
Chapter 2. Projection�

In this chapter, we explain projection in two Hilbert spaces (L2 and Rn) and integrate many
estimators in one framework. Especially, the least squares estimator (LSE) can be treated as a

projection in Rn. Related materials can be found in Chapter 2 of Hansen (2007) and Chapter 2, 3,
4 and 6 of Ruud (2000). A more technical (but still readable) treatment of projection can be found

in Yanai et al. (2011).

Although the LSE has many interpretations, e.g., as a MLE or a MoM estimator, the most

intuitive interpretation is to employ the language of projection. Projection provides a geometric

interpretation of the LSE.

1 Hilbert Space and Projection Theorem

Whenever we discuss projection, there must be an underlying Hilbert space since we must de�ne

"orthogonality".

De�nition 1 (Hilbert Space) A complete inner product space is called a Hilbert space.1 An

inner product is a bilinear operator h�; �i : H �H ! R, where H is a real vector space,2 satisfying

for any x; y; z 2 H and � 2 R,

(i) hx+ y; zi = hx; zi+ hy; zi ;

(ii) h�x; zi = � hx; zi ;

(iii) hx; zi = hz; xi ;

(iv) hx; xi � 0 with equal if and only if x = 0:
�Email: pingyu@hku.hk
1A metric space (H; d) is complete if every Cauchy sequence in H converges in H, where d is a metric on H. A

sequence fxng in a metric space is called a Cauchy sequence if for any " > 0, there is a positive integer N such
that for all natural numbers m;n > N , d(xm; xn) < ".

2A real vector space is a set V together with two operations (addition and scalar multiplication) that satisfy
the eight axioms listed below, where vectors are distinguished from scalars by boldface. (i) Associativity of addition:
u + (v +w) = (u + v) +w. (ii) Commutativity of addition: u + v = v + u. (iii) Identity element of addition:
There exists an element 0 2 V , called the zero vector, such that v + 0 = v for all v 2 V . (iv) Inverse elements
of addition: For every v 2 V , there exists an element �v 2 V , called the additive inverse of v, such that
v + (�v) = 0. (v) Compatibility of scalar multiplication with multiplication in R: a(bv) = (ab)v. (vi) Identity
element of scalar multiplication: 1v = v. (vii) Distributivity of scalar multiplication with respect to vector addition:
a(u+ v) = au+ av. (viii) Distributivity of scalar multiplication with respect to addition in R: (a+ b)v = av + bv.
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We denote this Hilbert space as (H; h�; �i).

The inner product space is a special case of the normed space which is in turn a special case of

the metric space. The complete normed space is called the Banach space. Essentially, the metric
space de�nes "distance", the normed space de�nes "length", and the inner product space de�nes

"angle".

An important inequality in the inner product space is the Cauchy�Schwarz inequality:

jhx; yij � kxk � kyk ;

where k�k �
p
h�; �i is the norm induced by h�; �i.3 Due to this inequality, we can de�ne

angle(x; y) = arccos
hx; yi

kxk � kyk :

We assume the value of the angle is chosen to be in the interval [0; �]. This is in analogy to the

situation in two-dimensional Euclidean space as shown in Figure 1. If hx; yi = 0, angle(x; y) = �
2 ;

we call x is orthogonal to y and denote it as x ? y.

The most popular Hilbert spaces are L2(P ) and Rn associated with some inner products. Note
that the same H endowed with di¤erent inner products are di¤erent Hilbert spaces.

Exercise 1 (Parallelogram Law) Show that kx� yk2+kx+ yk2 = 2 kxk2+2 kyk2. What is the
intuition for this law?

The ingredients of a projection are fy;M; (H; h�; �i)g, whereM is a subspace of H. Our objective

is to �nd some �(y) 2M such that

�(y) = arg min
h2M

ky � hk2 : (1)

�(�): H !M is called a projector, and �(y) is called a projection of y.
The following projection theorem is critical in the following discussion. To ease exposition, we

�rst de�ne the direct sum of two subspaces, the orthogonal space of a subspace and the projector.

De�nition 2 Let M1 and M2 be two disjoint subspaces of H so that M1 \M2 = f0g. The space

V = fh 2 Hjh = h1 + h2; h1 2M1; h2 2M2g

is called the direct sum of M1 and M2 and it is denoted by V =M1 �M2.

Exercise 2 Show that for any h 2 V , where V = M1 �M2, it can be uniquely decomposed as

h = h1 + h2, where h1 2M1, and h2 2M2.

3This is why the inner product space is a special normed space. If we de�ne d(x; y) = kx� yk, then we can see
the normed space is a special metric space.
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Figure 1: Angle in Two-dimensional Euclidean Space

De�nition 3 Let M be a subspace of H. The space

M? � fh 2 Hj hh;Mi = 0g

is called the orthogonal space or orthogonal complement of M , where hh;Mi = 0 means h is

orthogonal to every element in M .

De�nition 4 Suppose H =M1�M2. Let h 2 H so that h = h1+ h2 for unique hi 2Mi, i = 1; 2.

Then P is a projector onto M1 along M2 if Ph = h1 for all h. In other words, PM1 = M1 and

PM2 = 0. When M2 =M?
1 ,
4 we call P as an orthogonal projector.

For intuitive illustration of the projector and the orthogonal projector, see Figure 2, where the

right panel is an orthogonal projector and the left panel is an projector but is not an orthogonal

projector. We label M1 in the �gure, but what is M2 in the two cases?

Theorem 1 (Hilbert Projection Theorem) If M is a closed subspace of a Hilbert space H,

then for each y 2 H, there exists a unique point x 2 M for which ky � xk is minimized over M .
Moreover, x is the closest element in M to y if and only if hy � x;Mi = 0.

Proof (*). The �rst part of the theorem states the existence and uniqueness of the projector.

The second part of the theorem states something related to the �rst order conditions (FOCs) of

(1) or, simply, orthogonal conditions.
4Generally, H cannot be expressed as M1 �M?

1 unless M1 is closed; see the following theorem.
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Figure 2: Projector and Orthogonal Projector

Existence of x: Let � be the distance between y and M , fxng a sequence in M such that the

distance squared between y and xi is below or equal to �2 + 1=n. Let n and m be two integers,

then the following equalities are true:

kxn � xmk2 = kxn � yk2 + kxm � yk2 � 2 hxn � y; xm � yi

and
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xn + xm2
� y




2 = kxn � yk2 + kxm � yk2 + 2 hxn � y; xm � yi :

We have therefore

kxn � xmk2 = 2 kxn � yk2 + 2 kxm � yk2 � 4




xn + xm2

� y




2

� 2

�
�2 +

1
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�
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1
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�
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+
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�
;

where the inequality is from the assumption on fxng and the fact that xn+xm
2 2 M . The last

inequality proves that fxng is a Cauchy sequence. Since M is complete, the sequence is therefore

convergent to a point x in M , whose distance from y is minimal.

Uniqueness of x: Let x1 and x2 be two minimizers. Then

kx2 � x1k2 = 2 kx1 � yk2 + 2 kx2 � yk2 � 4




x1 + x22

� y




2 :

Since x1+x2
2 2M , we have



x1+x2
2 � y



2 � �2 and therefore

kx2 � x1k2 � 2�2 + 2�2 � 4�2 = 0:
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Figure 3: Projection

Hence x1 = x2, which proves unicity.

