
Chapter 3. Least Squares Estimation - Finite-Sample Properties�

This chapter studies �nite-sample properties of the LSE. Related materials can be found in

Chapter 1 of Hayashi (2000) and Chapter 3 of Hansen (2007).

1 Terminology and Assumptions

Recall that the linear regression model is

y = x0� + u;

E[ujx] = 0:

We �rst summarize the terminology for y and x in Table 1. u is called the error term, disturbance
or unobservable.

y x

Dependent variable Independent Variable

Explained variable Explanatory variable

Response variable Control (Stimulus) variable

Predicted variable Predictor variable

Regressand Regressor

LHS variable RHS variable

Endogenous variable Exogenous variable

� Covariate

� Conditioning variable

Table 1: Terminology for Linear Regression

We maintain the following assumptions in this chapter.

Assumption OLS.0 (random sampling): (yi;xi), i = 1; � � � ; n, are independent and identically
distributed (i.i.d.).

Assumption OLS.1 (full rank): rank(X) = k.

Assumption OLS.2 (�rst moment): E[yjx] = x0�.
�Email: pingyu@hku.hk
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Assumption OLS.3 (second moment): E[u2] <1:

Assumption OLS.30 (homoskedasticity): E[u2jx] = �2:

Assumption OLS.2 is equivalent to y = x0� + u (linear in parameters) plus E[ujx] = 0 (zero

conditional mean). To study the �nite-sample properties of the LSE, such as the unbiasedness,

we always assume Assumption OLS.2, i.e., the model is linear regression. Assumption OLS.30 is

stronger than Assumption OLS.3. The linear regression model under Assumption OLS.30 is called

the homoskedastic linear regression model,

y = x0� + u;

E[ujx] = 0;

E[u2jx] = �2:

On the other hand, if E[u2jx] = �2(x) depends on x we say u is heteroskedastic.

Exercise 1 Suppose y = x0� + u for some � 2 Rk and u need not satisfy E[xu] = 0.1 Show that
if E

h
kxk2

i
<1 and E[u2] <1, then E[y2] <1.

Exercise 2 In Exercise 11 of Chapter 2, is the linear regression model homoskedastic? (Hint: If
P (y = j) = exp(��)�j

j! , then V ar(y) = �.)

2 Goodness of Fit

Express

yi = byi + bui; (1)

where byi = x0ib� is the predicted value, and bui = yi�byi is the residual.2 Often, the error variance
�2 = E[u2] is also a parameter of interest. It measures the variation in the "unexplained" part

of the regression. Its method of moments (MoM) estimator is the sample average of the squared

residuals,

b�2 = 1

n

nX
i=1

bu2i = 1

n
bu0bu:

An alternative estimator uses the formula

s2 =
1

n� k

nX
i=1

bu2i = 1

n� k bu0bu:
This estimator adjusts the degree of freedom (df) of bu. The square root of s2 is called the
standard error of the regression (SER).

1This means that � need not be the true coe¢ cient �0 in linear projection.
2bui is di¤erent from ui. The later is unobservable while the former is a by-product of OLS estimation.
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Exercise 3 Consider the OLS regression of the n�1 vector y on the n�k matrix X. Consider an
alternative set of regressors Z = XC, where C is a k � k non-singular matrix. Thus, each column
of Z is a mixture of some of the columns of X. Compare the OLS estimates and residuals from the

regression of y on X to the OLS estimates from the regression of y on Z.

If X includes a column of ones, 10bu =Pn
i=1 bui = 0, so y = by. Subtracting y from both sides of

(1), we have eyi � yi � y = byi � y + bui � ebyi + bui
Since eby0bu = by0bu� y � 10bu = b� (X0bu)� y � 10bu = 0,

SST � keyk2 = ey0ey = 


eby


2 + 2eby0bu+ kbuk2 = 


eby


2 + kbuk2 � SSE + SSR; (2)

where SST, SSE and SSR mean the total sum of squares, the explained sum of squares, and the

residual sum of squares (or the sum of squared residuals), respectively. Dividing SST on both sides

of (2),3 we have

1 =
SSE

SST
+
SSR

SST
:

The R-squared of the regression, sometimes called the coe¢ cient of determination, is de�ned
as

R2 =
SSE

SST
= 1� SSR

SST
= 1� b�2b�2y :

R2 is de�ned only if x includes a constant. It is usually interpreted as the fraction of the sample

variation in y that is explained by (nonconstant) x. R2 can also be treated as an estimator of

�2 = 1� �2=�2y:

It is often useful in algebraic manipulation of some statistics. An alternative estimator of �2

proposed by Theil (1961)4 called adjusted R-squared or "R-bar-squared" is

R
2
= 1� s2e�2y = 1� (1�R2)n� 1n� k ;

where e�2y = ey0ey=(n� 1). R2 adjusts the degrees of freedom in the numerator and denominator of

R2 and is smaller than R2 when k > 1.

It is mysterious why we call n � k and n � 1 as the degree of freedom of bu and ey. We brie�y
explain the reason here. Roughly speaking, the degree of freedom is the dimension of the space

where a vector can stay, or how "freely" a vector can move. For example, bu, as a n-dimensional
vector, can only stay in a subspace with dimension n � k. Why? This is because X0bu = 0, so k

constraints are imposed on bu, and bu cannot move completely freely and loses k degree of freedom.
3When can we conduct this operation, i.e., SST 6= 0?
4Henri Theil (1924-2000) was a Dutch econometrician. Besides R

2
, he is most famous for the two-stage least

squares estimation which we will cover in Chapter 7.
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Figure 1: Although dim(ey) = 2, df(ey) = 1, where ey = (ey1; ey2)
Similarly, the degree of freedom of ey is n� 1. Figure 1 illustrates why the degree of freedom of ey
is n� 1 when n = 2. Table 2 summarizes the degrees of freedom for the three terms in (2).

