
Chapter 1. Introduction∗

The term "econometrics" was first used by Pawel Ciompa in 1910 in a somewhat obscure book

published in Germany. To Ciompa, the goals of "oekonometrie" were to describe economic data

series mathematically and to display them geometrically and graphically. According to the Nobel

Laureate Ragnar Frisch1 (1936), however, Ciompa’s view of econometrics was too narrow, since it

emphasized only the descriptive side of econometrics. Writing as founding editor in the inaugural

issue of Econometrica in 1933, Frisch defined econometrics in more general terms:

Econometrics is by no means the same as economic statistics. Nor is it identical with what we call general

economic theory, although a considerable portion of this theory has a definitely quantitative character. Nor

should econometrics be taken as synonomous with the application of mathematics to economics. Experience

has shown that each of these three view-points, that of statistics, economic theory, and mathematics, is

a necessary, but not by itself a suffi cient, condition for a real understanding of the quantitative relations

in modern economic life. It is the unification of all three that is powerful. And it is this unification that

constitutes econometrics.

To Frisch, econometrics embodies a creative tension between theory and observation:

Theory, in formulating its abstract quantitative notions, must be inspired to a larger extent by the

technique of observation. And fresh statistical and other factual studies must be the healthy element of

disturbance that constantly threatens and disquiets the theorist and prevents him from coming to rest on

some inherited, obsolete set of assumptions.

With the general notion of econometrics by Frisch in mind, we in this chapter first use a

famous example in labor economics to put linear regression (the main topic of this course) in a

general framework, then discuss the objective of econometrics and microeconometrics and the role

of economic theory in econometrics, followed by main econometric approaches used in this course,

and conclude with a summary of notations.

1 Linear Regression and Its Extensions

Suppose we observe {yi,xi}ni=1, where yi is the response variable and xi is the covariates. The

objective is to study the relationship between yi and xi. To be specific, we can think yi is the wage
∗Email: pingyu@hku.hk
1Ragnar Frisch (1895-1973) was a Professor at the University of Oslo. He was awarded the first Nobel Memorial

Prize in Economic Sciences in 1969, which he shared with Jan Tinbergen for having developed and applied dynamic
models for the analysis of economic processes. He is known for being one of the founders of the discipline of
econometrics, and for coining the widely used term pair macroeconomics/microeconomics in 1933.
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rate, xi includes education and experience, and the target is to study the return to schooling.

The most general model is

y = m(x,u), (1)

where x = (x1, x2)′ with x1 being education and x2 being experience, u is a vector of unobservable

errors (e.g., the innate ability, skill, quality of education, work ethic, interpersonal connection,

preference, and family background), which may be correlated with x (why?), and m(·) can be any
(nonlinear) function. To simplify our discussion, suppose u is one-dimensional and represents the

ability of individuals. In this model, the return to schooling is

∂m(x1, x2, u)

∂x1
,

which depends on the levels of x1 and x2 and also u. In other words, for different levels of education,

the returns to schooling are different; furthermore, for different levels of experience (which is ob-

servable) and ability (which is unobservable), the returns to schooling are also different. This model

is called the nonadditively separable nonparametric model (NSNM) since u is not additively
separable. When u is additively separable, we get the additively separable nonparametric
model (ASNM),

y = m(x) + u.

In this model, the return to schooling is

∂m(x1, x2)

∂x1
,

which depends only on observables. A special case of this model is the additive separable model
(ASM) where m(x) = m1(x1) + m2(x2). In this case, the return to schooling is ∂m1(x1)/∂x1,

which depends only on x1. There is also the case where the return to schooling depends on the

unobservable but not other covariates. For example, suppose

y = α(u) +m1(x1)β1(u) +m2(x2)β2(u),

and then the return to schooling is
∂m1(x1)

∂x1
β1(u),

which does not depend on x2 but depend on x1 and u. A special case of this model is the random
coeffi cient model (RCM) of Hildreth and Houck (1968) where m1(x1) = x1 and m2(x2) = x2.2

In this case, the return to schooling is β1(u) which depends only on u. Of course, the return to

schooling may depend only on x2 and u. For example, if

y = α(x2, u) + x1β1(x2, u),

2The RCM dates back as early as Rubin (1950) and Klein (1953).
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then the return to schooling is β1(x2, u) which does not depend on x1. A special case is the varying
coeffi cient model (VCM) originated by Robinson (1989, 1991), Cleveland et al. (1992) and Hastie
and Tibshirani (1993), where

y = α(x2) + x1β1(x2) + u,

and the return to schooling is β1(x2) depending only on x2. When the return to schooling does not

depend on either (x1, x2) or u, we get the linear regression model (LRM),

y = α+ x1β1 + x2β2 + u ≡ x′β + u,

where x ≡ (1, x1, x2)′, β ≡ (α, β1, β2)′, and the return to schooling is β1 which is constant.

