, the function g(u) = u�1 is

discontinuous at u = 0, but if Xn
d�! X � N(0; 1) then P (X = 0) = 0 so X�1

n
d�! X�1.
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In the CMT, Xn converges to X jointly in various modes of convergence. For the convergence

in probability (
p�!), marginal convergence implies joint convergence, so there is no problem if

we substitute joint convergence by marginal convergence. But for the convergence in distribution

( d�!), Xn
d�! X, Yn

d�! Y does not imply

 
Xn

Yn

!
d�!
 
X

Y

!
. Nevertheless, there is a special

case where this result holds, which is Slutsky�s theorem.

Theorem 4 (Slutsky�s Theorem) If Xn
d�! X, Yn

d�! c
�
() Yn

p�! c
�
, where c is a con-

stant, then

 
Xn

Yn

!
d�!
 
X

c

!
. This implies Xn+Yn

d�! X+c, YnXn
d�! cX, Y �1n Xn

d�! c�1X

when c 6= 0. Here Xn; Yn; X; c can be understood as vectors or matrices as long as the operations
are compatible.

One important application of Slutsky�s Theorem is as follows.

Example 1 Suppose Xn
d�! N(0;�), and Yn

p�! �; then Y �1=2n Xn
d�! ��1=2N(0;�) = N(0; I),

where I is the identity matrix.

Combining with the CMT, we have the following important application.

Example 2 Suppose Xn
d�! N(0;�), and Yn

p�! �; then X 0
nY

�1
n Xn

d�! �2k, where k is the

dimension of Xn.

Another important application of Slutsky�s theorem is the Delta method.

Theorem 5 (Delta Method) Suppose
p
n (Zn � c)

d�! Z � N(0;�), c 2 Rk, and g(z) : Rk !
Rl. If dg(z)dz0 is continuous at c,

2 then
p
n (g(Zn)� g(c))

d�! dg(c)
dz0 Z.

Intuitively,
p
n (g(Zn)� g(c)) =

p
n
dg(c)

dz0
(Zn � c) ;

where dg(�)
dz0 is the Jacobian of g, and c is between Zn and c.

p
n (Zn � c)

d�! Z implies that

Zn
p�! c, so by the CMT, dg(c)dz0

p�! dg(c)
dz0 . By Slutsky�s theorem,

p
n (g(Zn)� g(c)) has the

asymptotic distribution dg(c)
dz0 Z. The Delta method implies that asymptotically, the randomness in

a transformation of Zn is completely controlled by that in Zn.

Exercise 2 (*) Suppose g(z) : Rk ! R and g 2 C(2) in a neighborhood of c, dg(c)
dz0 = 0 and

d2g(c)
dz0dz 6= 0. What is the asymptotic distribution of g(Zn)?

2This assumption can be relaxed to that g(z) is di¤erentiable at c.
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2 Asymptotics for the MoM Estimator

Recall that the MoM estimator is de�ned as the solution to

1

n

nX
i=1

m(Xij�) = 0:

We can prove the MoM estimator is consistent and asymptotically normal (CAN) under some

regularity conditions.3 Speci�cally, the asymptotic distribution of the MoM estimator is

p
n
�b� � �0� d�! N

�
0;M�1
M

0�1
�
;

whereM = dE[m(Xj�0)]
d�0

and 
 = E [m(Xj�0)m(Xj�0)0].4 The asymptotic variance takes a sandwich
form and can be estimated by its sample analog.

Consider a simple example. Suppose E [X] = g(�0) with g 2 C(1) in a neighborhood of �0; then
�0 = g�1 (E [X]) � h(E [X]). The MoM estimator of � is to set X = g(�), so b� = h(X). By the

WLLN, X
p�! E [X]; then by the CMT, b� p�! h(E [X]) = �0 since h(�) is continuous. Now, we

derive the asymptotic distribution of b�.
p
n
�b� � �0� = pn �h(X)� h(E [X])� = pnh0 �X�

� �
X � E [X]

�
= h0

�
X
�
�p

n
�
X � E [X]

�
;

where the second equality is from the mean value theorem (MVT). Because X
�
is between X and

E [X] and X converges to E [X] in probability, X
� p�! E [X]. So by the CMT, h0

�
X
�
�

p�!

h0 (E [X]). By the CLT,
p
n
�
X � E [X]

� d�! N(0; V ar(X)). Then by Slutsky�s theorem,

p
n
�b� � �0� d�! h0 (E [X])N(0; V ar(X)) = N

�
0; h0 (E [X])2 V ar(X)

�
= N

�
0;
V ar(X)

g0(�0)2

�
:

The larger g0(�0) is, the smaller the asymptotic variance of b� is. Consider a more speci�c exam-
ple. Suppose the density of X is 2

�x exp
n
�x2

�

o
, � > 0, x > 0, that is, X follows the Weibull

(2; �) distribution;5 then E [X] = g(�) =
p
�
2 �

1=2, and V ar (X) = �
�
1� �

4

�
. So

p
n
�b� � �� d�!

N

 
0;

�(1��
4 )�p

�
2

1
2
��1=2

�2
!
= N

�
0; 16�2

�
1
� �

1
4

��
. Figure 1 shows E [X] and the asymptotic variance of

p
n
�b� � �� as a function of �. Intuitively, the larger the derivative of E[X] with respect to �, the

3You may wonder whether any CAN estimator must be
p
n-consistent. This is not correct. There are CAN

estimators which have di¤erent convergence rates from
p
n. Nevertheless, in this course all CAN estimators arep

n-consistent.
4We use dE[m(Xj�0)]

d�0 instead of E
h
dm(Xj�0)

d�0

i
because E [m(Xj�)] is more smooth than m(Xj�) and can be applied

to such situations as quantile estimation where m(Xj�) is not di¤erentiable at �0. In this course, we will not meet
such cases.