Orthogonal Conditions:
(= Let z 2M such that hy � z; ai = 0 for all a 2M .

ky � ak2 = ky � zk2 + kz � ak2 + 2 hy � z; z � ai = ky � zk2 + kz � ak2 � ky � zk2 ;

which proves that z is a minimizer.

=) Let x 2M be the minimizer. Let a 2M and t 2 R.

ky � (x+ ta)k2 � ky � xk2 = �2t hy � x; ai+ t2 kak2 = �2t hy � x; ai+O
�
t2
�
� 0:

Therefore, hy � x; ai = 0.
From the theorem, given any closed subspaceM ofH, H =M�M?. Also, the closest element inM

to y is determined by M itself, not the vectors generating M since there may be some redundancy

in these vectors. The intuition for the Hilbert projection theorem is illustrated in Figure 3.

Exercise 3 (Pythagorean Theorem) Prove that if x ? y in (H; h�; �i), then kx+ yk2 = kxk2 +
kyk2.

Sometimes, we need a sequential projection procedure. That is, we �rst project y onto a larger

space M2, and then project the projection of y (in the �rst step) onto a smaller space M1. The

following theorem shows that such a sequential procedure is equivalent to projecting y onto M1

directly.
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Theorem 2 (Law of Iterated Projections or LIP) If M1 and M2 are closed subspaces of a

Hilbert space H, and M1 � M2, then �1(y) = �1(�2 (y)), where �j(�), j = 1; 2, is the orthogonal
projector of y onto Mj.

Proof. Write y = �2 (y) + �?2 (y). Then

�1(y) = �1(�2 (y) + �
?
2 (y)) = �1(�2 (y)) + �1(�

?
2 (y)) = �1(�2 (y));

where the last equality is because


�?2 (y) ; x

�
= 0 for any x 2M2 and M1 �M2.

Exercise 4 Show that �(x+ y) = �(x) + �(y) and �(ax) = a�(x) for a 2 R and x; y 2 H.

2 Projection in the L2 Space

We will consider projection onto two subspaces of the L2 space, where x 2 L2(P ) means E[x2] <1.
The �rst subspace is smaller and generates "linear projection"; the second subspace is larger and

generates "regression". Usually, the projections in the L2 space are treated as the population

version of the counterparts in the sample space.5

Example 1 (Linear Projection) y 2 L2(P ) , x1; � � � ; xk 2 L2(P ), M = span (x1; � � � ; xk) �
span(x),6 H = L2(P ) with h�; �i de�ned as hx; yi = E [xy]. Now,

�(y) = arg min
h2M

E
h
(y � h)2

i
= x0 � arg min

�2Rk
E
h
(y � x0�)2

i (2)

is called the best linear predictor (BLP)7 of y given x, or the linear projection of y onto x, and
is often denoted as E�[yjx]. Since this is a concave programming problem, FOCs are su¢ cient:

� 2E
�
x
�
y � x0�0

��
= 0) E [xu] = 0 (3)

where u = y��(y) is the error, and �0 = arg min
�2Rk

E
h
(y � x0�)2

i
.8 Now, the minimization problem

(2) is reduced to orthogonal conditions (3) which are some moment conditions. Both of them are

useful in solving this problem.

We could see that �(y) always exists and is unique, but �0 needn�t be unique unless x1; � � � ; xk
are linearly independent, that is, there is no nonzero vector a 2 Rk such that a0x = 0 almost surely
(a.s.). In this case, �0 is unique. If 8 a 6= 0, a0x 6= 0, then E

h
(a0x)2

i
> 0 and a0E [xx0]a > 0,

5 Intuitively speaking, the population version is the version where the sample size is in�nite, while the sample
version is the version where the sample size is �nite. This is why we need to study the bias and variance of the
sample-version estimators; for the population version, both bias and variance are zero.

6span(x) =
�
z 2 L2(P )jz = x0�;� 2 Rk

	
:

7BLP is also a short for Berry, Levinsohn and Pakes (1995) if your �eld is empirical IO.
8x = (1; x2; � � � ; xk)0, then E [xu] = 0 implies E[u] = 0 and Cov(xj ; u) = 0, j = 2; � � � ; k.

6



thus E [xx0] > 0. So from (3),

�0 =
�
E
�
xx0
���1

E [xy] (why?) (4)

and �(y) = x0 (E [xx0])�1E [xy]. Note here that we use subscript 0 to denote the projection coe¢ -

cient in the L2 space; in the literature, �0 in (4) usually represents the true value of �. �

Exercise 5 Show that hx; yi = E [xy] is an inner product in L2(P ).

Exercise 6 Let H is L2(P ) excluding constant random variables, i.e., the constant random vari-

ables are absorbed in the zero element of H. (i) Show that Cov(�; �) is an inner product on H. (ii) Let
M = span (x1; � � � ; xk) be as in Example 1 with V ar(x) > 0, but now x1; � � � ; xk couldn�t be constant
(otherwise, V ar(x) cannot be positive de�nite). 8 y 2 H, �nd �(y). (Hint: x0V ar(x)�1Cov(x; y).)

Example 2 (Regression) The setup is the same as Example 1 except that M = L2(P; �(x)),

where L2(P; �(x)) is the space spanned by any function of x (not only the linear function of x) as

long as it is in L2(P ). Now, the problem is

�(y) = arg min
h2M

E
h
(y � h)2

i
(5)

Note that

E
h
(y � h)2

i
= E

h
(y � E[yjx] + E[yjx]� h)2

i
= E

h
(y � E[yjx])2

i
+ 2E [(y � E[yjx]) (E[yjx]� h)] + E

h
(E[yjx]� h)2

i
= E

h
(y � E[yjx])2

i
+ E

h
(E[yjx]� h)2

i
� E[u2];

so �(y) = E [yjx],9 which is called the population regression function (PRF), where the error
u = y � E[yjx] satis�es E[ujx] = 0 (why?), and E [(y � E[yjx]) (E[yjx]� h)] = 0 follows from the

following exercise. Also, similar to (3), we can use variation to characterize the FOCs:

0 = argmin
�2R

E
h
(y � (�(y) + �h(x)))2

i
) �2 E [h(x) (y � (�(y) + �h(x)))]j�=0 = 0
) E [h(x)u] = 0, 8 h(x) 2 L2(P; �(x))

(6)

So E[h(x)u] = 0 is the FOC in this projection problem. �

Exercise 7 (i) Law of Iterated Expectations (LIE): Show that E [E[yjx1;x2]jx1] = E[yjx1] if y,
x1 and x2 are all in L2(P ). When x1 = 1, what is the intuition for this result? (ii) Show that

9 (*) Strictly speaking, we do not need y 2 L2(P ) to de�ne E[yjx]. y 2 L1(P ), i.e., E[jyj] <1, is enough for the
de�nition of E[yjx]. Notwithstanding, given that L1(P ) is not a Hilbert space (although it is a Banach space), we
assume y 2 L2(P ) to use the projection structure of the L2(P ) space. See the technical appendix of this chapter for
the formal de�nition of conditional expectation.
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Figure 4: Linear Approximation of Conditional Expectation (I)

E[h(x)ujx] = h(x)E[ujx]. What is the intuition for this result? (iii) Based on the results in (i) and
(ii), show that if E[ujx] = 0, then E[u] = 0, E[xu] = 0 and E[h(x)u] = 0 for any function h(�).
(iv) Show that the conditional variance �2(x) = E

�
y2jx

�
�m(x)2, and the unconditional variance

V ar(y) = V ar(m(x)) + E
�
�2(x)

�
, where m(x) = E [yjx].