Table 1 summarizes the models above.

x1 X X X X
x2 X X X X
u X X X X
Model NSNM ASNM ? ? ASM VCM RCM LRM

Table 1: Models Based on What the Return to Schooling Depends on

The models in the table can be divided into two subclasses: x and u are uncorrelated (or even inde-

pendent) and x and u are correlated. In the former case, x is called exogenous, and in the latter
case, x is called endogenous. Further extensions include models with limited dependent vari-
ables (LDV) and multiple equations. We can also study different characteristics of the conditional

distribution of y given x. Two popular choices are conditional mean

m(x) = E[y|x] =

∫
yf(y|x)dy =

∫
m(x, u)f(u|x)du

and conditional quantile

Qτ (x) = inf {y|F (y|x) ≥ τ} , τ ∈ (0, 1),

where m(x) is often called the conditional expectation function (CEF), and Q.5(x) is the

conditional median. Other characteristics include conditional variance

σ2(x) = V ar(y|x) = E
[

(y −m(x))2
∣∣∣x] ,

which measures the dispersion of f(y|x),3 conditional skewness E
[(

y−m(x)
σ(x)

)3
∣∣∣∣x] which measures

the asymmetry of f(y|x), and conditional kurtosis E
[(

y−m(x)
σ(x)

)4
∣∣∣∣x] which measures the heavy-

tailedness of f(y|x). Figure 1 displays the hourly wage densities for male and female workers from

3σ(x) =
√
σ2(x) is called the conditional standard deviation.
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Figure 1: Wage Densities for Male and Female from the 1985 CPS

the 1985 Current Population Survey (CPS)4.5 These are conditional densities - the density of hourly

wages conditional on gender. From this figure, we can read out many interesting features of the

female and male wage distributions. First, both mean and median of male wage are larger than

those of female wage. Second, for both male and female wage, median is less than mean, which

indicates that wage distributions are positively (or rightly) skewed. This is corroborated by the

fact that the skewness of both male and female wage is greater than zero (1.0 and 2.9, respectively).

Third, the variance of male wage (27.9) is greater than that of female wage (22.4). Fourth, both

the male wage and female wage have heavy tails (3.55 and 18.52, respectively), and the right tail

of male wage is heavier than that of female wage.

Exercise 1 Suppose that the random variables Y and X only take the values 0 and 1, and have

the following joint probability distribution

X = 0 X = 1

Y = 0 .1 .2

Y = 1 .4 .3

Find E[Y |X = x], E[Y 2|X = x] and V ar(Y |X = x) for x = 0 and x = 1.

4Some popular data resources include the National Survey of Youth (NSY), the Panel Study of Income Dynamics
(PSID), etc.

5The sample has 528 individuals who were full-time employed (defined as those who had worked at least 36 hours
per week for at least 48 weeks the past year), and are not in the military, 244 of which are female and the rest are
male.
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Exercise 2 Suppose Y |X = x follows the uniform distribution on [0, x + 1], and X follows the

Bernoulli distribution with the success probability p = 2/3. What is the conditional mean function

E[Y |X = x] ? What is the conditional variance function V ar(Y |X = x)? What is the conditional

median function Med(Y |X = x)? What is the conditional distribution X|Y ? What is E[X|Y = y],

V ar(X|Y = y) and Med(X|Y = y)?

There are some other simplifications of the general model or combinations of simplified models.

For example, the VCM can be simplified to the partially linear model (PLM) of Robinson (1988)

where y = α(x2) + x1β1 + u, E[u|x1, x2] = 0.6 Combining the LRM and the ASNM, we get the

single index model (SIM) of Ichimura (1993) where y = m(x′β) + u, E[u|x1, x2] = 0.

This course will concentrate on the conditional mean estimation in the linear regression model

(with one equation) with and without endogeneity. We may also discuss some LDV models without

endogeneity if time permits.