5 (*) If the quantity X is a "time-to-failure", e.g., the time of ending the state of unemployment, the Weibull
distribution gives a distribution for which the failure rate is proportional to a power of time. Since the power of x is
2 which is greater than 1, the failure rate increases with time.
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Figure 1: E [X] and Asymptotic Variance as a Function of �

easier to identify � from X, so the smaller the asymptotic variance.

Exercise 3 (i) Show that h0 (E [X]) = 1=g0(�0). (ii) Show that if X follows the Weibull (2; �)

distribution, then E [X] =
p
�
2 �

1=2 and V ar (X) = �
�
1� �

4

�
.

Generally, the asymptotic distribution of b� can be derived intuitively as follows:
1
n

nP
i=1
m(Xijb�) = 0

=) 1
n

nP
i=1
m(Xij�0) + 1

n

nP
i=1

dm(Xij�)
d�0

�b� � �0� = 0
=)

p
n
�b� � �0� = �� 1

n

nP
i=1

dm(Xij�)
d�0

��1
1p
n

nP
i=1
m(Xij�0)

d�! �M�1N (0;
) ;

where � is between b� and �0, and the convergence in distribution is from Slutsky�s theorem. Note

that
p
n
�b� � �0� � 1p

n

nP
i=1
�M�1m(Xij�0), so �M�1m(Xij�0) is called the in�uence function.

Rigorous proof can be found in Chapter 8, where we also show that the sample analog of the

asymptotic variance of b� is consistent.
Example 3 Suppose the moment conditions are

E

"
X � �

(X � �)2 � �2

#
= 0:

Then the sample analog is

1

n

0BB@
nP
i=1
Xi � n�

nP
i=1
(Xi � �)2 � n�2

1CCA = 0;
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so the solution is

b� = X

b�2 =
1

n

nX
i=1

�
Xi �X

�2
= X2 �X2

:

Now, we check the consistency and asymptotic normality of this MoM estimator.

Consistency: b� = X p�! �, b�2 = X2 �X2 p�!
�
�2 + �2

�
� �2 = �2.

Asymptotic Normality: M = E

" 
�1 0

�2 (X � �) �1

!#
=

 
�1 0

0 �1

!
,


 = E

" 
(X � �)2 (X � �)3 � �2 (X � �)

(X � �)3 � �2 (X � �) (X � �)4 � 2�2 (X � �)2 + �4

!#

=

0@ �2 E
h
(X � �)3

i
E
h
(X � �)3

i
E
h
(X � �)4

i
� �4

1A ;
so

p
n

 b�� �b�2 � �2
!

d�! N (0;
) :

Of course, we could get this asymptotic distribution in other ways. Here are two of these ways

which are left as exercises. �

Exercise 4 In Example 3,

(i) derive the asymptotic distribution of (b�; b�2)0 using the Delta method. (Hint: �b�; b�2� is a func-
tion of

�
X;X2

�
).

(ii) derive the asymptotic distribution of (b�; b�2)0 by Slutsky�s theorem and noting that

 b�b�2
!
=0@ X

1
n

nP
i=1
(Xi � �)2 �

�
X � �

�2
1A. (Hint: pn �X � �

�2
= op(1)).

Exercise 5 In Example 3, if X � N
�
�; �2

�
, then what is 
?

Example 4 Suppose we want to estimate � = F (x) for a �xed x, where F (�) is the cdf of a random
variable X. An intuitive estimator is the ratio of samples below x, n�1

Pn
i=1 1(Xi � x), which is

called the empirical distribution function (EDF), while it is a MoM estimator. To see why,

note that the moment condition for this problem is

E [1(X � x)� F (x)] = 0:
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Figure 2: Empirical Distribution Functions

Its sample analog is
1

n

nX
i=1

(1(Xi � x)� F (x)) = 0;

so bF (x) = 1

n

nX
i=1

1(Xi � x).

By the WLLN, it is consistent. By the CLT,

p
n
� bF (x)� F (x)� d�! N (0; F (x) (1� F (x))) :(why?)

An interesting phenomenon is that the asymptotic variance reaches its maximum at the median

of the distribution of X. Figure 2 shows the EDF for 10 samples from N(0; 1) with sample size

n = 50. Obviously, the variance of bF (x) is a decreasing function of jxj.
(*) As a stochastic process indexed by F (�),

p
n
� bF (�)� F (�)� converges to a Brownian Bridge.

�

Example 5 (*) Recall from the Introduction that the Euler equation in macroeconomics is

E0

�
�

�
ct
ct+1

��
Rt+1

�
= 1.
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Suppose � is known, � is unknown; then we could use the sample analog

1

T

TX
t=1

�
�0

�
ct
ct+1

��
Rt+1

�
= 1

to get b�. Although the data here are not iid, we expect the general results above about the MoM

estimator holds, that is, b� is CAN, and the asymptotic variance is
V ar

���
ct
ct+1

��0�
Rt+1

�
�
E
h�

ct
ct+1

��0
ln
�

ct
ct+1

�
Rt+1

i�2 .
Here, note that the asymptotic variance does not depend on �0 although �0 depends on �0. �

As shown in Chamberlain (1987), the MoM estimator is semiparametric e¢ cient.

3 Asymptotics for the MLE

The section studies the asymptotic properties of the MLE. Related materials can be found in

Chapter 7 of Hayashi (2000), Chapter 5 of Cameron and Trivedi (2005), Appendix D of Hansen

(2007), and Chapter 13 of Wooldridge (2010).

Recall that b�MLE = argmax
�2�

`n(�); (1)

where `n(�) = n�1
Pn
i=1 ln f (Xij�), and f(�j�) is the parametrized pdf (or pmf) of X.

3.1 Consistency (*)

Two main conditions for proving the consistency of b�MLE are as follows:

(i) E [log f(Xj�)] is maximized uniquely at �0.

(ii) sup
�2�

���� 1n nP
i=1
ln f (Xij�)� E [log f(Xj�)]

���� p�! 0.