In Example 1, �1(y) = x0 (E [xx0])�1E [xy], and in Example 2, �2(y) = E [yjx]. What is
the relationship between �1(y) and �2(y)? We use Figure 4 and 5 to illustrate this relationship.

Basically, �1(y) is the BLP of �2(y) given x, i.e., the BLPs of y and �1(y) given x are the same.

This is a straightforward application of the law of iterated projections. Nevertheless, we conduct

the following explicit calculation to get more insights. De�ne

�o = arg min
�2Rk

E
h�
E [yjx]� x0�

�2i
= arg min

�2Rk

Z h�
E [yjx]� x0�

�2i
dF (x):

The FOCs for this minimization problem are

E [�2x (E [yjx]� x0�o)] = 0
) E [xx0]�o = E [xE [yjx]] = E [xy]

) �o = (E [xx
0])�1E [xy] = �0

In other words, �0 is a (weighted) least squares approximation to the true model. If E [yjx] is
not linear in x, �o depends crucially on the weighting function F (x) or the distribution of x. The

weighting function ensures that frequently drawn xi will yield small approximation errors at the cost

of larger approximation errors for less frequently drawn xi. This approximation was investigated
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Figure 5: Linear Approximation of Conditional Expectation (II)

in White (1980a).

Exercise 8 Show that E
�
(y � x0�o)2

�
= E

h
(E[yjx]� x0�o)

2
i
+ E[u2], where u = y � E[yjx].

Interpret this result using Figure 5.

Exercise 9 Let x and y have the joint density f(x; y) = 3
2(x

2 + y2) on 0 � x � 1, 0 � y � 1.

Compute the coe¢ cients of the best linear predictor �1(y) = E�[yjx] = �1 + �2x. Compute the

conditional mean �2(y) = E[yjx]. Are they di¤erent?

Exercise 10 (Hájek (1968) Projection *) Let x1; � � � ; xk be independent random variables10,

and M =

�
kP
i=1

gi(xi) : E
�
g2i (xi)

�
<1; i = 1; � � � ; k

�
. 8 y 2 L2(P ), �nd �(y). (Hint: �(y) =Pk

i=1E [yjxi]� (k � 1)E[y].)

Linear regression is a special case of regression with E[yjx] = x0�. From the above discussion,

we know regression and linear projection are implied by the de�nition of projection, but linear

regression is a "model" where some structure (or restriction) is imposed. Figure 6 clari�es this

point. In Figure 6, when we project y onto a larger space M2 = L2(P; �(x)), �(y) falls into a

smaller spaceM1 = span (x) by coincidence, so there must be a restriction on the joint distribution

of (y;x) (what kind of restriction?). In summary, the linear regression model is

y = x0� + u;

E[ujx] = 0:

10Note that x1; � � � ; xk in Example 1, 2 and Exercise 6 could be dependent.
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Figure 6: Linear Regression

Recall that E[ujx] = 0 is necessary for a causal interpretation of �.

Exercise 11 Suppose that y is discrete-valued, taking values only on the non-negative integers,
and the conditional distribution of y given x is Poisson:

P (y = kjx) = exp(�x0�)(x0�)j
j!

; j = 0; 1; 2; � � �

Compute E[yjx]. Does this justify a linear regression model of the form y = x0� + u? (Hint: If

P (y = j) = exp(��)�j
j! , then E[y] = �.)

3 Projection in Rn

We studies two projections in Rn. The �rst projection generates the ordinary least squares
(OLS) estimator or the LSE,11 and the second one generates the generalized least squares
(GLS) estimator. The GLS estimator is sometimes called the Aitken estimator. Usually, the
projection in Rn is treated as the sample counterpart of the population version.

From elementary econometrics, the least squares estimator (LSE) is de�ned as

b� = arg min
�2Rk

SSR(�) = arg min
�2Rk

nX
i=1

�
yi � x0i�

�2
= arg min

�2Rk
En

h�
y � x0�

�2i
;

11The least-squares method is usually credited to Gauss (1809), but it was �rst published as an appendix to
Legendre (1805) which is on the paths of comets. Nevertheless, Gauss claimed that he had been using the method
since 1795.
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Figure 7: Objective Functions of OLS Estimation: k = 1; 2

where En[�] is the expectation under the empirical distribution of the data, and

SSR(�) �
nX
i=1

�
yi � x0i�

�2
=

nX
i=1

y2i � 2�0
nX
i=1

xiyi + �
0
nX
i=1

xix
0
i�

is the sum of squared residuals as a function of �. Figure 7 shows a typical SSR(�) when k = 1

and 2.

SSR(�) is a quadratic function of �, so the FOCs are also su¢ cient to determine the LSE.

Matrix calculus12 gives the FOCs for b�:
0 =

@

@�
SSR(b�) = �2 nX

i=1

xiyi + 2
nX
i=1

xix
0
i
b�

= �2X0y + 2X0Xb�;
which is equivalent to the normal equations13

X0Xb� = X0y:
So b� = (X0X)�1X0y:

The above derivation of b� expresses the LSE using rows of the data matrices y and X. The
following example expresses the LSE using columns of y and X.

12 @
@x
(a0x) = @

@x
(x0a) = a, and @

@x
(x0Ax) = (A+A0)x.

13The term "normal equations" comes from the fact that they characterize the normal vector y�Xb� to span(X)
which is de�ned below.
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Example 3 (OLS) y 2 Rn , X1; � � � ;Xk 2 Rn are linearly independent,M = span (X1; � � � ;Xk) �
span(X),14 H = Rn with the Euclidean inner product.15 Now,

�(y) = arg min
h2M

ky � hk2

= X � arg min
�2Rk

ky �X�k2

= X � arg min
�2Rk

nP
i=1
(yi � x0i�)

2 ;

(7)

where
Pn
i=1 (yi � x0i�)

2 is exactly the objective function of OLS. As �(y) = Xb�, we can solve outb� by premultiplying both sides by X, that is,
X0�(y) = X0Xb� ) b� = (X0X)�1X0�(y);

where (X0X)�1 exists because X is full rank. On the other hand, orthogonal conditions for this

optimization problem are

X0bu = 0,
where bu = y � �(y). Since these orthogonal conditions are equivalent to normal equations (or the
FOCs), b� = (X0X)�1X0y. These two b��s are the same since (X0X)�1X0y � (X0X)�1X0�(y) =
(X0X)�1X0bu = 0. Finally,

�(y) = X(X0X)�1X0y = PXy;

where PX is called the projection matrix. �

Exercise 12 (i) Someone claims that
Pn
i=1 bui = 0. Is this true or not? When is this true? (Hint:

1 2 span (X).) (ii) Check that �(y)0bu = 0 by explicit calculation.
In the above calculation, we �rst project y on span(X) and then �nd b� by solving �(y) = Xb�.

The two steps involve very di¤erent operations: optimization versus solving linear equations. Fur-

thermore, although �(y) is unique, b� may not be. When rank(X) < k or X is rank de�cient, there

are more than one (actually, in�nite) b� such that Xb� = �(y). This is called multicollinearity
and will be discussed in more details in the next chapter. In the following discussion, we always

assume rank(X) = k or X is full-column rank ; otherwise, some columns of X can be deleted to

make it so.