2 Econometrics, Microeconometrics and Economic Theory

In modern econometrics, any economy is viewed as a stochastic process {Wit : t ∈ (−∞,∞) , i = 1, · · · , nt}
which summarizes the economic behavior of all individuals at time t, and any economic phenom-

enon (i.e., a data set) is viewed as a (partial) realization of this stochastic process, where Wit can

be infinite-dimensional, and nt is the number of individuals at time t. Typically, three types of

data are collected. (i) cross-sectional data. The observations are {wi : i = 1, · · · , n} at a fixed
time point t, where w is a subset of W (e.g., wage, consumption, education, etc.) or a trans-

formation of W (e.g., aggregations such as unemployment rates in different countries, consump-

tion at the household level and investment of different coporations), and n ≤ nt. Cross-sectional

data are mainly used in applied microeconomics. (ii) time series data. The observations are

{wt : t = 1, · · · , T} for the same target of interest (e.g., GDP, CPI, stock price, etc.), where the
time unit can be year, quarter, month, day, hour or even second. Time series data are mainly

used in applied macroeconomics and finance. (iii) panel data or longitudinal data. The obser-

vations are {wit : t = 1, · · · , T ; i = 1, · · · , n}. If specify to the setup in the last section, we can
think w = (y,x′)′. Since wt in time series data can be a vector or for a group of individuals, the

difference between time series data and panel data is blurred. Usually, the distinction is from a

technical perspective: if T is much larger than n, the data is treated as time series; if n is much

larger than T , the data is treated as a panel. Of course, there is literature considering the case

where both n and T are large. In practice, it is hard to follow an individual for a long time, so T

is usually less than n. Such panel data are popular in applied microeconomics.

The objective of econometrics is to infer (characteristics of) the probability law of this economic

stochastic process using observed data, and then use the obtained knowledge to explain what has

happened (i.e., internal validity), and predict what will happen (i.e., external validity). The internal

validity concerns three problems: What is a plausible value for the parameter? (point estimation)

6Different from the models in Table 1, x1 and x2 are not symmetrically treated in the PLM.
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What are a plausible set of values for the parameter? (set/interval estimation) Is some preconceived

notion or economic theory on the parameter "consistent" with the data? (hypothesis testing). In

other words, the objectives of econometrics are estimation, inferences (including hypothesis testing

and confidence interval (CI) construction) and prediction.

This course will concentrate on microeconometrics, i.e., the main data types analyzed in this

course are cross-sectional data and panel data.7 Our discussion will be close to Hayashi (2000),

Cameron and Trivedi (2005), Hansen (2007) and Wooldridge (2010). We also use part of materials

from Ruud (2000). Other popular text books include Amemiya (1985), Goldberger (1991), R.

Davidson and MacKinnon (1993, 2004), J. Davidson (1999), Angrist and Pischke (2009) and Greene

(2018).

One main objective of microeconometrics is to explore causal relationships between a response

variable y and some covariates x.8 For example, we may be interested in the effect of class sizes

on test scores, police expenditures on crime rates, climate change on economic activity, years of

schooling on wages, baby-bearing on the labor force participation of women, institutional structure

on growth, the effectiveness of rewards on behavior, the consequences of medical procedures on

health outcomes, or any variety of possible causal relationships. Sometimes, we estimate parameters

that are inputs of the measurements of causal effects; sometimes, our targets are causal effects

directly. One caveat is that causality is different from correlation. For example, using umbrellas

can predict raining but we cannot claim umbrellas cause raining. Noncausal relationships describe

only associations, so are of less economic interests.

(**)Two inherent barriers are that the causal effect is typically specific to an individual and that

it is unobserved. Consider the effect of schooling on wages. The causal effect is the actual difference

one would receive in wages if we could change his/her level of education holding all else constant.

This is specific to each individual as their employment outcomes in these two distinct situations

is individual. The causal effect is unobserved because we can only observe their actual level of

education and actual wage, not the counterfactual wage if their education had been different. This

is termed as the fundamental problem of causal inference in Holland (1986). Briefly stated, all

causal inference involves comparison of a factual with a counterfactual outcome.