Variation Notation df

SSE eby0eby k � 1
SSR bu0bu n� k
SST ey0ey n� 1

Table 2: Degrees of Freedom for Three Variations

Exercise 4 (i) Explain why the df of SSE is k � 1. (Hint: ebyi = ex0ib�, where x is the nonconstant
covariate, � is the associated coe¢ cient.) (ii) Show that SSE = b�0 eX0 eXb� = b�0 eX0y.
Exercise 5 (i) Show that R2 remains the same if we demean yi as yi�y. (ii) Prove that R2 is the
square of the simple correlation between y and by. (iii) Show that R2 = [Corr(y;x)0[Corr(x;x)�1[Corr(y;x),
where [Corr(y;x) is the sample correlation vector of y with each element of x, and [Corr(x;x)
is the sample correlation matrix between every two elements of x. When [Corr(x;x) = Ik�1,

R2 =
Pk�1
l=1

[Corr(y;xl)2, so R, the square root of R2, is also called the multiple correlation
coe¢ cient in statistics.

To de�ne R2, we must assume there is a constant term in xi. Sometimes, when there is no

constant term in xi, we need to de�ne so-called uncentered R2, denoted as R2u. Similar to R
2,

R2u =
by0by
y0y

:
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Exercise 6 Show that 1�R2 =
�
1 + ny2Pn

i=1(yi�y)2
�
(1�R2u).

3 Bias and Variance

As mentioned, Assumption OLS.2 implies that

y = x0� + u;E[ujx] = 0:

Then

E[ujX] =

0BB@
...

E[uijX]
...

1CCA =

0BB@
...

E[uijxi]
...

1CCA = 0;

where the second equality is from the assumption of independent sampling (Assumption OLS.0).

Now, b� = �X0X��1X0y = �X0X��1X0 (X� + u) = �+ �X0X��1X0u;
so

E
hb� � �jXi = E h�X0X��1X0ujXi = �X0X��1X0E[ujX] = 0;

i.e., b� is unbiased.
Exercise 7 In the linear regression model under the restrictions R0� = c, let eu be the vector of
RLS residuals. Show that under R0� = c,

(a) R0b� � c = R0(X0X)�1X0u
(b) b�R � � = (X0X)�1X0u� (X0X)�1R �R0(X0X)�1R��1R0(X0X)�1X0u
(c) eu = (I�P+A)u for P = X(X0X)�1X0 and some matrix A (�nd this matrix A).

(d) Show that A is symmetric and idempotent, tr(A) = q, and PA = A.

Furthermore

V ar
�b�jX� = V ar

��
X0X

��1
X0ujX

�
=

�
X0X

��1
X0V ar (ujX)X

�
X0X

��1
�

�
X0X

��1
X0DX

�
X0X

��1
:

Note that

V ar (uijX) = V ar (uijxi) = E
�
u2i jxi

�
� E [uijxi]2 = E

�
u2i jxi

�
� �2i ;
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and

Cov(ui; uj jX) = E [uiuj jX]� E [uijX]E [uj jX]
= E [uiuj jxi;xj ]� E [uijxi]E [uj jxj ]
= E [uijxi]E [uj jxj ]� E [uijxi]E [uj jxj ] = 0;

so D is a diagonal matrix:

D = diag
�
�21; � � � ; �2n

�
:

It is useful to note that

X0DX =

nX
i=1

xix
0
i�
2
i :

In the homoskedastic case, �2i = �
2 and D = �2In, so X0DX = �2X0X, and

V ar
�b�jX� = �2 �X0X��1 :

Exercise 8 Show that V ar
�b�j jX� =Pn

i=1wij�
2
i =SSRj, j = 1; � � � ; k, where wij > 0,

Pn
i=1wij =

1, and SSRj is the SSR in the regression of xj on all other regressors. (Hint: Use the FWL

theorem.)

From this exercise, we can see that V ar
�b�j jX� = �2=SSRj = �2= hSSTj(1�R2j )i, j = 1; � � � ; k,

under homoskedasticity (why?), where SSTj is the SST of xj , and R2j is the R-squared from the

simple regression of xj on the remaining regressors (which includes an intercept).

We now calculate the �nite-sample bias of the MoM estimator b�2 for �2. Recall that bu =Mu,
where we abbreviateMX asM, so by the properties of projection matrices and the trace operator,

we have b�2 = 1

n
bu0bu = 1

n
u0MMu =

1

n
u0Mu =

1

n
tr
�
u0Mu

�
=
1

n
tr
�
Muu0

�
:

Then

E
�b�2��X� = 1

n
tr
�
E
�
Muu0jX

��
=
1

n
tr
�
ME

�
uu0jX

��
=
1

n
tr (MD) :

In the homoskedastic case, D = �2In, so

E
�b�2��X� = 1

n
tr
�
M�2

�
= �2

�
n� k
n

�
:

Thus b�2 underestimates �2. As an alternative, the estimator s2 = 1
n�k bu0bu is unbiased for �2. This

is the justi�cation for the common preference of s2 over b�2 in empirical practice. However, it is
important to remember that this estimator is only unbiased in the special case of the homoskedastic

linear regression model. It is not unbiased in the absence of homoskedasticity or in the projection

model.