Exercise 13 A dummy variable takes on only the values 0 and 1. It is used for categorical data,
such as an individual�s gender. Let d1 and d2 be vectors of 1�s and 0�s, with the i�th element of

d1 equaling 1 and that of d2 equaling 0 if the person is a man, and the reverse if the person is a

woman. Suppose that there are n1 men and n2 women in the sample. Consider the three regressions

y = �1+ d1�1 + d2�2 + u; (8)
14span(X) =

�
z 2 Rnjz = X�;� 2 Rk

	
is called the column space or range space of X:

15Recall that for x = (x1; � � � ; xn), and z = (z1; � � � ; zn), the Euclidean inner product of x and z is hx; zi =Pn
i=1 xizi.
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y = d1�1 + d2�2 + u; (9)

y = �1+ d1�+ u; (10)

(a) Can all three regressions (8), (9), and (10) be estimated by OLS? Explain if not.

(b) Compare regressions (9) and (10). Is one more general than the other? Explain the relationship
between the parameters in (9) and (10).

(c) Compute 10d1 and 10d2.

(d) Letting � = (�1; �2)0, write equation (9) as y = X�+u: Consider the assumption E[xiui] = 0.
Is there any content to this assumption in this setting?

Example 4 (GLS) All are the same as in the last example except hx; ziW = x0Wz, where the

weight matrix W is positive de�nite. The projection

�(y) = X � arg min
�2Rk

ky �X�k2W : (11)

FOCs are

hX; euiW = 0 (orthogonal conditions)

where eu = y �Xe�, that is,
hX;XiW e� = hX;yiW ) e� = (X0WX)�1X0Wy:

Thus

�(y) = X(X0WX)�1X0Wy = PX?WXy

where the notation PX?WX will be explained later. �

Exercise 14 (i) Show that h�; �iW is an inner product. (ii) Is PX?WX idempotent16? Why? (iii)

Is PX?WX symmetric? (iv) Check that �(y)0Weu = 0 by explicit calculation.
(*) The sample counterpart of regression is out of the scope of this course. Roughly speaking,

there are two methods to estimate E[yjx]: the kernel method and the sieve method. See Pagan and
Ullah (1999) and Li and Racine (2007) for an introduction on these methods. It is quite natural to

interpret the sieve estimator as a projection. As to the kernel estimator, see Mammen et al. (2001)

for such an interpretation.

3.1 Projection Matrices

Since �(y) = PXy is the orthogonal projection onto span(X), PX is the orthogonal projector

onto span(X). Similarly, bu = y � �(y) = (In �PX)y � MXy is the orthogonal projection onto

16A matrix A is idempotent if A is square and AA = A.
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span?(X), so MX is the orthogonal projector onto span?(X). Check that

PXX = X(X0X)�1X0X = X;

MXX = (In �PX)X = 0;

we say PX preserves span(X),MX annihilates span(X), andMX is called the annihilator. This
implies another way to express bu:

bu =MXy =MX(X� + u) =MXu:

Also, it is easy to check MXPX = 0, so MX and PX are orthogonal.

Check that

P0X =
�
X(X0X)�1X0

�0
= X(X0X)�1X0 = PX;

so PX is symmetric. Check also that

P2X =
�
X(X0X)�1X0

� �
X(X0X)�1X0

�
= PX;

so PX is idempotent. Furthermore, for any � 2 Rn,

�0PX� =
�
X0�

�0
(X0X)�1X0� � 0;

so PX is positive semide�nite. Symmetry, idempotentness and positive semide�niteness are actually

necessary properties for any orthogonal projector in Rn.

Exercise 15 (i) Show thatMX is symmetric, idempotent and positive semide�nite. (ii) In the GLS

estimation, de�ne P = X(X0WX)�1X0W and M = I �X(X0WX)�1X0W. Show that P0WP =

WP and M0WM =WM.

Theorem 3 (*) If P is an orthogonal projector onto the subspace M of Rn, then P is unique,

symmetric, idempotent, and positive semide�nite and I�P is an orthogonal projector onto M?.

Proof. Unique: Although uniqueness of P is implied by the Hilbert projection theorem, we use

some special structure of Rn in the following proof. Let P1 and P2 be two orthogonal projectors
ontoM . By the de�nition of orthogonal projectors, the orthogonal projection is unique: P1z = P2z

for all z 2 Rn. Setting z equal to each of the natural basis vector in In, we have the matrix equality
P1In = P2In or P1 = P2. Symmetric: By de�nition, Pz ? (In �P)z for all z 2 Rn. That is,

0 = [(In �P)z]0(Pz) = z0(P�P0P)z:

Because this is true for all z, P � P0P = 0 or P = P0P. Because P0P is symmetric, so is P.

Idempotent: By de�nition, Pz 2 M for all z 2 Rn. Also by de�nition, P(Pz) = Pz for all

z. Therefore, PP = P. This is actually a simple implication of the law of iterated projections.
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Positive semide�nite: For any z 2 Rn, z0Pz = z0PPz = z0P0Pz = (Pz)0 (Pz) = kPzk2 � 0.

Duality: Let z = z1 + z2, where z1 2 M and z2 2 M?. Then (In�P)z = z � z1 = z2 2 M? so

that In �P is the orthogonal projector onto M?.

For a general "nonorthogonal" projector P, it is still unique and idempotent, but need not

be symmetric (let alone positive semide�niteness). For example, PX?WX in Example 4 is not

symmetric (see Exercise 14). We will provide more discussion on the symmetry of a projector in

the next section.

Another caution is that we cannot strengthen "positive semide�nite" to "positive de�nite".

Recall that for an idempotent matrix, the rank equals the trace.

tr(PX) = tr(X(X0X)�1X0) = tr((X0X)�1X0X) = tr(Ik) = k < n;

and

tr(MX) = tr(In �PX) = tr(In)� tr(PX) = n� k < n:

When k = n, PX = In and the projector is trivial.

4 Partitioned Fit and Residual Regression

It is of interest to understand the meaning of part of b�, say, b�1 in the partition of b� = (b�01; b�02)0,
where we partition

X� =

�
X1
...X2

� 
�1

�2

!
k1

k2

with rank(X) = k.17 We will show that b�1 is the "net" e¤ect of X1 on y when the e¤ect of X2
is removed from the system. This result is called the Frisch-Waugh-Lovell (FWL) theorem due to

Frisch and Waugh (1933) and Lovell (1963). The FWL theorem is an excellent implication of the

projection property of least squares. We could state this theorem in both Hilbert spaces, but for

practical purpose, we only state the theorem in Rn, and the L2 case is left as exercise. To simplify
notation, Pj � PXj , Mj �MXj , �j(y) = Xjb�j , j = 1; 2.
Theorem 4 b�1 could be obtained when the residuals from a regression of y on X2 alone are re-

gressed on the set of residuals obtained when each column of X1 is regressed on X2. In mathematical

notations, b�1 = �X01?2X1?2��1X01?2y?2 = �X01M2X1
��1

X01M2y:

where X1?2 = (I�P2)X1 =M2X1, y?2 = (I�P2)y =M2y.

This theorem states that b�1 can be calculated by the OLS regression of ey =M2y on eX1 =M2X1.

This technique is called residual regression.
17 (*) Partitioned �t can also reduce the dimensionality of a �tting problem when the dimension of span(X2) is

huge, e.g., in the �xed e¤ect panel data model, X2 collects the indicators for each individual, so dim(span(X2)) =
rank(X2) = n.
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Figure 8: The FWL Theorem

Exercise 16 When can we get b�1 by regressing y only on X1? What�s the intuition here? (Hint:
X1 is orthogonal to X2.)

Exercise 17 Show that X01?2X2 = 0, y
0
?2X2 = 0, and we regress y?2 on (X1?2;X2), the coe¢ -

cients for X2 are zero. What is the intuition in these results?