A variable x1 can be said to have a causal effect on the response variable y if y changes with x1

when all other inputs are held constant. In the formulation of (1), the causal effect of x1 on y is

∆(x1, x2, u) = dm(x1, x2, u)/dx1. (2)

Sometimes it is useful to write this relationship as a potential outcome function

y(x1) = m(x1, x2, u),

7Maybe only cross-sectional data will be discussed due to time constraint.
8 In a letter to J.S. Switzer in 1953, Albert Einstein said, development of Western science is based on two great

achievements: the invention of the formal logical system (in Euclidean geometry) by Greek philosophers, and the
discovery of the possibility to find out causal relationships by systematic experiment (during the Renaissance).
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where the notation implies that y(x1) is holding x2 and u constant. A popular example arises

in the analysis of treatment effects with a binary regressor x1. Often, x1 is denoted as d. Let

d = 1 indicate treatment (e.g. a medical procedure or a training program) and d = 0 indicate

non-treatment (or control). In this case, y(d) can be written as

y1 = m1(x2, u),

y0 = m0(x2, u).

In the literature on treatment effects, it is common to refer to y0 and y1 as the latent (or poten-

tial) outcomes associated with non-treatment and treatment, respectively. This potential outcome

approach goes back at least to J.P. Neyman (1923, 1935) and R.A. Fisher (1918, 1925, 1935)9 on

agricultural experiment, but the modern version is usually attributed to Rubin (1973a, 1973b, 1974,

1977, 1978) who extended this approach to observable studies, so this framework is often termed as

the Neyman-Fisher-Rubin causal model or Rubin causal model (RCM). In this framework,
the causal effect of treatment (or the treatment effect) is

∆(x2, u) = y1 − y0,

which is the ceteris paribus change of outcomes for an agent across states 0 and 1. ∆(x2, u)

is random (a function of x2 and u) as both potential outcomes y0 and y1 are different across

individuals. Also, we cannot observe both outcomes from the same individual, we only observe the

realized value y = dy1 + (1− d)y0.

As the causal effect varies across individuals and is not observable, it cannot be measured on

the individual level. We therefore focus on aggregate causal effects, in particular what is known as

the average treatment effect (ATE).10 The ATE of x1 on y conditional on x2 is

∆(x1, x2) = E [∆(x1, x2, u)|x1, x2] =

∫
∆(x1, x2, u)f(u|x1, x2)du,

or

∆(x2) = E [∆(x2, u)|x2] =

∫
∆(x2, u)f(u|x2)du,

where f(u|x1, x2) is the conditional density of u given x1, x2 and f(u|x2) is similarly defined. We

can think of the ATE ∆(x1, x2) or ∆(x2) as the average effect in the general population with a

specific value of x2 and/or x1.

When conduct a regression analysis (that is, consider the regression of observed wages on

educational attainment), we may hope that the regression reveals the average causal effect, that is,

9Jerzy Neyman (1894-1981) and Ronald A. Fisher (1890-1962) are two iconic founders of modern statistical theory.
10The quantile treatment effect (QTE) is also popular nowadays.
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dm(x1, x2)/dx1 = ∆(x1, x2) or m(1, x2)−m(0, x2) = ∆(x2). But this is not generally true.

dm(x1, x2)

dx1
=

d
∫
m(x1, x2, u)f(u|x1, x2)du

dx1

=

∫
dm(x1, x2, u)

dx1
f(u|x1, x2)du+

∫
m(x1, x2, u)

df(u|x1, x2)

dx1
du

= ∆(x1, x2) +

∫
m(x1, x2, u)

df(u|x1, x2)

dx1
du,

so unless df(u|x1, x2)/dx1 = 0, dm(x1, x2)/dx1 6= ∆(x1, x2). In other words, only if u ⊥ x1|x2 or

u is independent of x1 conditional on x2, regression analysis can be interpreted causally, in the

sense that it uncovers average causal effects.11 This condition is not easy to hold. Consider the

return to schooling example. This condition means that the education decision does not depend on

idiosyncratic characteristics such as expectation of the future wage after controlling observables x1

and x2, or the decision of education choice can be fully explained by observables. In the treatment

literature, this condition is termed as "exogeneity", "ignorable treatment assignment", "conditional

independence assumption (CIA)",12 "selection on observables" or "unconfoundedness".