Exercise 9 (i) In the homoskedastic linear regression model under the restrictions R0� = c, �nd
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an unbiased estimator of �2. (Hint: 1
n�k+q

Pn
i=1 eu2i , where eui is de�ned in Exercise 7.). (ii) In

the heteroskedastic linear regression model with V ar(ujX) = �2
, �nd an unbiased estimator of

�2. (Hint: 1
n�k eu0
�1eu, where eu = y �X0e�, and e� is the GLS estimator with the weight matrix

W = 
�1.)

4 The Gauss-Markov Theorem

The LSE has some optimality properties among a restricted class of estimators in a restricted class

of models. The model is restricted to be the homoskedastic linear regression model, and the class

of estimators are restricted to be linear unbiased. Here, "linear" means the estimator is a linear

function of y. In other words, the estimator, say, e�, can be written as
e� = A0y = A0(X� + u) = A0X� +A0u;

where A is any n � k matrix of X. Unbiasedness implies that E[e�jX] = E[A0yjX] = A0X� = �
or A0X = Ik. In this case, e� = � +A0u, so under homoskedasticity,

V ar
�e�jX� = A0V ar(ujX)A = A0A�2:

The Gauss-Markov Theorem states that the best choice of A0 is (X0X)�1X0 in the sense that this

choice of A achieves the smallest variance.

Theorem 1 In the homoskedastic linear regression model, the best (minimum-variance) linear
unbiased estimator (BLUE) is the LSE.

Proof. Given that the variance of the LSE is (X0X)�1�2 and that of e� is A0A�2. It is su¢ cient to
show that A0A� (X0X)�1 � 0. Set C = A�X(X0X)�1. Note that X0C = 0. Then we calculate
that

A0A� (X0X)�1 =
�
C+X(X0X)�1

�0 �
C+X(X0X)�1

�
� (X0X)�1

= C0C+C0X(X0X)�1 + (X0X)�1X0C+ (X0X)�1X0X(X0X)�1 � (X0X)�1

= C0C � 0:

The scope of the Gauss-Markov Theorem is quite limited given that it requires the class of

estimators to be linear unbiased and the model to be homoskedastic. This leaves open the possibility

that a nonlinear or biased estimator could have lower mean squared error (MSE) than the LSE in a

heteroskedastic model, where the MSE of an estimator e� of � is de�ned as E ��e� � ���e� � ��0�.
To exclude such possibilities, we need asymptotic arguments. Chamberlain (1987) shows that in the

model y = x0�+u, if the only available information is E[xu] = 0 or (E[ujx] = 0 and E[u2jx] = �2),
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then among all estimators, the LSE achieves the lowest asymptotic MSE;5 in other words, the LSE

is semi-parametrically e¢ cient. To study the e¢ ciency theory, you may start from Newey (1990a).

For a more comprehensive treatment, see Bickel et al. (1998).

Exercise 10 Show that E
��e� � ���e� � e��0� = V ar

�e�� + �E he�i� ���E he�i� ��0. When
dim(�) = 1, how to interpret this decomposition?

4.1 Geometry of the Gauss-Markov Theorem (*)

We are studying the variance matrices of estimators. Ellipse can represent all of the information

in general variance matrices. Given the random vector y 2 Rn with the variance matrix 
, the
variance ellipse Vy of y is the set

Vy =
�
w = 
aja 2 Rn;a0
a � 1

	
;

where a0
a = V ar(a0y).6 Vy is a subset in the linear space span(
) mainly because P (y�E[y] 2
span(
)) = 1.7 To understand Vy, note that Vy can be reexpressed as

�
w 2 Rnjw0
�1w � 1

	
which is a contour of the density of y when y � N(0;
). The upper bound of 1 is chosen for

convenience. Any constant would serve the same purpose. It is the shape and relative size of a

variance ellipse that interest us. In the one-dimensional case,

Vy =
�
w 2 Rjw2=�2 � 1

	
= fwj � � � w � �g :

Exercise 11 In the two-dimensional case, show that Vy is an ellipse tangent to a box with di-
mensions that coincide with the lengths (standard deviations) of the random variables. When

Corr(y1; y2) = 1, what does Vy look like?

For a linear transformation of y, say, z = Ay 2 Rk for a constant matrix A, the variance ellipse of
z is the image of the variance ellipse of y under the linear transformation A:

Vz =
n
w = A
A0aja 2 Rk;a0A
A0a � 1

o
= fw = Avjv 2 Vyg :

In the homoskedastic linear regression model,

Vy =
�
w 2 Rnjw0w � �2

	
:

5See Back and Brown (1992) for a di¤erent derivation.
6Malinvaud (1970, pp160-165) gives a derivation of the de�nition of variance ellipse. According to Malinvaud,

Darmois (1945) originally de�ned the variance ellipse, but he called it the concentration ellipsoid.
7See Lemma 7.2 of Ruud (2000).
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and the variance ellipse of �(y) is

V�(y) =
�
w = �2Paja 2 Rn; �2a0Pa � 1

	
=

�
w = Pbjb 2 Rn; (Pb)0 (Pb) � �2

	
=

�
w 2 span(X)jw0w � �2

	
= fw = Pvjv 2 Vyg ;

where we abbreviate PX as P. V�(y) is a sphere in span(X) and has a similar structure as Vy.

Exercise 12 What is Vb� in the homoskedastic linear regression model? Is it a sphere?
To intuitively understand the Gauss-Markov Theorem, we consider the following simple exam-

ple. Suppose n = 2, and xi = 1, i = 1; 2. In this case,

b� = y1 + y2
2

;

and

�(y) =
�b�; b��0 = 1b�:

Given that �(y)1 = �(y)2 = b�, V�(y) represents the variation in b�. In Figure 2, we use a circle
centering at 1�0 to represent Vy since b� is unbiased to �0. V�(y) is the orthogonal projection of all
the points in this circle onto span(X); this projection is the interval [A;B] given by the intersection

of Vy and span(X). This interval is also centered at 1�0. The variation of a nonorthogonal

projection 1e� is also the corresponding projection of the interior of Vy onto span(X). The interval
[A0; B0] in Figure 2 is an example. The nonorthogonal projection along the direction (1; 0) yields a

larger interval, also centered at 1�0, that contains the interval of variation of �(y). So b� has the
smallest variance among all linear unbiased estimators of �0.