Corollary 1

�1(y) � X1b�1 = X1 �X01?2X1��1X01?2y � P12y = P12(�(y)):
Exercise 18 Show that P12 preserves span(X1) and annihilates span(X2), and which implies

P12(�1(y)) = �1(y), P12(�2(y)) = 0 and P12(�(y)) = �1(y).

Figure 8 shows the intuition underlying the FWL theorem. In the �gure, we use �(y) instead

of y or we assume there is a perfect �t. But from the discussion in the last section or the corollary,

this will not a¤ect the result. The residual of �(y) regressing on X2 is equal to the dotted red

arrow in the �gure, and the residual of X1 regressing on X2 is equal to the solid red arrow in the

�gure. b�1 is equal to the length of �1(y) divided by the length of X1, which is exactly equal to
the length of the dotted red arrow divided by the length of the solid red arrow by similarity of the

two triangles.

To understand the projector P12, we write it out explicitly as

P12 = X1|{z}
trailing term

�
X01(I�P2)X1

��1
X01(I�P2)| {z }
leading term

:
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Figure 9: Projection by P12

I�P2 in the leading term annihilates span(X2) so that P12(�2(y)) = 0. The leading term sends

�(y) toward span?(X2). But the trailing X1 ensures that the �nal result will lie in span(X1). The

rest of the expression for P12 ensures that X1 is preserved under the transformation: P12X1 = X1.

Since P12y = P12(�(y)), we can treat the projector P12 as a sequential projector: �rst project

y onto span(X) to get �(y), and then project �(y) to span(X1) along span(X2) to get �1(y). b�1
is calculated from �1(y) by b�1 = (X01X1)�1X01�1(y):
Figure 9 shows the intuition in this sequential projection.

Proof of Theorem. We use three methods to prove this theorem.

Method I: The crude (or brute-force) method is to calculate b�1 explicitly in the residual regression
and check whether it is equal to the LSE of �1. This calculation need the partitioned inverse

formula,  
A11 A12

A21 A22

!�1
=

 eA�111 �eA�111 A12A�122
�A�122 A21 eA�111 A�122 +A

�1
22 A21

eA�111 A12A�122
!

(12)

where eA11 = A11 �A12A�122 A21.
Recall that residual regression includes the following three steps.

Step 1: Projecting y on X2, we have the residuals

buy = y �X2(X02X2)�1X02y =M2y:
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Step 2: Projecting X1 on X2, we have the residuals

bUx1 = X1 �X2(X02X2)�1X02X1 =M2X1:

Step 3: Projecting buy on bUx1 , we get the residual regression estimator of �1

e�1 =
�bU0

x1
bUx1

��1 bU0
x1buy = �X01M2X1

��1 �
X01M2y

�
=

�
X01X1 �X01X2(X02X2)�1X02X1

��1 h
X01y �X01X2

�
X02X2

��1
X02y

i
� W�1

h
X01y �X01X2

�
X02X2

��1
X02y

i
From (12), we have

b� =

 
X01X1 X01X2

X02X1 X02X2

!�1 
X01y

X02y

!

=

 
W�1 �W�1X01X2(X

0
2X2)

�1

� �

! 
X01y

X02y

!
;

so

b�1 = W�1X01y �W�1X01X2(X
0
2X2)

�1X02y

= W�1
h
X01y �X01X2

�
X02X2

��1
X02y

i
= e�1:

Method II: To show b�1 = (X01?2X1?2)�1X01?2y?2, we need only show that
X01M2y =

�
X01M2X1

� b�1:
Multiplying y = X1b�1 +X2b�2 + bu by X01M2 on both sides, we have

X01M2y = X
0
1M2X1b�1 +X01M2X2b�2 +X01M2bu = X01M2X1b�1;

where the last equality is from M2X2 = 0, and X01M2bu = X01bu = 0 (why the �rst equality hold?bu = Mu and M2M = M). We still need to check (X01?2X1?2)
�1 exists, or X1?2 is full-column

rank. To see that consider

X = (M2 +P2)X = [X1?2 +P2X1;X2] :

The columns of P2X1 are linearly dependent on X2. But X is full column rank, so that X1?2 must

also be full-column rank.
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Method III: In this method, we try to show that for any �1,

min
�2
ky �X�k2 = ky?2 �X1?2�1k2 ;

which implies our target result. To generate y?2 and X1?2, we decompose y �X� as

y �X� = M2(y �X�) +P2 (y �X�)
= [M2y �M2X1�1 �M2X2�2] + [P2 (y �X1�1)�P2X2�2]
= [y?2 �X1?2�1] + [P2 (y �X1�1)�X2�2] :

Since the two terms are orthogonal (why?),

ky �X�k2 = ky?2 �X1?2�1k2 + kP2 (y �X1�1)�X2�2k2 :

We need to show the second term is zero. Note that the �rst term does not depend on �2, so the

minimizer of �2 is determined only by the second term. However, since P2 (y �X1�1) 2 span(X2),
we can always �nd �2 such that P2 (y �X1�1) = X2�2, so the second term does not contribute

to the objective function.

Exercise 19 Show (12). When A11, A12, A21 and A22 are scalars, check whether (12) matches

the simpler formula

 
A11 A12

A21 A22

!�1
= 1

A11A22�A12A21

 
A22 �A12
�A21 A11

!
. (Hint: Check the right

hand side of (12) times

 
A11 A12

A21 A22

!
equals the identity matrix)

Exercise 20 Show that if rank(X) = k, rank(X1?2) = k1. (Hint: Use the de�nition of full column

rank)

Method III uses a tool called concentrating the SSR function. Suppose argmin
�2
ky �X�k2 =b�2 (�1); then the pro�le or concentrated SSR function is


y �X1�1 �X2b�2 (�1)


2 ;

which is shown to be ky?2 �X1?2�1k2. Also, from Method III,

ky?2 �X1?2�1k2 = kM2 (y �X1�1)k2

= (y �X1�1)0M0
2M2 (y �X1�1)

= (y �X1�1)0M2 (y �X1�1)
= ky �X1�1k2M2

:

In other words, b�1 is the coe¢ cient of projecting y on span(X1) under the inner product h�; �iM2
.
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Exercise 21 (i) Suppose the model is y = x01�1+ x
0
2�2+ u, E[xu] = 0. State and prove the FWL

theorem in the L2 space. (ii) If x2 = 1, what is �1? Compare this result with that in Exercise 6.

(iii) In the FWL theorem in Rn, if X2 = 1, what is b�1?
Exercise 22 Let d1 and d2 be de�ned as in Exercise 13.

(a) In the OLS regression
y = d1b�1 + d2b�2 + buy;

show that b�1 is sample mean of the dependent variable among the men of the sample (y1),
and that b�2 is the sample mean among the women (y2).

(b) Describe in words the transformations

y� = y � d1y1 � d2y2
X� = X� d1X1 � d2X2:

(c) Compare e� from the OLS regresion

y� = X�e� + eu
with b� from the OLS regression

y = d1b�1 + d2b�2 +Xb� + bu:
Exercise 23 (*) If y = x01�1 + g(x2) + u, where g is any function such that E

�
g(x2)

2
�
<1 and

E[ujx1;x2] = 0, then what is true value of �1? (Hint: Use the FWL theorem; see Robinson (1988))

4.1 Projection along a Subspace

P12 takes an interesting form which deserves further exploration.