In the linear regression,

∆(x1, x2) =

∫
∆(x1, x2, u)f(u|x1, x2)du =

∫
β1f(u|x1, x2)du = β1,

and

dm(x1, x2)

dx1
=

d(x1β1 + x2β2 + E[u|x1, x2])

dx1

= β1 +
dE[u|x1, x2]

dx1
,

so if E[u|x1, x2] = 0, the regression coeffi cients have causal interpretation.

The CIA assumption essentially assumes that we can impose an exogenous variation on x1,

holding other covariates at controlled settings. This can happen in a controlled social exper-
iment (famous social experiments include the National Supported Work Demonstration (NSW)
program and the National Job Training Partnership Act (JTPA) of 1982), but such experiments

are generally expensive to organize and run. Therefore, it is more attractive to implement causal

modeling using data generated by a natural experiment or quasi-experiment, where some
causal variable changes exogenously and independently of other explanatory variables, so "natu-

rally" provide treated and untreated subjects. For example, Card and Krueger (1994) estimate the

minimum wage effects on employment by noticing that New Jersey increases minimum wage while

neighboring Pennsylvania does not, creating a natural experiment in which observations from the

11The conditional independence notation u ⊥ x1|x2 was introduced by Dawid (1979). Note that u ⊥ x1|x2 is
weaker than u ⊥ (x1, x2). Roughly speaking, u could have correlation with x1 but only indirectly through x2. Full
independence implies conditional independence and implies that each regression derivative equals that variable’s
average causal effect, but full independence is not necessary in order to causally interpret a subset of the regressors.
12CIA is also a short for Central Intelligence Agency which may be more famous.

8



"treated" state can be compared with those from the "control" state. See Rosenzweig and Wolpin

(2000) for a summary and critical assessment of the literature on natural experiments. More often,

program evaluation or treatment evaluation is based on observational data (or survey or census
data) where the causal variables themselves reflect individual decisions and hence are potentially

endogenous. Understanding the individual choice process provides not only estimates of the "effect

of cause" but additional insights on the "cause of effect", which are important to the external

validity for a new policy in a common environment or existing policies in new environments. See

Heckman and Vytlacil (2007a,b), Imbens and Wooldridge (2009) and Imbens and Rubin (2015)

for a comprehensive summary of the existing literature, but we will not discuss this topic in this

course. (**)

Economic theory or model is not a general framework that embeds an econometric model.

In contrast, economic theory is often formulated as a restriction on the probability law of the

economic stochastic process or the data generating process (DGP). Such a restriction can be used

to validate economic theory, and to improve forecasts if the restriction is valid or approximately

valid. Usually, the economic theory play the following roles in econometric modeling: (i) indication

of the nature (e.g., conditional mean, conditional variance, etc.) of the relationship between y

and x: which moments are important and of interest? (ii) choice of economic variables x (e.g.,

theoretical considerations may suggest that certain variables have no direct effect on others because

they do not enter into agents’utility function, nor do they affect the constraints these agents face);

(iii) restriction on the functional form or parameters of the relationship (e.g., for Cobb-Douglas

production function, Y = ALβ1Kβ2 , constant-return-to-scale implies that β1 + β2 = 1); (iv) help

judge causal relationship (e.g., whether women’s fertility choice affects their employment statuses

and hours worked). In summary, any economic theory can be formulated as a restriction on the

probability distribution of the economic stochastic process. Economic theory plays an important

role in simplifying statistical relationships so that a parsimonious econometric model can eventually

capture essential economic relationships.

3 Econometric Approaches

There are two econometric traditions: the frequentist approach and the Bayesian approach.13

The former treats the parameter as fixed (i.e., there is only one true value) and the samples as

random, while the latter treats the parameter as random and the samples as fixed. This course will

concentrate on the frequentist approach. Two main methods in this tradition are the likelihood

method and the method of moments (MoM).

The estimator in the likelihood method is called themaximum likelihood estimator (MLE).
The MLE was recommended, analyzed (with flawed attempts at proofs) and vastly popularized by

R.A. Fisher between 1912 and 1922 (although it had been used earlier by Gauss, Laplace, T.N.