Intuitively, if n�1
Pn
i=1 ln f (Xij�) is uniformly close to E [log f(Xj�)], then the maximizer of

n�1
Pn
i=1 ln f (Xij�), b�MLE , should be close to the maximizer of E [log f(Xj�)], �0. Replacing

n�1
Pn
i=1 ln f (Xij�) by �

n�1Pn
i=1m(Xij�)

 and E [log f(Xj�)] by �kE [m(Xj�)]k, we get the
proof for the consistency of the MoM estimator.

(i) means that E [log f(Xj�)] � E [log f(X)] with equality reached if and only if � = �0, where
f(x) = f(xj�0). Some literature calls this inequality as the Kullback-Leibler information in-
equality. This term comes from the fact that �0 minimizes the Kullback-Leibler information
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Figure 3: Intuition for Jensen�s Inequality

distance between the true density f(x) and the parametric density f(xj�). Recall from the Intro-

duction that

KLIC (�) =

Z
f(x) log

�
f(x)

f(xj�)

�
dx =

Z
f(x) (log f(x)� log f(xj�)) dx = E [log f(X)]�E [log f(Xj�)] :

Note that

�KLIC (�) = E [log f(Xj�)]�E [log f(X)] =
Z
log

�
f(xj�)
f(x)

�
f(x)dx � log

Z
f(xj�)
f(x)

f(x)dx = log 1 = 0;

where the equality is reached if and only if � = �0 by the strict Jensen�s inequality, so KLIC (�)

is minimized at �0, which implies E [log f(Xj�)] � E [log f(X)].
We brie�y review Jensen�s inequality here. It states that for a random variable X and a concave

function ', '(E[X]) � E ['(X)], where the equality holds if and only if, for every line a+ bx that
is tangent to '(x) at x = E[X], P ('(X) = a + bX) = 1. So if ' is strictly concave and X is

not a constant almost surely, the strict inequality holds. Figure 3 illustrates the idea of Jensen�s

inequality, where X takes only two values x and x0 with probability 2=3 and 1=3 respectively.

Exercise 6 Suppose � 2 R, and b� is an estimator of �. Show thatsE ��b� � �0�2� � E h���b� � �0���i ,
i.e., the root mean squared error (RMSE) cannot be less than the mean absolute error (MAE).

(ii) is known as the uniform law of large numbers. A useful lemma to guarantee it is

Mickey�s Theorem (see, e.g., Theorem 2 of Jennrich (1969) or Lemma 1 of Tauchen (1985)).
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Lemma 1 If the data are i.i.d., � is compact, a(wi;�) is continuous at each � 2 � with probability
one, and there is d(w) with ja(wi;�)j � d(w) for all � 2 � and E[d(w)] < 1, then E[a(w;�)] is
continuous and sup

�2�

��n�1Pn
i=1 a(wi;�)� E [a(w;�)]

�� p�! 0.

When these two conditions are satis�ed, we can show the consistency of b�MLE . Take � > 0, let

A = f�j k� � �0k � �g, we need show that P
�b�MLE 2 A

�
! 0 or P

�b�MLE 2 Ac
�
! 1. By the

de�nition of b�MLE ,
1

n

nX
i=1

ln f
�
Xijb�MLE

�
� 1

n

nX
i=1

ln f (Xij�0) :

From (ii), the left hand side is less than E
h
log f(Xjb�MLE)

i
+"=2 and the right hand side is greater

than E [log f(Xj�0)]� "=2 for any " > 0 with probability approaching 1 as n large enough. So we
have

E
h
log f(Xjb�MLE)

i
+ "=2 > E [log f(Xj�0)]� "=2

or

E
h
log f(Xjb�MLE)

i
> E [log f(Xj�0)]� ":

From (i), choose " as E [log f(Xj�0)]�sup
�2A

E [log f(Xj�)] > 0,6 and then we have E
h
log f(Xjb�MLE)

i
>

sup
�2A

E [log f(Xj�)], so b�MLE =2 A. The arguments above are intuitively illustrated in Figure 4.

In summary, to prove b� = argmax�2�Qn(�) is a consistent estimator of �0 = argmax�2�Q(�),
we need four conditions: (I) Q(�) is uniquely maximized at �0; (II) � is compact; (III) Q(�) is

continuous; (IV) Qn(�) converges uniformly in probability to Q(�). This is Theorem 2.1 of Newey

and McFadden (1994).

3.2 Asymptotic Normality

When f(xj�) is smooth, the FOCs of (1) are

Sn(�) �
@`n(�)

@�
=
1

n

nX
i=1

s (Xij�) = 0; (2)

where
Pn
i=1 s (Xij�) = nSn(�) = Sn(�) � @Ln(�)=@� is called as the score function or normal

equations,7 and s (Xij�) = @
@� ln f (Xij�) � si (�) is the contribution of the ith observation to the

score function. So the MLE is a MoM estimator, and the moment conditions are E [s (Xj�0)] = 0.
6A condition to guarantee E [log f(Xj�0)] � sup

�2A
E [log f(Xj�)] > 0 is that E [log f(Xj�)] is continuous and � is

compact.
7The score function for � is usually de�ned as the gradient of the log-likelihood Ln(�) = nln(�) with respect to

�. Some literature also loosely calls s(xj�) as the score function.
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Figure 4: Illustration of the Consistency Proof in Maximum Likelihood Estimation

It is easy to check E [s (Xj�0)] = 0 by noting that

E [s (Xj�0)] =
Z @

@�f (xj�)
��
�=�0

f (xj�0)
f(xj�0)dx =

Z
@

@�
f (xj�)

����
�=�0

dx =
@

@�

Z
f (xj�) dx

����
�=�0

= 0:

Under some regularity conditions, b�MLE is
p
n consistent and asymptotically normal. Speci�-

cally, the asymptotic distribution of the MLE is

p
n
�b�MLE � �0

�
d�! N

�
0;H�1JH0�1� = N �0;J�1� ;

where H � E
h

@2

@�@�0
ln f (Xj�0)

i
is the Hessian, J � E

�
@
@� ln f (Xj�0)

@
@�0
ln f (Xj�0)

�
is an outer

product matrix called the information (matrix)8, and the equality is from the information
equality J = �H. The information equality can be proved as follows.