Lemma 1 De�ne PX?Z as the projector onto span(X) along span?(Z), where X and Z are n�k
matrices and Z0X is nonsingular. Then PX?Z is idempotent, and

PX?Z = X(Z
0X)�1Z0:

Proof (*). That PX?Z is idempotent can be proved similarly as in proving that the orthogonal

projector is idempotent in Section 3.

From the following exercise, X(Z0X)�1Z0 preserves span(X) and annihilates span?(Z). So

from the de�nition of PX?Z, we need only to show that Z0X is nonsingular is equivalent to that

Rn = span(X)� span?(Z).
(= Given that Z0X is square, we need only to show that if Z0Xa = 0 then a = 0. If Rn =
span(X)�span?(Z), then from the de�nition of �, span(X)\span?(Z) = f0g. That is, Z0Xa = 0
if and only if Xa = 0. Because X is full-column rank, Xa = 0 if and only if a = 0.
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=) If Z0X is nonsingular, then for every w 2 Rn,

w = X(Z0X)�1Z0w + (I�X(Z0X)�1Z0)w; (13)

where X(Z0X)�1Z0w 2 span(X) and (I � X(Z0X)�1Z0)w 2 span?(Z). Now we show that this

decomposition is unique. For any other w1 2 span(X) and w2 2 span?(Z) such that w = w1+w2,
it follows that w1 = X� for some � and Z0w2 = 0 so that

X(Z0X)�1Z0w = X(Z0X)�1Z0 (w1 +w2)

= X(Z0X)�1Z0X� = X� = w1

returning the original decomposition. Therefore, (13) is a unique decomposition so that Rn =
span(X)� span?(Z).

Exercise 24 In the setup of the above lemma, show that (i) X(Z0X)�1Z0 preserves span(X) and
annihilates span?(Z); (ii) if Z0X is nonsingular, then rank(X) =rank(Z) = k. (iii) If Z0X is

nonsingular, then no column of Z falls in span?(X).

For orthogonal projectors, PX = PX?X. From this lemma, P12 = PX1?X1?2 . To see the di¤erence

between PX and PX?Z, we check Figure 2 again. In the left panel, X = (1; 0)0 and Z = (1; 1)0; in

the right panel, X = (1; 0)0. (why?) It is easy to check that

PX =

 
1 0

0 0

!
and PX?Z =

 
1 1

0 0

!
:

So an orthogonal projector must be symmetric, while an projector need not be. Also, the rank of

PX and PX?Z is the dimension of span(X) on which we are projecting onto (why? rank = trace).

Exercise 25 (*) Show that (i) if A is idempotent, then A is a projector; (ii) if A is idempotent

and symmetric, then A is an orthogonal projector.

Lemma 2 P12 is the unique projector onto span(X1) along span(X2)� span?(X).

Proof. Because X is full rank,

Rn = span(X)� span?(X)
= span(X1)�

h
span(X2)� span?(X)

i
:

Exercise 18 shows that P12 preserves span(X1) and annihilates span(X2), so we need only to show

that P12 also annihilates span?(X). To see this, note that for all z 2 span?(X),

X01?2z = X
0
1(I�P2)0z = X01(I�P2)z = X01z�X01P2z = 0
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where the last equality is from the fact that P2z = 0 and X01z = 0 for z 2 span?(X). The

uniqueness of P12 can be similarly proved as in the proof of the uniqueness of the orthogonal

projector.

Proof of Corollary 1. First,

X1b�1 = X1 �X01?2X1?2��1X01?2y = X1 �X01M2X1
��1

X01?2y = X1
�
X01?2X1

��1
X01?2y:

It remains to show that P12y = P12(�(y)), which is equivalent to P12(y � �(y)) = 0. From the

last lemma, this indeed holds since y ��(y) 2 span?(X).

5 Restricted Least Squares (*)

In least squares, we often want to impose some restrictions on � from economic theory or experience,

which results in restricted (or constrained) least squares (RLS). For example, the Cobb-
Douglas production function Y = AL�1K�2 implies y = � + �1l + �2k, where lower case letters

are log of upper case letters and � = logA. The restriction from the economic theory that the

production function is constant return to scale is �1 + �2 = 1. In other examples, we want to

assume some parameters are zero (exclusion restrictions), or several parameters are equal (equality

restrictions). All these restrictions are linear and can be written in the form

� = S
 + s; (14)

where S is a k � m matrix of known constants, s is a k � 1 vector of known constants, and 

is a m � 1 vector of unknown parameters. m < k implies k � m restrictions are imposed on �.

By imposing the constraint we hope to improve estimation e¢ ciency. The RLS estimator of � is

de�ned as b�R � arg min
f�j�=S
+sg

ky �X�k2 :

Exercise 26 Consider the model y = X1�1 +X2�2 + u. Express the following restrictions in the
form of (14) and �nd b�R: (i) �2 = 0; (ii) �1 = c; (iii) �1 = ��2.

The following theorem states the relationship between b�R and b�.
Theorem 5 The RLS �tted vector is the orthogonal projection of y plus the translation given in

�R (y) = PXSy + (I�PXS)Xs
= PXS�(y) + (I�PXS)Xs;

where �R(�) is the projector onto spanfX�j� = S
 + sg. The RLS coe¢ cient vector is

b�R = S(S0X0XS)�1XS (y �Xs) + s
= PS?X0XS

b� + (I�PS?X0XS)s:
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Proof. Since � = S
 + s,
X� = X(S
 + s) = XS
 +Xs.

As a result,

ky �X�k2 = k(y �Xs)�XS
k2 ;

that is, a constrained problem is reduced to an unconstrained problem - projecting (y �Xs) onto
XS. So b
 = (S0X0XS)�1XS (y �Xs) ;
and

b�R = Sb
 + s = S(S0X0XS)�1S0X0 (y �Xs) + s;
�R (y) = Xb�R = X �S(S0X0XS)�1S0X0 (y �Xs) + s�

= PXS (y �Xs) +Xs = PXSy + (I�PXS)Xs:

From Theorem 2, we know

�R (y) = �R (� (y)) ;

where M2 = fX�g, M1 = fX�j� = S
 + sg and �(y) = PXy = Xb�. So
b�R � arg min

f�j�=S
+sg
k�(y)�X�k2

= S(S0X0XS)�1S0X0 (� (y)�Xs) + s
= S(S0X0XS)�1S0X0X(b� � s) + s
= PS?X0XS

b� + (I�PS?X0XS)s;

and

�R (y) = X
�
S(S0X0XS)�1S0X0 (� (y)�Xs) + s

�
= PXS�(y) + (I�PXS)Xs:

Exercise 27 In this exercise, we will show that the RLS solution also has the general form

b�R = arg min
R0�=c

ky �X�k2 ; (15)

where R is a k� q matrix with q = k�m, c is a q� 1 vector of known constants, and rank(R) = q

so that there are no redundant or mutually exclusive restrictions.