5 Multicollinearity

If rank(X0X) < k, then b� is not uniquely de�ned. This is called strict (or exact) multicollinear-
ity. This happens when the columns of X are linearly dependent, i.e., there is some � 6= 0 such
that X� = 0. Most commonly, this arises when sets of regressors are included which are identically

related. For example, if X includes a column of ones and both dummies for male and female.8

When this happens, the applied researcher quickly discovers the error as the statistical software

will be unable to construct (X0X)�1. Since the error is discovered quickly, this is rarely a problem

for applied econometric practice.

The more relevant issue is near multicollinearity, which is often called "multicollinearity"
for brevity. This is the situation when the X0X matrix is near singular, or when the columns of

X are close to be linearly dependent. This de�nition is not precise, because we have not said

8Such multicollinearity is often called the dummy variable trap. See Exercise 12 in Chapter 2.
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Figure 2: Intuition for the Gauss-Markov Theorem

what it means for a matrix to be "near singular". This is one di¢ culty with the de�nition and

interpretation of multicollinearity.

One implication of near singularity of matrices is that the numerical reliability of the calculations

is reduced. In extreme cases it is possible that the reported calculations will be in error due to

�oating-point calculation di¢ culties.

A more relevant implication of near multicollinearity is that individual coe¢ cient estimates will

be imprecise. We can see this most simply in a homoskedastic linear regression model with two

regressors

yi = x1i�1 + x2i�2 + ui;

and
1

n
X0X =

 
1 �

� 1

!
:

In this case,

V ar
�b�jX� = �2

n

 
1 �

� 1

!�1
=

�2

n(1� �2)

 
1 ��
�� 1

!
:

The correlation indexes collinearity, since as � approaches 1 the matrix becomes singular. We can

see the e¤ect of collinearity on precision by observing that the variance of a coe¢ cient estimate

�2=n(1� �2) approaches in�nity as � approaches 1. Thus the more "collinear" are the regressors,
the worse the precision of the individual coe¢ cient estimates. In the general model

yi = x1i�1 + x
0
2i�2 + ui;
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from the discussion following Exercise 8,

V ar
�b�1jX� = �2

SST1(1�R21)
=

�2

SSR1
; (3)

where SST1 is the SST of x1, and R21 is the R-squared from the simple regression of x1 on x2
(which includes an intercept). Because the R-squared measures goodness of �t, a value of R21 close

to one indicated that x2 explains much of the variation in x1 in the sample. This means that x1
and x2 are highly correlated. When R21 approaches 1, the variance of b�1 explodes. 1=(1 � R21) is
often termed as the variance in�ation factor (VIF). Usually, a VIF larger than 10 should arise
our attention.

What is happening is that when the regressors are highly dependent, it is statistically di¢ cult

to disentangle the impact of �1 from that of �2. As a consequence, the precision of individual

estimates is reduced. Intuitively, �1 means the e¤ect on y as x1 changes one unit, holding x2 �xed.

When x1 and x2 are highly correlated, you cannot change x1 while holding x2 �xed, so �1 cannot

be estimated precisely.

Multicollinearity is a small-sample problem. As larger and larger data sets are available nowa-

days, i.e., n >> k, it is seldom a problem in current econometric practice.

6 In�uential Observations and Quantile Regression (*)

The ith observation is in�uential on the least-squares estimate if the deletion of the observation
from the sample results in a meaningful change in b�. To investigate the possibility of in�uential
observations, de�ne the leave-one-out least-squares estimator of �, that is, the OLS estimator based

on the sample excluding the ith observation. This equals

b�(�i) = (X0(�i)X(�i))�1X(�i)y(�i); (4)

where X(�i) and y(�i) are the data matrices omitting the ith row. The relationship between b�(�i)
and b� is stated in the following exercise.
Exercise 13 (i) Show that

b�(�i) = b� � (1� hi)�1(X0X)�1xibui; (5)

where

hi = x
0
i(X

0X)�1xi

is the ith diagonal element of the projection matrix X(X0X)�1X0. (Hint: If T = A+CBD, then

T�1 = A�1 �A�1CB(B+BDA�1CB)�1BDA�1.) (ii) Show that 0 � hi � 1 and
Pn
i=1 hi = k.
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We can also de�ne the leave-one-out residual

bui;�i = yi � x0ib�(�i) = (1� hi)�1bui: (6)

A simple comparison yields that

bui � bui;�i = (1� hi)�1hibui:
As we can see, the change in the coe¢ cient estimate by deletion of the ith observation depends

critically on the magnitude of hi. If the ith observation has a large value of hi (note that 0 � hi � 1
from the above exercise), then this observation is a leverage point and has the potential to be
an in�uential observation. Investigations into the presence of in�uential observations can plot the

values of (6), which is considerably more informative than plots of the uncorrected residuals bui.
Exercise 14 Let b�n = (X0nXn)�1Xnyn denote the OLS estimate when yn is n�1 and Xn is n�k.
A new observation (yn+1;xn+1) becomes available. Prove that the OLS estimate computed using

this additional observation is

b�n+1 = b�n + 1

1 + x0n+1(X
0
nXn)

�1xn+1
(X0nXn)

�1xn+1(yn+1 � x0n+1b�n):
Carefully examining why an observation in the least squares estimation can be in�uential, we

would conclude that this is essentially because the "squared" residuals are used in the objective

function of the LSE,
Pn
i=1 (yi � x0i�)

2, such that the e¤ect of an outlier is magni�ed. If the objective

function is changed to
Pn
i=1 jyi � x0i�j, we expect the e¤ect of an outlier is neglectable. Indeed,

this objective function is estimating the conditional median of yi which is well known to be robust

to outliers. Actually, we can extend this objective function to estimate conditional quantiles of yi.