H = E

�
@2

@�@�0
ln f (Xj�)

�����
�=�0

= E

"
@

@�

 
@
@�0
f (Xj�)
f (Xj�)

!#�����
�=�0

= E

"
@2

@�@�0
f (Xj�)

f (Xj�) �
@
@�f (Xj�)

@
@�0
f (Xj�)

f2 (Xj�)

#�����
�=�0

= E

"
@2

@�@�0
f (Xj�)

f (Xj�)

#�����
�=�0

� J;

8The role of the information in the asymptotic theory of maximum likelihood estimation was emphasized by R.A.
Fisher (following some initial results by F.Y. Edgeworth), so sometimes the information is also called the Fisher
information.
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so we need only prove E
�

@2

@�@�0 ln f(Xj�)
f(Xj�)

�����
�=�0

= 0, which follows from

E

"
@2

@�@�0
f (Xj�)

f (Xj�)

#�����
�=�0

=

Z @2

@�@�0
f (xj�)

���
�=�0

f (xj�0)
f(xj�0)dx =

Z
@2

@�@�0
f (xj�)

����
�=�0

dx

=
@2

@�@�0

Z
f (xj�0) dx

����
�=�0

= 0:

So the speciality of the MLE as a MoM estimator is that M =M0 = H = �J = �
.
As mentioned in the Introduction, the MoM estimator is a semiparametric estimator and does

not impose parametric restrictions on the density function, so it is more robust than the MLE.

When the model is misspeci�ed, �0 = argmax
�

E [log f(xj�)] may not satisfy f(xj�0) = f(x). In

this case, �0 is called the quasi-true value, and the corresponding b�MLE is called the quasi-MLE
(QMLE). As shown in White (1982a), the information equality fails, but the form of the asymptotic

variance H�1JH0�1 is still valid.

We provide some intuition for the asymptotic distribution of b�MLE here. To simplify our

discussion, we restrict � to be one-dimensional.

(i) The asymptotic variance is 1=J ; that is, the larger J is, the smaller the asymptotic variance is.
We know J represents the information - variation of the score function, so

More Information, Less Variance.

(ii) Since J = �H, J represents the curvature at �0. In other words, the larger the curvature of
E [ln f (Xj�)] at �0 is, the more accurately we can identify �0 by the MLE. In Figure 5, we can
identify �0 better in (2) than (1). For (3), we cannot identify �0, so the asymptotic variance

is in�nity. (Why can we draw E [ln f (Xj�)] like a mountain at least in the neighborhood of
�0?)

(iii) Treat the MLE as a MoM estimator. We can see that H (= �J) plays the role of M in the

MoM estimator. From the discussion in Section 2, we know that the larger M is, the smaller

the asymptotic variance is.

There are four methods to estimate J:

bJ(1) = Jn �b�MLE

�
= 1

n

nP
i=1

@
@� ln f

�
Xijb�MLE

�
@
@�0
ln f

�
Xijb�MLE

�
= 1

n

nP
i=1
si

�b�MLE

�
si

�b�MLE

�0
;

bJ(2) = � bHn � �Hn

�b�MLE

�
= � 1

n

nP
i=1

@2

@�@�0
ln f

�
Xijb�MLE

�
= � 1

nHn
�b�MLE

�
= � 1

n
@2

@�@�0
Ln
�b�MLE

�
;bJ(3) = bJ(2)bJ(1)�1bJ(2);bJ(4) = J�b�MLE

�
;
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(1)
(2)
(3)

Figure 5: Identi�cation Interpretation of J

where J (�) � E
�
@
@� ln f (Xj�)

@
@�0
ln f (Xj�)

�
= �E

h
@2

@�@�0
ln f (Xj�)

i
. bJ(3) is robust even in a

misspeci�ed model as shown in White (1982a); see also Gourieroux et al. (1984). It is a good

simulation exercise to check which one is the best among bJ(i), i = 1; 2; 3; 4, in �nite samples.
Example 6 Suppose Xi follows the the Bernoulli distribution, i.e.,

Ln (�) =

nY
i=1

�Xi(1� �)1�Xi ; and `n (�) = ln �
1

n

nX
i=1

Xi + ln (1� �)
1

n

nX
i=1

(1�Xi) ;

where Xi takes only 0 and 1. The FOC implies b�MLE = X, which is the ratio of 1�s among all

samples. From the CLT,

p
n
�
X � �

� d�! N
�
0; J�1

�
= N (0; � (1� �)) ;

so a natural estimator of J is 1
X(1�X)

. Now, we calculate bJ (i), i = 1; 2; 3,4; in this simple example.
(i) @

@� ln f (xj�) =
x
� �

1�x
1�� , so

�
@
@� ln f (xj�)

�2
= x2

�2
+ (1�x)2

(1��)2 (why?) and

bJ (1) = 1

n

nX
i=1

 
X2
i

X
2 +

(1�Xi)2�
1�X

�2
!
=
X2

X
2 +

(1�X)2�
1�X

�2 = 1

X
+

1

1�X
:
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(ii) @2

@�2
ln f (xj�) = � x

�2
� 1�x

(1��)2 , so

bJ (2) = 1

n

nX
i=1

 
Xi

X
2 +

1�Xi�
1�X

�2
!
=
1

X
+

1

1�X
:

(iii) bJ (3) = bJ (2) bJ (1)�1 bJ (2) = 1
X
+ 1

1�X .

(iv) J (�) = 1
�(1��) , so bJ (4) = 1

X
�
1�X

� = 1

X
+

1

1�X
:

So in the Bernoulli case, bJ (1) = bJ (2) = bJ (3) = bJ (4). Generally, this result will not hold, and the
performance of bJ (i), i = 1; 2; 3, depends on the speci�c problem in hand. �

3.3 One-step Estimator and Algorithms (*)

When the score function (2) is nonlinear but smooth, the Newton-Raphson algorithm is usually

used to �nd b�MLE : iterate b�2 = b�1 �Hn

�b�1��1 Sn(b�1)
until convergence.9 The idea of the Newton-Raphson algorithm is to �rst linearly approximate

Sn(�) = 0 at b�1 by Sn(�) = Sn(b�1) + Hn

�b�1��� � b�1� = 0 and then solve out �. Figure 6

illustrates the basic idea of this algorithm. To start the algorithm, we need an initial estimator.