(a) Show that R0� = c can always be written in the form � = S
 + s. (Hint: Show that we can

always order and partition the elements of � and R so that R0� = R01�1 +R
0
2�2 = c, R1 is

nonsingular, and R2 has m elements.)
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(b) Let c = 0 and show that (15) can also be written as

b�R = arg min
�2span?(R)

k�(y)�X�k2

= arg min
�2span?(R)




b� � �


2
X0X

:

(c) Show that
(I�PA�1X?X)y = arg min

z2span?(X)
ky � zk2A :

Use this result to show that

b�R = b� � (X0X)�1R �R0(X0X)�1R��1R0b�:
(d) When R0 = [0; Iq], show that b�R in (c) reduces to �bQ01y bQ�111 ;00�0, where

bQ11 = 1

n

nX
i=1

x1ix
0
1i;
bQ1y = 1

n

nX
i=1

x1iyi:

(e) When c 6= 0, show that

b�R = arg min
�2span?(R)+R(R0R)�1c




b� � �


2
X0X

= (I�P(X0X)�1R?R)b� +P(X0X)�1R?RR(R
0R)�1c

= b� � (X0X)�1R �R0(X0X)�1R��1 �R0b� � c� :
Verify that R0b�R = c.

(f) We can solve (15) by the method of Lagrange. Let � be a vector of q Lagrange multipliers for
the q restrictions. The Lagrangian is

L(�;�) = 1

2
(y �X0�)0(y �X0�) + �0(R0� � c):

Show that the solution for � is the same as in (e) and

b� = �R0(X0X)�1R��1 �R0b� � c� :
(g) b� is usually interpreted as "shadow prices" of constraints. Show that the shadow prices of the

constraints that are satis�ed by b� are zero.
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5.1 RLS as a Projection

Suppose �rst that s = 0. Note from the proof of Theorem 5 that

b�R � arg min
f�j�=S
g




Xb� �X�


2 = arg min
�2span(S)




b� � �


2
X0X

;

where the inner product is de�ned as hx; ziQ = x0Qz for a positive de�nite matrix Q, and the

associated norm is de�ned as kxk2Q = x0Qx.18 The RLS estimator is a specialminimum distance
(MD) estimator or minimum chi-square estimator of Wolfowitz (1953, 1957), which tries to
�nd a constrained parameter value that is as close as possible to the unconstrained estimate (see

Ferguson (1958), Malinvaud (1970) and Rothenberg (1973)). Speci�cally, the MD estimator under

the constraints (14) is b�MD = arg min
�=S
+s

Jn(�);

where

Jn(�) = n
�b� � ��0Wn

�b� � �� ;
whereWn > 0 is a k � k weight matrix.

Exercise 28 Show that when s = 0, the expression of b�R in Theorem 5 is equal to arg min
�2span(S)




b� � �


2
X0X

by using the orthogonal conditions directly.

The result for b�R is generally correct, as shown in the following theorem.
Theorem 6 Let X be full-column rank. Then

PX?QXy = arg min
�2span(X)

ky � �k2Q :

Proof. We need only to show that hy �PX?QXy;�iQ = 0 for any � 2 span(X). PX?QX is the
unique projector onto span(X) along span?(QX). Therefore, PX?QXy 2 span(X) and

y �PX?QXy = (I�PX?QX)y 2 span?(QX):

For any � 2 span(X), hy �PX?QXy;Q�i = hy �PX?QXy;�iQ = 0.
This theorem shows that the projector PX?QX is the orthogonal projector onto span(X) under the

inner product h�; �iQ.
Geometrically, the di¤erence between h�; �i and h�; �iQ is the di¤erence between spheres and

ellipses. We use Example 4.8 of Ruud (2000) to illustrate this point.

Example 5 Consider the following simple setup,

X =

 
1 0

0 2

!
;S =

 
1

1

!
; s = 0;

18This norm is introduced in statistics by Mahalanobis (1936).
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Figure 10: RLS as a Projection of OLS: (y1; y2) = (1; 1)

where n = 2, k = 2 and m = 1. Since n = k, there is a perfect �t with b�1 = y1 and b�2 = y2=2. The

restricted estimator is b
 = y1 + 2y2
5

= b�R1 = b�R2. (Check!)
The OLS minimization is depicted in the left panel of Figure 10, where we assume (y1; y2) = (1; 1)

so �R(y) = (0:6; 1:2)0. The minimization in the parameter space (�1; �2) is depicted in the right

panel, where the ellipse, which achieves the minimum, is


b� � �


2
X0X

=
�b�1 � �1�2 + 4�b�2 � �2�2 = 0:2:

From Figure 10, we can see PS?X0XS maps b� to span(S), but not orthogonally because distance is
measured elliptically rather than spherically.

When s 6= 0, the second term in b�R, (I � PS?X0XS)s, is a translation of PS?X0XS
b�. This

translation arises from a translation that appears in the RLS program itself, which we now write

as

b�R = arg min
�2span(S)+s




b� � �


2
X0X

= arg min
b2span(S)




b� � b� s


2
X0X

+ s

= PS?X0XS

�b� � s�+ s
= PS?X0XS

b� + (I�PS?X0XS)s;

where the second equality is from the transformation � = b+ s.
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Figure 11: RLS as a Projection and Translation of OLS

Figure 11 illustrates the translation s = (0; 1)0 in the setup of the previous example, whereb�R = (�0:2; 0:8)0, PS?X0XSs = (0:8; 0:8)
0 is denoted as Ps, PS?X0XS

b� = (0:6; 0:6)0 is denoted as
Pb�, and the larger ellipse, which achieves the minimum in the translated problem, is


b� � �


2

X0X
=
�b�1 � �1�2 + 4�b�2 � �2�2 = 1:8:

From the �gure, b�R = Pb� + (s�Ps).
Exercise 29 (Empirical) The data �le cps85.dat contains a random sample of 528 individuals

from the 1985 Current Population Survey by the U.S. Census Bureau. The �le contains observations

on nine variables, listed as below.

V1 = education (in years)

V2 = region of residence (coded 1 if South, 0 otherwise)

V3 = (coded 1 if nonwhite and non-Hispanic, 0 otherwise)

V4 = (coded 1 if Hispanic, 0 otherwise)

V5 = gender (coded 1 if female, 0 otherwise)

V6 = marital status (coded 1 if married, 0 otherwise)

V7 = potential labor market experience (in years)

V8 = union status (coded 1 if in union job, 0 otherwise)

V9 = hourly wage (in dollars)

Estimate a regression of wage yi on education x1i, experience x2i, and experienced-squared x3i = x22i
(and a constant). Report the OLS estimates.

27



Let bui be the OLS residual and byi the predicted value from the regression. Numerically calculate the

following:

(a)
Pn
i=1 bui

(b)
Pn
i=1 x1ibui

(c)
Pn
i=1 x2ibui

(d)
Pn
i=1 x

2
1ibui

(e)
Pn
i=1 x

2
2ibui

(f)
Pn
i=1 byibui

Are these calculations consistent with the theoretical properties of OLS? Explain.

(g) Re-estimate the slope on education using the residual regression approach. Regress yi on

(1; x2i; x
2
2i), regress x1i on (1; x2i; x

2
2i), and regress the residuals on the residuals. Report

the estimate from this regression. Does it equal the value from the �rst OLS regression?

Explain.

Technical Appendix: Conditional Expectation

In Section 2, E [yjx] is interpreted as the projection of y on L2(P; �(x)). We restrict y 2 L2(P )

because L2(P ) is a Hilbert space and has nice geometric structures. Actually, we only need y 2
L1(P ) to de�ne E [yjx].

The �rst thing about conditional expectation (CE) is that any CE is de�ned with respect to

(w.r.t.) some sigma algebra (�-algebra, or Borel �eld). A collection of subsets of the sample space


 (which is the collection of all possible outcomes), denoted by F , is called a sigma algebra if the
empty set ; 2 F , A 2 F implies its complement Ac 2 F , and A1; A2; � � � 2 F implies [1i=1Ai 2 F . It
is better to �rst generate a �-algebra from a partition although every �-algebra cannot be generated

from a partition.