Speci�cally, given the minimizer b� in the following quantile regression (QR)
min
�

Xn

i=1
��
�
yi � x0i�

�
; (7)

x0i
b� is estimating the �th conditional quantile of yi given xi, where � 2 (0; 1), and

�� (u) = u(� � 1 (u � 0)) =
(
�(1� �)u

�u

u � 0;
u > 0;

is called the check function. When � = 0:5 , �� (�) is equivalent to the absolute value function. To
compare with the objective function of the LSE, we put the "check function" of the least squares

u2 and the check functions for � = 0:5 and 0:25 in Figure 3. From Figure 3, the contribution of

residuals is much less in quantile regression than in least squares when they are o¤ the neighborhood

of zero. Quantile regression is introduced by Koenker and Bassett (1978); see Koenker (2005) for an

introduction to this rapidly growing topic. Besides robustness, quantile regression provides a more

complete picture on the conditional distribution of yi comparing to the least squares estimation
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Figure 3: Objective Function for OLS, LAD and QR with � = 0:25

which considers only the conditional mean.

Exercise 15 For any predictor g(xi) for yi, the mean absolute error (MAE) is E [jyi � g(xi)j].
Show that the function g(x) which minimizes the MAE is the conditional median m(x) =Med(yijxi).
Based on your answer, can you provide any intuition why (7) will pick out the � th conditional

quantile of yi.

7 Hypothesis Testing: An Introduction

All the above sections are about estimation. We formally introduce hypothesis testing in this

section. Di¤erent from an estimation problem where nothing is known about the true parameter,

in hypothesis testing, some restrictions about the true parameter are assessed. In other words,

there is already a target to attack. Nevertheless, hypothesis testing and estimation are closely

related since some test statistics are based on estimators.

The null hypothesis, written as H0, is often a point hypothesis � = �0, where � = r(�)

is a q � 1 parameter of interest and �0 is a hypothesized value.9 For example, � may be a single
coe¢ cient, e.g., � = �j , the di¤erence between two coe¢ cients, e.g., � = �j � �l, or the ratio of
two coe¢ cients, e.g., � = �j=�l. The complement of the null hypothesis is called the alternative

9Related concepts are simple hypothesis and composite hypothesis. A simple hypothesis is any hypothesis
which speci�es the population distribution completely. A composite hypothesis is any hypothesis which does not
specify the population distribution completely. A point hypothesis can be either a simple hypothesis or a composite
hypothesis (why?). The one-sided hypothesis such as � � �0 or � � �0 is not a point hypothesis. We consider only
the point null hypothesis in this course.
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hypothesis. So the alternative hypothesis, written as H1, is � 6= �0. More generally, letting � be
the parameter space of �, we express a null hypothesis as H0: � 2 �0 and the alternative hypothesis
as H1: � 2 �1, where �0 is a proper subset of �, �0 \�0 = ?, and �0 [�0 = �. For simplicity,
we often refer to the hypotheses as "the null" and "the alternative". In the return-to-schooling

example, we may want to know whether education will a¤ect wage. The null is then �edu = 0, and

the alternative is �edu 6= 0, where �edu is the coe¢ cient of education.
A hypothesis test either accepts the null hypothesis, or rejects the null hypothesis in favor of

the alternative hypothesis. The rejection/acceptance dichotomy is associated with the Neyman-

Pearson approach to hypothesis testing. We can describe these two decisions as �Accept H0�and

�Reject H0�. The decision is based on the data, and so is a mapping from the sample space to

the decision set. This splits the sample space into two regions S0 and S1 such that if the observed

sample falls into S0 we accept H0, while if the sample falls into S1 we reject H0. The set S0 can be

called the acceptance region and the set S1 the rejection or critical region. It is convenient
to express this mapping as a real-valued function called a test statistic

Tn = Tn ((y1;x1); � � � ; (yn;xn))

relative to a critical value c. The hypothesis test then consists of the decision rule

1. Accept H0 if Tn � c,
2. Reject H0 if Tn > c:

A test statistic Tn should be designed so that small values are likely when H0 is true and large

values are likely when H1 is true. There is a well developed statistical theory concerning the design

of optimal tests. We will not review that theory here, but refer the reader to Lehmann and Romano

(2005).

A false rejection of the null hypothesis H0 (rejecting H0 when H0 is true) is called a Type I
error. The probability of a Type I error is

P (Reject H0jH0 is true) = P (Tn > cjH0 is true) : (8)

The �nite sample size of the test is de�ned as the supremum of (8) across all data distributions

which satisfy H0. A primary goal of test construction is to limit the incidence of Type I error by

bounding the size of the test. A false acceptance of the null hypothesis H0 (accepting H0 when H1
is true) is called a Type II error. The rejection probability under the alternative hypothesis is
called the power of the test, and equals 1 minus the probability of a Type II error:

�n (�) = P (Reject H0jH1 is true) = P (Tn > cjH1 is true) :

We call �n (�) the power function and is written as a function of � to indicate its dependence on
the true value of the parameter �.