When it is consistent and Op(n�1=2) (e.g., the OLS estimator in the parametric linear regression),

the �rst iteration will generate an e¢ cient estimator which has the same asymptotic distribution

as b�MLE . To see why, Taylor expand Sn(b�1) at �0, we have
p
n
�b�2 � �0� = �I�Hn

�b�1��1Hn(�
�)

�p
n
�b�1 � �0��Hn

�b�1��1pnSn(�0);
where �� lies on the line segment between �0 and b�1. Because both Hn

�b�1� and Hn(�
�) converges

to H and
p
n
�b�1 � �0� = Op(1), the �rst term is op(1). As a result, the asymptotic distribution

of
p
n
�b�2 � �0� is the same as that of Hn

�b�1��1pnSn(�0), so b�2 is e¢ cient.
The Newton-Raphson algorithm is based on the so-called Gradient Theorem: any vector, d,

in the same halfspace as Sn(�) (that is, with d0Sn(�) > 0) is a direction of increase of `n(�),

in the sense that `n(� + �d) is an increasing function of the scalar �, at least for small enough

�. An algorithm that chooses a suitable direction d, and then �nds a value of � which maximizes

`n(�+�d) can ensure convergence. The set of directions, d, are those with the form QSn(�), where

Q is a positive de�nite matrix. Hn (�)
�1 is a good choice of Q when `n(�) is concave, especially in

9A related method is the Fisher scoring algorithm, where Hn

�b�1� is replaced by H(b�1), where H(�) =
E
h

@2

@�@�0 ln f (Xj�)
i
. In practice, these two algorithms are used with various modi�cations designed for speedier

convergence. See Goldfeld and Quandt (1972, Ch.1) for further discussion.
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Figure 6: Intuition for the Newton-Raphson Algorithm

the neighborhood of �0 where the use of the Hessian makes �nal convergence quadratic. Even in

this case, a suitable � choice is important to guarantee convergence. Trying out decreasing � until

a higher `n(�+�d) is found can generate an in�nite sequence of iterations that do not converge to

a critical point. Choosing � by maximizing `n(�+ �d) can impose an unacceptable computational

burden. The BHHH algorithm in Berndt et al. (1974) suggests to choose � in the following way.10

Let � be a prescribed constant in the interval (0; 1=2). De�ne

 (�; �) =
`n(� + �d)� `n(�)

�d0Sn(�)
:

If  (�; �) � �, take � = 1. Otherwise, choose � to satisfy � �  (�; �) � 1 � �. Such a � always
exists if `n(�) is twice continuously di¤erentiable and has compact upper contour sets. If further

assume the direction d satisfy d0Sn(�)
Sn(�)0Sn(�)

> � 2 (0; 1), then such an algorithm always converges.

Berndt et al. (1974) suggest to choose d as Jn (�)
�1 Sn(�), where Jn (�) is always positive de�nite

butHn (�) may not be (e.g., near a saddle point). This choice of Q is closely related to the modi�ed

Gauss-Newton method in Hartley (1961). In summary, in the BHHH algorithm, iterate

b�(j+1) = b�(j) � �(j)Jn �b�(j)��1 Sn(b�(j))
until

max
k

dk

max
�
1;b�k� < prescribed tolerance,

10The idea of the BHHH algorithm originates from Anderson (1959).
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where dk and b�k are kth component of d and b�, k = 1; � � � ; d. A corollary of this algorithm is an

estimator of the asymptotic variance of the MLE, Jn
�b��.

Extension of the Newton�s method is the so-called Quasi-Newton methods. Two popular meth-

ods are due to Davidon-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS).

When there are multiple local maxima or the objective function is non-di¤erentiable, the derivative-

free method such as the simplex method of Nelder-Mead (1965) is suggested. A more recent inno-

vation is the method of simulated annealing (SA). For a review see Go¤e et al. (1994).

4 Three Asymptotically Equivalent Tests

When more and more big datasets are available, asymptotic tests get popular. So we concentrate

on asymptotic tests throughout this course. There are three asymptotically equivalent tests in the

likelihood framework: the likelihood ratio (LR) test of Neyman and Pearson (1928), Wald (1943)

test and Rao (1948)�s score test (or Lagrange Multiplier test), which are the topic of this section.

Our discussion emphasizes the intuition behind these three tests and is based on Buse (1982).

More related discussions can be found in Engle (1984), Section 7.4 of Hayashi (2000), Section 12.6

of Wooldridge (2010), and Section 7.3 of Cameron and Trivedi (2005).

To aid intuition, we �rst consider the simplest case:

H0 : � = �0 vs H1 : � 6= �0;

where � is a scalar, and then extend to the multi-parameter case with general nonlinear constraints

r(�) = 0, where r(�) is a q � 1 vector of constraints.
Intuitively, if `n(b�MLE)� `n(�0) is large, we should reject H0. In Figure 7, we �rst measure the

height of the mountain `n(�) at two points, b�MLE and �0, and then calculate the di¤erence. If this

di¤erence is large, we reject H0. This observation induces the LR test.

(i) LR = 2n
�
`n(b�MLE)� `n(�0)

�
The LR statistic is called deviance in the literature. Here, "2" is to o¤set the "12" in the second

term of the Taylor expansion. To be speci�c, under H0;

LR = �2n
�
`n(�0)� `n(b�MLE)

�
= �2n

 
@`n(b�MLE)

@�

�
�0 � b�MLE

�
+
1

2

@2`n(b�MLE)

@�2

�
�0 � b�MLE

�2
+ op

�
1

n

�!