Roughly speaking, �-algebras represent information and a �ner �-algebra represents more in-

formation. One example may clarify this point. If we toss a die and can observe every possible

outcome, then our information is F = � (f!1g ; f!2g ; � � � ; f!6g), where � (�) means the �-algebra
generated from a collection of sets, !i, i = 1; � � � ; 6, means the outcome i, and 
 = f!1; !2; � � � ; !6g.
Suppose now we cannot observe the exact outcome, but we are told that the outcome is either even

or odd. Our current information is A = � (
1;
2) � � (f!1; !3; !5g ; f!2; !4; !6g). Obviously,
A � F , i.e., A contains less information than F . The roughest �-algebra is f;;
g which means
that we do not have any information.

If we are asked to give a prediction for the outcome when the outcome is told to be even, our

answer should be

2� 1
3
+ 4� 1

3
+ 6� 1

3
= 4:
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How did we get this result?

2� 1=6
1=2

+ 4� 1=6
1=2

+ 6� 1=6
1=2

= 4:

In other words, we rescale the probability on 
2 and then take average. This is the essence of CE:

on each piece of the partition, rescale the probability and calculate the average, and use this average

(a constant) as the prediction on that piece. This will generate a new random variable (r.v.), which

is constant on each piece of the partition; if use the jargon of probability, this new random variable

is measurable w.r.t. the �-algebra generated by the partition. In the above example, we predict

the random variable X, which is de�ned as X(!i) = i, i = 1; � � � ; 6, by

E [XjA] =
(
X(!i) = 3;

X(!i) = 4;

i = 1; 3; 5

i = 2; 4; 6

Extend a little further: suppose A = � (Ai; i = 1; 2; � � � ), what is E [XjA]? It should be

E [XjA] =
1X
i=1

E

�
X

1Ai
P (Ai)

�
� 1Ai =

1X
i=1

E [X1Ai ]

P (Ai)
� 1Ai ;

where 1Ai means the indicator function of Ai. From the formula of E [XjA], we can see (i)R
Ai
E [XjA] dP =

R
Ai
XdP , 8 Ai 2 A; (ii) E [E [XjA]] = E [X] by adding all equations in (i)

together. Result (i) is the de�nition of CE, and result (ii) is the famous LIE. In the above example,

the LIE can be check as follows:

3� 1
2
+ 4� 1

2
=
1

6
(1 + 2 + � � �+ 6) = 7

2
:

We are now ready to give out the abstract de�nition of CE.

De�nition 5 (Conditional Expectation) Let (
;F ; P ) be a probability space, A � F be a sub-

� algebra, and X be a L1(P ) random variable on (
;F ; P ), the conditional expectation of X given

A is a random variable Y that satis�es the following two conditions:

(i) Y is A-measurable;

(ii)
R
A Y dP =

R
AXdP , 8 A 2 A.

Obviously, if we change Y on a null set (i.e., a set with probability zero), it still satis�es conditions

(i) and (ii), so CE is unique only almost surely (a.s.).

Given the de�nition of conditional expectation, we can understand the meaning of some popular

terms.

(1) For a random variable X, E[Y jX] = E[Y j� (X)], where � (X) = � (f!jX(!) � ag ; a 2 R)
means the �-algebra generated by X. If X = c, a constant, then E [Y jc] = E[Y j f;;
g] =
E[Y ].
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(2) Conditional probability is a special case of conditional expectation: P (BjA) = E [1BjA]. We
can check this de�nition coincides with the de�nition of conditional probability in elementary

econometric books: 8 A 2 A with P (A) > 0, P (BjA) = E[1B1A]
P (A) = P (A\B)

P (A) .

(3) E [Y jX = x] can be understood as follows. First, calculate E[Y jX]. Since it is measurable w.r.t.
� (X), there is a Borel function g such that E[Y jX](!) = g(X(!)). We de�ne E [Y jX = x] �
g(x).

Although most intuitive understandings of conditional expectation are correct, there are indeed

some cases deserving careful inspection; the famous one is the Borel paradox, which can be found
in some probability book and is not discussed here.

Example 6 Let 
 = R, F = B(R) = � ((�1; a]; a 2 R), the Borel �-algebra, and P is de�ned by

the cdf

F (a) =

Z a

�1
e�x1fx�0gdx

De�ne X : 
! R by X(!) = ! and Y = 3 � 1fX�10g + 27 � 1fX>10g. Find E[XjY ].

Solution: First, �(Y ) = � (f! > 10g), that is, A is a partition, so we need only calculate two

values:

� ! > 10: E[XjY ](!) =
R1
10 xe

�xdxR1
10 e

�xdx
= 11;

� ! � 10: E[XjY ](!) =
R 10
0 xe�xdxR 10
0 e�xdx

= 1�11�e�10
1�e�10 ,

In summary, E[XjY ](!) =
(

1�11�e�10
1�e�10 ;

11;

! � 10
! > 10

, a.s.. �

Exercise 30 In the example above, de�ne Z = X ^ c � min(X; c), where c is a constant. Find

E[XjZ].

Exercise 31 (Bayes Formula) If dP = LdQ, prove

EP [ZjA] = EQ [ZLjA]
EQ [LjA] ;

where for a probability measure R, ER [�] means the expection under R.

Example 7 Suppose X and Y are independent, � : X �Y ! R is a measurable function such that
� (X;Y ) is integrable. De�ne  (x) = E [� (x; Y )]. Prove E [� (X;Y ) jX] =  (X).

Proof.  (X) is � (X) measurable, so we need only check condition (ii) in the de�nition of con-
ditional expectation. First prove the case with � (X;Y ) = 1A(X)1B(Y ), where A 2 B (X ), and
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B 2 B (Y). De�ne  A�B(x) = E [1A�B (x; Y )] = 1A(x)E [1B(Y )]. For any C 2 B (X ),

E [1C� (X;Y )] = E [1C1A(X)1B(Y )]

= E [1C1A(X)]E [1B(Y )]

= E [1C1A(X)E [1B(Y )]] = E
�
1C A�B(X)

�
:

Then by some technical steps, we could prove this is true for any � (X;Y ).

Exercise 32 Let Y : 
! N be independent of the i.i.d. random variables fXig1i=1, where N is the
set of natural number. Prove

E

"
YX
i=1

Xi

�����Y
#
= Y � E[X1]:

We conclude by collecting some popular properties of conditional expectation.

(1) If X is A measurable, then E[XjA] = X. For example, E[h(X)jX] = h(X) for any Borel

measurable function h(�), and E[cjA] = c for any �-algebra A.

(2) If X is independent of Y , then E[XjY ] = E[X].

(3) If Z is A measurable, X 2 L1, XZ 2 L1, then

E[XZjA] = ZE[XjA]

(4)(Linearity) E[�X + �Y jA] = �E[XjA] + �E[Y jA]:

(5)(Monotonicity) If X � Y , then E[XjA] � E[Y jA].

(6)(LIE) If A � G � F , X 2 L1, then

E[E[XjA]jG] = E[E[XjG]jA] = E[XjA]

(7)(Contraction) If A � G, then E[X] � kE[XjA]kp � kE[XjG]kp � kXkp, 8 p � 1, where for a
random variable Z, kZkp = (E [kZk

p])1=p. Especially, (E[X])2 � E[(E[XjA])2] � E[X2].

(8) If A � G, then kX � E[XjA]kp � kX � E[XjG]kp, 8 p � 1.
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