In the dominant approach to hypothesis testing, the goal of test construction is to have high
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power, subject to the constraint that the size of the test is lower than the pre-speci�ed signi�cance

level. Generally, the power of a test depends on the true value of the parameter �, and for a well

behaved test the power is increasing both as � moves away from the null hypothesis �0 and as the

sample size n increases.

Given the two possible states of the world (H0 or H1) and the two possible decisions (Accept

H0 or Reject H0), there are four possible pairings of states and decisions as is depicted in Table 3.

Accept H0 Reject H0
H0 is true Correct Decision Type I Error

H1 is true Type II Error Correct Decision

Table 3: Hypothesis Testing Decisions

Given a test statistic Tn, increasing the critical value c increases the acceptance region S0 while

decreasing the rejection region S1. This decreases the likelihood of a Type I error (decreases the

size) but increases the likelihood of a Type II error (decreases the power). Thus the choice of c

involves a trade-o¤ between size and the power. This is why the signi�cance level of the test cannot

be set arbitrarily small. (Otherwise the test will not have meaningful power.)

It is important to consider the power of a test when interpreting hypothesis tests, as an overly

narrow focus on size can lead to poor decisions. For example, it is trivial to design a test which

has perfect size yet has trivial power. Speci�cally, for any hypothesis we can use the following test:

Generate a random variable U � U [0; 1] and reject H0 if U < �. This test has exact size of �. Yet
the test also has power precisely equal to �. When the power of a test equals the size, we say that

the test has trivial power. Nothing is learned from such a test.

To determine the critical value c, we need to pre-select a signi�cance level � such that

P (Tn > cjH0 is true) = �, yet there is no objective scienti�c basis for choice of �. Nevertheless, the
common practice is to set � = 0:05 (5%). Alternative values are � = 0:10 (10%) and � = 0:01 (1%).

These choices are somewhat the by-product of traditional tables of critical values and statistical

software. The informal reasoning behind the choice of a 5% critical value is to ensure that Type

I errors should be relatively unlikely - that the decision �Reject H0�has scienti�c strength - yet

the test retains power against reasonable alternatives. The decision �Reject H0�means that the

evidence is inconsistent with the null hypothesis, in the sense that it is relatively unlikely (1 in 20)

that data generated by the null hypothesis would yield the observed test result. In contrast, the

decision �Accept H0�is not a strong statement. It does not mean that the evidence supports H0,

only that there is insu¢ cient evidence to reject H0. Because of this, it is more accurate to use the

label �Do not Reject H0�instead of �Accept H0�. When a test rejects H0 at the 5% signi�cance

level it is common to say that the statistic is statistically signi�cant and if the test accepts H0
it is common to say that the statistic is not statistically signi�cant or that it is statistically
insigni�cant. It is helpful to remember that this is simply a way of saying �Using the statistic Tn,
the hypothesis H0 can [cannot] be rejected at the 5% level.�When the null hypothesis H0: � = 0

is rejected it is common to say that the coe¢ cient � is statistically signi�cant, because the test has

rejected the hypothesis that the coe¢ cient is equal to zero.
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Figure 4: Trade-O¤ Between the Type I Error and Type II Error

We use a simple example to illustrate the basic concepts of hypothesis testing. Suppose we have

only one data point z in hand and we know z � N (�; 1). We want to test H0: � = 0 against H1:
� > 0. A natural test is to reject H0 if z is large. Rigorously, the test is 1(z > c), where 1(�) is the
indicator function which equals 1 if the event in the parenthesis is true and 0 otherwise, 1 indicates

rejection and 0 acceptance, the test statistic Tn = z, and the critical value is c. Set the signi�cance

level � = 0:05; then c is chosen such that P (z > cj� = 0) = E [1(z > c)j� = 0] = 1 � �(c) = 0:05,
i.e., c = 1:645. So if z > 1:645, we will reject H0; otherwise, we cannot reject H0. The power

function � (�) = P (z > cj�) = P (z � � > c� �) = 1��(c� �) which is an increasing function of
� and a decreasing function of c. It is understandable that � (�) is increasing with � since when �

is larger, it is easier to detect � > 0. That � (�) is decreasing in c indicates a trade-o¤ between size

and the power. Since the power equals 1 minus the probability of the Type II error, it is equivalent

to study the trade-o¤ between the probabilities of the Type I error and Type II error. Figure 4

shows this trade-o¤ when the true � equals 3. The left panel illustrates the probabilities of the

Type I error and Type II error when c = 1:8, and the right panel illustrates these probabilities

as a function of c. From Figure 4, it is obvious that we cannot reduce these two types of errors

simultaneously.

In the simple example above, the acceptance region is z � c and the critical region is z > c,

which are quite trivial. To illustrate these regions in a more complicated example, suppose two

data points y1 and y2 are observed and they follow N(�; 2). We want to test H0: � = 0 against H1:

� 6= 0. A natural test is to reject H0 if the absolute value of y = (y1 + y2) =2 is large. Given that
y follows N(�; 1), the 5% critical value is 1:96 since P (jyj > 1:96j� = 0) = 0:05. The acceptance
region is f(y1; y2)j jyj � 1:96g or f(y1; y2)j � 3:92� y1 � y2 � 3:92� y1g. Figure 5 shows this region
based on (y1; y2) and y.

In summary, one hypothesis testing includes the following steps. First, specify the null and
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Figure 5: Acceptance Region Based on (y1; y2) and y

alternative. Second, construct the test statistic. Third, derive the distribution of the test statistic

under the null. Fourth, determine the decision rule (acceptance and rejection regions) by specifying

a level of signi�cance. Fifth, study the power of the test.