=
p
n
�b�MLE � �0

�0 
�@

2`n(b�MLE)

@�@�0

!
p
n
�b�MLE � �0

�
+ op(1)

d�! �2(1)

where the third equality is from @`n(b�MLE)
@� = 0 which is due to the FOC of b�MLE .11 Note that

11This is why we Taylor expand ln(�) at b�MLE instead of �0.
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Figure 7: LR Test

the asymptotic null distribution of the LR statistic is independent of nuisance parameters. This

property is called the �Wilks phenomenon" in the literature as it was �rst observed by Wilks (1938).

To measure the height di¤erence in Figure 7, we have two other methods, depending on where

we stand on the mountain. If we stand at b�MLE , then we get the Wald test; if we stand at �0, then

we get the LM test.

First, suppose we stand at b�MLE , the top of the mountain. Intuitively, if the horizontal di¤erence���b�MLE � �0
��� is large, the height di¤erence between `n(b�MLE) and `n(�0) should be large, but we

need take account of one more thing. Comparing the mountain A and B in Figure 8, we see that

although
���b�MLE � �0

��� is the same, `n(b�MLE)� `n(�0) is very di¤erent. The greater is the curvature

of the mountain at b�MLE , the larger is the height di¤erence. So we should weight
���b�MLE � �0

��� by
the curvature of `n(�) at b�MLE . This intuition induces the Wald test.

(ii) W = n
�b�MLE � �0

�2 ���@2`n(b�MLE)

@�2

��� = pn�b�MLE � �0
�0 �

�Hn
�b�MLE

��p
n
�b�MLE � �0

�
d�!

�2(1) under H0

Second, suppose we stand at �0, the half-way up the mountain. Intuitively, the steeper is the

mountain at �0, the larger is the height di¤erence, but we still need take account of one more thing.

Comparing the mountain A and B in Figure 9, we see that although the slope Sn (�0) is the same

for these two mountains, the height di¤erence is very di¤erent. The greater is the curvature of the

mountain at �0, the closer is �0 to b�MLE and the smaller is the height di¤erence. So we should

weight jSn (�0)j by the inverse of the curvature at �0. This intuition induces the LM test.
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A B

Figure 8: Wald Test

A

B

Figure 9: LM Test
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(iii) LM = nSn(�0)
2��� @2`n(�0)

@�2

��� =
p
nSn (�0)

0 (�Hn (�0))�1
p
nSn (�0)

d�! �2(1) under H0

The name of the LM test (or the score test) is from the following fact: testing � = �0 is equivalent

to testing Sn (�0) = 0, which is equivalent to test � = 0. Here, � is the Lagrange multiplier in the

following Lagrangian problem:

max
�2�

`n(�) s.t. � = �0:

If the true value of � is �0, then we expect Sn (�0) = 0 and � = 0, since the FOC of this problem is

Sn (�) + � = 0.

For the general q constraints r(�) = 0, suppose the constrained estimator

e� = argmax
�2�

`n(�) s.t. r(�) = 0:

e� can be obtained by solving the Lagrangian problem with the Lagrangian

L(�;�) = `n(�) + �0r(�);

where � is a q � 1 vector of Lagrange multipliers. The FOCs for this problem are

eSn + eRe� = 0; (3)

where eSn = Sn �e�� and eR0 = @r(e�)=@�0. In this general testing problem,
LR = 2n

�
`n

�b��� `n �e��� ;
W = nr

�b��0 �bR0 �� bHn

��1 bR��1 r�b�� ;
LM = neS0n �� eHn

��1 eSn = ne�0 eR0 �� eHn

��1 eRe�;
where b� = b�MLE , bR0 = @r(b�)=@�0, bHn = Hn

�b�� and eHn = Hn

�e��. These test statistics can also
be expressed using Ln (�), Sn(�), Hn (�) and � = n� in a parallel way. For example,

LR = 2
�
Ln
�b��� Ln �e��� ;

W = r
�b��0 �bR0 �� bHn��1 bR��1 r�b�� ;

LM = eS 0n �� eHn��1 eSn = e�0 eR0 �� eHn��1 eRe�:
It can be shown that under H0, all three test statistics converges in distribution to �2(q). We will

provide more discussion on these three tests in the next chapter in the linear regression framework

and in Chapter 8 in the GMM framework.

We discuss more about the LM test. This test is widely used in speci�cation testing when the
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model under H0 is much simpli�ed;12 see Breusch and Pagan (1980) for some of such examples. A

special case is that � = (�01;�
0
2)
0 and

H0 : �1 = �10 or H0 : r(�) = (Iq;0)

 
�1

�2

!
� �10 = 0:

Partitioning Sn, J and � eHn conformably,

eSn =  eSn1eSn2
!
=

 eSn1
0

!

and

J =

 
J11 J12

J21 J22

!
;� eHn =

 eH11
eH12eH21
eH22

!

where eSn2 = 0 is from the FOCs (3). In this case, the LM statistic will be

LM = eS0n1 �eH11 � eH12
eH�1
22
eH21

��1 eSn1 � eS0n1 eH11 eSn1:
If J12 = J021 = 0, i.e., �1 and �2 are "informationally" independent, then

LM = eS0n1 eH�1
11
eSn1:

The LM test can be conducted by running an auxiliary regression

1 = es0i + ui;
where esi = si �e��, and computing
LM� = nR2u = 1

0S(S0S)�1S01 =nSn
�e��0 �Xn

i=1
esies0i��1 nSn �e�� = pnSn �e��0 Jn �e���1pnSn �e�� ;

(4)

where R2u is the uncentered R
2, S is a n� k matrix by stacking es0i, and 1 is a column of ones. This

version of the LM test statistic is called the outer-product-of-the-gradient (OPG) version since
�Hn

�e�� in LM is substituted by Jn
�e��.

Although these three tests have the same asymptotic distribution under H0 and the same

asymptotic power against local alternatives, there are some di¤erences among them.