8 LSE as a MLE

Another motivation for the LSE can be obtained from the normal regression model.10 This is
the linear regression model with the additional assumption

Assumption OLS.4 (normality): ujx � N(0; �2).

That is, the error ui is independent of xi and has the distribution N(0; �2). This is a parametric

model, where likelihood methods can be used for estimation, testing, and distribution theory. In

this setup, we can get exact distributions of many statistics. In other words, the advantage of

knowing the distribution of the error term is to make use of the �nite-sample information. But if

the distribution assumption is not right, then the exact distribution is not right, so we need study

the robustness of the model. Anyway, this is part of the classical theory in least squares estimation.

We restate the assumptions of the model in matrix notation,

y = X� + u, rank(X) = k, ujX � N(0; In�2):

Note that ujX � N(0; In�2) implies that u is independent ofX (which obviously implies E[ujx] = 0
and E[u2jx] = �2). This is a very strong assumption, e.g., for time series or panel data, this

10Gauss proposed the normal regression model, and derived the LSE as the MLE for this model. Gauss�s assumption
of normality was justi�ed by Laplace�s simultaneous discovery of the central limit theorem (which will be discussed
in the next chapter). This is also why the normal distribution is also called the Gaussian distribution.
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assumption is hard to hold. In the discussion below, we always condition on X; i.e., we always

assume X is �xed.

Since we have the distribution of y conditional onX, we can estimate � and �2 by the conditional

MLE. Here, the average log likelihood is

`n
�
�; �2

�
=
1

n

nX
i=1

ln

�
1p
2��2

exp

�
�(yi � x

0
i�)

2

2�2

��
= �1

2
log (2�)�1

2
log
�
�2
�
� 1
n

nX
i=1

(yi � x0i�)2
2�2

;

so �b�; b�2�
MLE

= argmax
�;�2

`n
�
�; �2

�
=

 b�OLS = (X0X)�1X0Ybu0bu
n = 1

n

Pn
i=1(yi � x0ib�OLS)2

!
:

Before studying the properties of the MLE, we �rst de�ne a term, UMVUE.

De�nition 1 (UMVUE) An estimator b� is the best unbiased estimator or the uniform minimum
variance unbiased estimator of � if E�

hb�i = � for all � and, for any other estimator e� with
E�

he�i = �, we have V ar�
�b�� � V ar�

�e�� for all �, where the subscript � indicates that the
expectation is taken under �.

The following theorem shows that although the MLE of � is the UMVUE, the MLE of �2 is not

since it is not unbiased. Nevertheless, the bias-corrected version of b�2, s2, is the UMVUE of �2.
Theorem 2 (Finite-Sample Properties) In the normal regression model,

(i) 8 a 2 Rk, a � b� is the UMVUE of a � �;
(ii) s2 is the UMVUE of �2.

The proof of this result is out of the scope of this course; interested readers are referred to Theorem

3.7 of Shao (2003) for the details.

We now discuss the distribution theory in the normal regression model. We will discuss two

tests, the t-test and F -test. The former is named after W.S. Gosset (1876-1937), and the later

is named after R.A. Fisher. Since we only know the distribution of u, every statistic must be

converted to a function of u. The basic result is b� � �bu
!
=

 
(X0X)�1X0

M

!
u � N

 
0;

 
�2(X0X)�1 0

0 �2M

!!
: (9)

�b� � �� is independent of bu since MX(X0X)�1 = 0.
We �rst discuss the famous t-statistic which is designed to test H0: �j = �j0 against H1:

�j 6= �j0. The t-statistic is de�ned as

t =
b�j � �j0
s
�b�j�

where s
�b�j� = sq[(X0X)�1]jj is a natural estimator of the standard deviation of b�j ,rV ar �b�j�,
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given that E[s2jX] = �2. s
�b�j� is called a standard error for b�j (a standard error for an

estimator is an estimate of the standard deviation of that estimator).

Theorem 3 In the normal regression model, under H0,

(i) (n�k)s2
�2

� �2n�k, where �2n�k is the chi-square distribution with n� k degrees of freedom.

(ii) t � tn�k, where tn�k is the t-distribution with n� k degrees of freedom.

Proof. Recall that for any idempotent matrix M with rank m, there exists an orthogonal matrix

H such that M = H

 
Im 0

0 0

!
H0. So

(n� k) s2
�2

=
bu0bu
�2

=
u0Mu

�2
=
1

�2
u0H

 
In�k 0

0 0

!
H0u

= v0

 
In�k 0

0 0

!
v � �2n�k:

Here v = H0u=� � N (0;H0H) = N(0; In). Note that when n goes to in�nity,
(n�k)s2
�2

should

diverge (why?).

b�j � �j
s(b�j) =

b�j � �j
s
q
[(X0X)�1]jj

�
N(0; �2

�
(X0X)�1

�
jj
)q

�2

n�k�
2
n�k

q
[(X0X)�1]jj

=
N(0; 1)q

�2n�k
n�k

� tn�k:

The last step is from (9), i.e.,
�b�j � �j� is independent of s(b�j). An interesting observation is that

this t-distribution converge to standard normal when n goes to in�nity (why?).

Exercise 16 Show that SSE
�2

� �2k�1 if � = 0, where � is � excluding the intercept.

Exercise 17 Suppose y = X� + u, where u � N(0;D) with D being a known diagonal matrix.

Show that WSSRU �
�
y �Xb��0D�1

�
y �Xb�� � �2n�k, where b� = �X0D�1X

��1
X0D�1y is a

GLS estimator.

We next consider the general linear hypothesis testing problem11:

H0 : R0� = c;

H1 : R0� 6= c;
11Why we do not consider the nonlinear hypothesis testing in the �nite-sample environment?
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where R is a k � q matrix with q � k. Suppose the estimate under H0 is
�e�; e�2�; then

`n

�b�; b�2� = �n
2
log (2�)� n

2
� n
2
log

�
SSRU
n

�
;

`n

�e�; e�2� = �n
2
log (2�)� n

2
� n
2
log

�
SSRR
n

�
;

where SSRU is the SSR of the unrestricted model and SSRR is the SSR of the restricted model.

Exercise 18 Show that

SSRR � SSRU =
�b� � e��0 �X0X� �b� � e�� = �R0b� � c�0 �R0(X0X)�1R��1 �R0b� � c�

= b�0R0(X0X)�1Rb� = �y �Xe��0P�y �Xe�� :
(Hint: Use the results in Exercise 26 of Chapter 2).

Theorem 4 In the normal regression model, under H0,

F =

�
R0b� � c�0 �R0(X0X)�1R��1 �R0b� � c� =q

s2
(Wald Principle)

=
�
R0b� � c�0 �R0 � \

V ar(b�jX) �R��1 �R0b� � c� =q
=

(SSRR � SSRU ) =q
SSRU=(n� k)

(Likelihood-Ratio Principle)

=

�e�2 � b�2� =qb�2=(n� k) =
�
R2U �R2R

�
=q

(1�R2U )=(n� k)
� Fq;n�k:

Proof. Under H0,
�
R0b� � c� � N �0; �2R0(X0X)�1R�, so

�
R0b� � c�0 ��2R0(X0X)�1R��1 �R0b� � c� � �2q

From Theorem 3(i), (n�k)s
2

�2
� �2n�k. Also, from (9), they are independent, so�

R0b� � c�0 ��2R0(X0X)�1R��1 �R0b� � c� =q
(n�k)s2
�2

=(n� k)
= F � Fq;n�k

Some special cases of the F test are listed as follows:

(i) R0 = [0; � � � ; 0; 1; 0; � � � ; 0], where 1 is in the jth position, c = �j0, and q = 1. It is easy to

check that F = t2, so F1;n�k = t2n�k.
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(ii) R0 =

0BBBB@
0 1 0 � � � 0

0 0 1 � � � 0
...
...
...
. . .

...

0 0 0 � � � 1

1CCCCA
(k�1)�k

, c =

0BB@
0
...

0

1CCA
(k�1)�1

. This is usually called the signi�cance

test since it tests whether all slopes are zero. Since R2R = 0 in this case, F =
R2U=q

(1�R2U )=(n�k)
.

F associated with this choice of R is a popular statistic in the early days of econometric

reporting, when sample sizes were very small and researchers wanted to know if there was

"any explanatory power" to their regression. This is rarely an issue today, as sample sizes are

typically su¢ ciently large that this F statistic is highly "signi�cant". While there are special

cases where this F statistic is useful, these cases are atypical.

Exercise 19 In the setup of Exercise 17, show that F with R2 replaced by Buse (1973)�s R2,

R2 =
WSSRR �WSSRU

WSSRR

follows Fk�1;n�k under the null (ii) above, where WSSRR = y0D�1y � (y0D�11)2

10D�11 .

(iii) Chow (1960) considered the test �1 = �2 in the regression y = d � x0�1 + (1 � d)x0�2 + u,
where d is a dummy variable. This test intends to check whether the independent variables

have di¤erent impacts on di¤erent subgroups of the population. The Chow test is most

commonly used in time series analysis to test for the presence of a structural break. Figure

6 shows the restricted and unrestricted model, where the left panel is for the structural

break case (d = 1(x � 
) for some known constant 
). In this test, � = (�01;�
0
2)
0 2 R2k,

R0 =

0BBBB@
1 0 � � � 0 �1 0 � � � 0

0 1 � � � 0 0 �1 � � � 0
...
...
. . .

...
...

...
. . .

...

0 0 � � � 1 0 0 � � � �1

1CCCCA
k�2k

, c =

0BB@
0
...

0

1CCA
k�1

. SSRR is the SSR in the

restricted regression y = x0�+u, and SSRU = SSR0+SSR1, where SSR0 is the SSR in the

regression y = x0� + u using only the data with d = 0, and SSR1 is similarly de�ned. A key

assumption for the F statistic to follow Fk;n�2k is homoskedasticity, that is, the error variances

for the two groups are the same. Extensions of the Chow test to the heteroskedasticity and

unknown 
 case are available in the current econometric literature.

If you are presented with an F statistic but don�t have access to critical values, a useful rule

of thumb is to know that for large n, the 5% asymptotic critical value is decreasing as q increases,

and is less than 2 for q � 7.
The powers of the t-test and F -test are related to the non-central t-distribution and the non-

central F -distribution and will not be discussed in this course since they are not that popular

nowadays.

The t-test and F -test are �nite-sample tests, i.e., they assume that n is �xed. While elegant, the

di¢ culty in applying these tests is that the normality assumption is too restrictive to be empirically
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Figure 6: Restricted and Unrestricted Model in the Chow Test

plausible, and therefore inference based on these tests has no guarantee of accuracy. We develop

an alternative inference theory based on large sample (asymptotic) approximations in the following

chapter.

Exercise 20 (Empirical) Use the data from the empirical exercise in Chapter 2. Numerically

calculate the following:

(a)
Pn
i=1 bu2i

(b) b�2 and s2
(c) R2, R2 and R2u

(d) In the second-stage residual regression, (the regression of the residuals on the residuals), cal-
culate the equation R2 and sum of squared errors. Do they equal the values from the initial

OLS regression? Explain.
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