(1) From the formulas of these test statistics, the LR test involves both b� and e�, the Wald test
involves only b�, and the LM test involves only e�. This provides some guidance on choosing

12 (*) Of course, if e� is not easy to obtain due to the nonlinear constraint, the Wald test may be preferable in
computation. Nevertheless, Neyman (1959) proposed what is called a C(�) test which involves the construction of
a pseudo-LM test, with identical asymptotic properties to the true one, but requiring only

p
n consistent estimators

of the unknown parameters rather than ML ones. See also Buhler and Puri (1966). For a survey of literature, see
Moran (1970).
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among the three tests based on computational burdens.

(2) If the information matrix equality does not hold, e.g., f(xj�) is misspeci�ed, we can modify
the LM and Wald test statistics to make them converge to �2(q) under H0, but the LR test

statistic does not converge to �2(q) any more in this case.

(3) The Wald test is not invariant to reparametrization of the null hypothesis, whereas the LR
test is invariant. Some, e.g., LM�, but not all versions of the LM test are invariant.

Also, these three test statistics may lead to con�icting inferences in small samples. Gallant (1975)

conducted Monte Carlo studies in a nonlinear model to suggest that "use the likelihood ratio test

when the hypothesis is an important aspect of the study".

Exercise 7 If f(xj�) is misspeci�ed, how to modify the LM and Wald test statistics to make them

converge to �2(q) under H0? Why does the LR test statistic not converge to �2(q) any more in this

case?

Example 7 To illustrate the three tests, consider an iid example with yi � N(�; 1) and test H0:

� = �0 vs H1: � 6= �0. Then b� = y and e� = �0.
For the LR test, `n(�) = �1

2 ln 2� �
1
2n

Pn
i=1(yi � �)2 and some algebra yields

LR = 2n (`n(y)� `n(�0)) = n(y � �0)2:

The Wald test is based on whether y � �0 � 0. Here it is easy to show that y � �0 � N(0; n�1)
under H0 and

@2`n(�0)

@�2
= �1, leading to the quadratic form

W = n(y � �0)[�(�1)](y � �0) = (y � �0)(n�1)�1(y � �0):

This simpli�es to n(y � �0)2 and so W = LR.

The LM test is based on closeness to zero of @`n(�0)=@� = 1
n

Pn
i=1(yi � �0) = y � �0. It is not

hard to see that LM = n(y � �0)[�(�1)]�1(y � �0) = n(y � �0)2 =W = LR:

Despite their quite di¤erent motivations, the three test statistics are equivalent here. This exact

equivalence is special to this example with constant curvature owing to a log-likelihood quadratic in

�. Also, the three test statistics follows exact �21 under H0. More generally the three test statistics

di¤er in �nite samples but are equivalent asymptotically. �

Exercise 8 Suppose yi
iid� Bernoulli(�). Construct the three test statistics for testing H0: � = �0

vs H1: � 6= �0. Are they numerically equivalent?

Each of the three tests has its own strength. A rule of thumb is: the Wald test would be the

�rst to try due to its simplicity. If the Wald test is not suitable because of, e.g., nonlinear null

constraints as will be discussed in Section 9 of the next chapter, the LR test is often tried. The

LR test is invariant to constraint formulation and can be applied to very general cases, e.g., when
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the null constraints are nonlinear or even when the likelihood function is not di¤erentiable. The

LM test requires the smoothness of the likelihood function, but when the model under the null is

simple, it sometimes can provide a surprisingly simpli�ed test.

5 Normal Regression Model

In the last chapter, we studied the t test and the F test in the normal regression model. Recall

that t =
b�j��j
s(b�j) � tn�k. It can be shown that tn�k

d�! N(0; 1) (why?). We now state the three

asymptotically equivalent tests and study their relationships with the F test.

The three asymptotically equivalent tests of H0: R0� = c are summarized as follows (See

Hayashi (2000) p503 Ex3.):

W = n �

�
R0b� � c�0 �R0(X0X)�1R��1 �R0b� � c�

SSRU
= n � SSRR � SSRU

SSRU

d�! �2q ;

LM = n �

�
y �Xe��0PX �y �Xe��

SSRR
= n � SSRR � SSRU

SSRR

d�! �2q ;

LR = n �
�
ln

�
SSRR
n

�
� ln

�
SSRU
n

��
= n � ln

�
SSRR
SSRU

�
d�! �2q ;

where

� bHn =

0B@ 1b�2 1n
nP
i=
x0ixi 0

0 1

2(b�2)2

1CA and � eHn =

0B@ 1e�2 1n
nP
i=
x0ixi 0

0 1

2(e�2)2

1CA
are used to get neat function forms of W and LM , although other estimators of the information

matrix could be used with the same asymptotic distribution. As in the F test, we can express W ,

LM and LR in the form of R2U and R
2
R.

Exercise 9 Verify that � bHn and � eHn, although not the same as �Hn(b�; b�2) and �Hn(e�; e�2),
are consistent for the information matrix under the null.

Exercise 10 (i) Show why the second equality in (4) holds. (ii) Show that LM can be interpreted

as nR2u, where R
2
u is the uncentered R

2 in the regression of eui on xi. What is the intuition for this
test?

The result in the above exercise is due to the facts that we are testing only � and � is "informa-

tionally" independent of �2; see Section 3 of Breusch and Pagan (1980) for related discussions.
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The relationship between F , W , LM and LR is as follows:

F =
n� k
n

W

q
< W;

LM =
W

1 + W
n

;

LR = n ln

�
1 +

W

n

�
;

so W � LR � LM and
F = (SSRR�SSRU )=q

SSRU=(n�k) � Fq;n�k

n!1 #
= n�k

n
W
q �! �2q

q

As a result, W , LR and LM have the same asymptotic null distribution, but the decision based on

them may not be the same in practice. See Savin (1976), Berndt and Savin (1977), Breusch (1979),

Geweke (1981) and Evans and Savin (1982) for discussions on the con�ict among these three test

procedures.

Because of the relationship between F and W , W is called the F form of the Wald statistic.
Since W d�! �2q only under the homoskedasticity assumption, W is also called a homoskedastic
form of the Wald statistic. Actually, all of t;W , LM and LR are asymptotically valid only

under homoskedasticity. We will develop heteroskedasticity-robust versions of these test statistics

after studying the asymptotics for the LSE and the RLS estimator in the next chapter. To dis-

tinguish from the homoskedasticity-only test statistics, the heteroskedasticity-robust test statistics

are indexed by a subscript n.

Technical Appendix: Proofs for the Five Weapons

Proof of WLLN. Without loss of generality, assume X 2 R and E[X] = 0 by considering the

convergence element by element13 and by recentering Xi at its expectation.

We need to show that 8� > 0 and � > 0, 9N <1 such that 8n < N , P
���Xn

�� > �� � �. Fix �
and �. Set " = ��=3. Pick C <1 large enough so that

E [jXij 1 (jXij > C)] � ";

which is possible since E [jXij] <1. De�ne the random vectors

Wi = Xi1 (jXij � C)� E [Xi1 (jXij � C)] ;
Zi = Xi1 (jXij > C)� E [Xi1 (jXij > C)] :

13This is possible because k(x1; y1)� (x2; y2)k � kx1 � x2k+ ky1 � y2k.
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By the triangle inequality,

E
���Zn��� = E

"����� 1n
nX
i=1

Zi

�����
#
� 1

n

nX
i=1

E [jZij] = E [jZij]

� E [jXij 1 (jXij > C)] + jE [Xi1 (jXij > C)]j
� 2E [jXij 1 (jXij > C)] � 2":

By Jensen�s inequality,

�
E
���Wn

����2 � E h��Wn

��2i = E
�
W 2
i

�
n

� 4C2

n
� "2

for n � N with N = 4C2="2.

Finally, by Markov�s inequality,

P
���Xn

�� > �� � E
���Xn

���
�

�
E
���Wn

���+ E ���Zn���
�

� 3"

�
= �;

as n � N .
Proof of CLT. We �rst state Lévy�s continuity theorem: Let Xn and X be random vectors in

Rk. Then Xn
d�! X if and only if E

h
eit

0Xn
i
! E

h
eit

0X
i
for every t 2 Rk, i.e., the characteristic

function of Xn converges to that of X. Moreover, if E
h
eit

0Xn
i
converges pointwise to a function

�(t) that is continuous at zero, then � is the characteristic function of a random vector X and

Xn
d�! X.

From Lévy�s continuity theorem, we need only to show that E
�
eitXn

�
! e�

1
2
t2 for every t 2 R,

where e�
1
2
t2 is the characteristic function of N(0; 1). Taylor expanding E

�
eitX

�
at t = 0, we have

�(t) � E
�
eitX

�
= 1 + itE[X]� t2

2 E[X
2] + o(t2) = 1� t2

2 + o(t
2). As a result, for any �xed t,

E
h
eit
p
nXn

i
= E

"
exp

 
i
tp
n

nX
i=1

Xi

!#

=

nY
i=1

E

�
exp

�
i
tp
n
Xi

��
= �n

�
tp
n

�
=

�
1� t2

2n
+ o

�
1

n

��n
! e�

1
2
t2 :

This theorem is stated for the scalar X case. By the Cramér-Wold device, we can easily extend

the result to the vector X case. The Cramér-Wold device states that for Xn 2 Rk, Xn
d�! X

if and only if t0Xn
d�! t0X for all t 2 Rk. That is, we can reduce higher-dimensional problems

tot he one-dimensional case. This device is valid because the characteristic function t 7! E
h
eit

0X
i

of a vector X is determined by the set of all characteristic functions u 7! E
h
eiu(t

0X)
i
of linear

combinations t0X.

Proof of CMT. Denote the continuity point of X as C.
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(i) Fix arbitrary " > 0. For each � > 0 let B� be the set of x for which there exists y with

ky � xk < �, but kg(y)� g(x)k > ". If X =2 B� and kg(Xn)� g(X)k > ", then kXn �Xk � �.

Consequently,

P (kg(Xn)� g(X)k > ") � P (X 2 B�) + P (kXn �Xk � �) :

The second term on the right converges to zero as n!1 for every �xed � > 0. Because B� \C # ;
by continuity of g, the �rst term converges to zero as � # 0.

(ii) To prove the CMT for convergence in distribution, we �rst state part of the Portmanteau

lemma: Xn
d�! X if and only if limP (Xn 2 F ) � P (X 2 F ) for every closed set F .

The event fg(Xn) 2 Fg is identical to the event
�
Xn 2 g�1 (F )

	
. For every closed set F ,

g�1(F ) � g�1(F ) � g�1(F ) [ Cc:

To see the second inclusion, take x in the closure of g�1(F ). Thus, there exists a sequence xm with

xm ! x and g(xm) 2 F . If x 2 C, then g(xm)! g(x), which is in F because F is closed; otherwise

x 2 Cc. By the Portmanteau lemma,

limP (g (Xn) 2 F ) � limP
�
Xn 2 g�1(F )

�
� P

�
X 2 g�1(F )

�
:

Because P (X 2 Cc) = 0, the probability on the right is P
�
X 2 g�1(F )

�
= P (g(X) 2 F ). Apply

the Portmanteau lemma again, in the opposite direction, to conclude that g(Xn)
d�! X.

Proof of Slutsky�s Theorem. We �rst state another part of the Portmanteau lemma: Xn
d�! X

if and only if E [f(Xn)]! E [f(X)] for all bunded, continuous function f .

First note that k(Xn; Yn)� (Xn; c)k = kYn � ck
p�! 0. Thus by Exercise 1(i), it su¢ ces to show

that (Xn; c)
d�! (X; c). For every continuous, bounded function (x; y) 7! f(x; y), the function

x 7! f(x; c) is continuous and bounded. By the Portmanteau lemma, it su¢ ces to show that

E[f(Xn; c)]! E[f(X; c)] which holds if Xn
d�! X by applying the Portmanteau lemma again.
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