13Thomas Bayes (1701-1761) was an English statistician. He never published what would eventually become his
most famous accomplishment; his notes were edited and published after his death by Richard Price.
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Thiele,14 and F.Y. Edgeworth15). Much of the theory of maximum-likelihood estimation was first

developed for Bayesian statistics, and then simplified by later authors. The basic idea of the MLE

is to guess the truth which could generate the phenomenon we observed most likely (practical

examples here). Mathematically,

θMLE = arg max
θ∈Θ

E[ln(f(X|θ))] = arg max
θ∈Θ

∫
f(x) ln f(x|θ)dx = arg max

θ∈Θ

∫
ln f(x|θ)dF (x), (3)

where X is a random vector, f(x) is the true probability density function (pdf) or the true prob-

ability mass function (pmf), f(x|θ) is the specified parameterized pdf or pmf, Θ is the parameter

space, and F (x) is the true cumulative probability function (cdf). Equivalently, θMLE minimizes

the entropy of f(x|θ), −E[ln(f(X|θ))]. Another explanation of the MLE is to minimize the

Kullback-Leibler information distance from f(x|θ) to f(x).16 This distance is defined as

KLIC =

∫
f(x) ln

(
f(x)

f(x|θ)

)
dx.

Exercise 3 Why are the two definitions of θMLE equivalent?

A useful property of MLEs is what has come to be known as the invariance property of MLEs.

Informally speaking, the invariance property of MLEs says that if θ̂MLE is the MLE of θ, then

τ(θ̂MLE) is the MLE of τ(θ). Another key advantage of the MLE is that it reaches the so-called

Cramér (1946)-Rao (1945) Lower Bound (CRLB)17 asymptotically.18 The CRLB is the

asymptotic variance bound that a "regular"19 estimator of θ can reach. Informally speaking, for

any regular estimator of θ, say, θ̂,

AV ar
(
θ̂
)
≥ CRLB,

while the MLE reaches this bound, where AV ar(·) denotes the asymptotic variance of an estimator.
Chapter 4 provides more discussions on the effi ciency of MLE.

The MoM estimator was first introduced by Karl Pearson in 1894.20 The original problem is

14Thorvald Nicolai Thiele (1838-1910) was a Danish astronomer, actuary and mathematician. He was the first to
propose a mathematical theory of Brownian motion; he also introduced the cumulants in statistics.
15Francis Ysidro Edgeworth (1845-1926) was an Irish economist. He is most famous for the Edgeworth box and

indifference curve in microeconomics and the Edgeworth expansion in econometrics. He is also known for the founding
editor of the Economic Journal.
16Both Solomon Kullback (1907-1994) and Richard A. Leibler (1914-2003) were American cryptanalysts and math-

ematicians. Both worked at the National Security Agency (NSA) where the KLIC was introduced.
17Harald Cramér (1893-1985) was a Swedish mathematician, actuary, and statistician at Stockholm University. He

is also famous for the Cramér—Wold theorem and Cramér—von Mises criterion. C.R. Rao (1920-2023) is an Indian
statistician. He ever worked at the Indian Statistical Institute (ISI) and retired at the Pennsylvania State University.
He is also famous for the Rao—Blackwell theorem and Rao’s score test. Historically, this bound was obtained first by
R.A. Fisher in large samples. Rao proved this bound in finite samples during one night as a response to a student’s
question when he taught Fisher’s result.
18 In some cases, the MLE reaches this bound in finite samples.
19 In finite samples, change "regular" to "unbiased" and "asymptotic variance" to "variance".
20Karl Pearson (1857-1936) is the father of Egon Pearson (1895-1980). The former is also famous for the Pearson

correlation coeffi cient and as the founder of Biometrika, and the latter is famous for the Neyman-Pearson (1933)
Lemma in hypothesis testing.
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to estimate k unknown parameters, say θ = (θ1, · · · , θk)′, in f(x). However, we are not fully sure

about the functional form of f(x). Nevertheless, we know the functional form of the moments of

X ∈ R as a function of θ:
E[X] = g1(θ),

E[X2] = g2(θ),
...

E[Xk] = gk(θ).

(4)

There are k functions with k unknowns, so we can solve out θ uniquely in principle. The MoM

estimator uses only the moment information in X, while the MLE uses "all" information in X, so

the MLE is more effi cient than the MoM estimator. However, the MoM estimator is more robust

than the MLE since it does not rely on the correctness of the full distribution but relies only on

the correctness of the moment functions. Effi ciency and robustness are a common trade-off among

econometric methods.

The model based on the likelihood method uses all information so usually needs to specify the

underlying economic behavior in details. Such kind of model is called the structural model. On
the other side, the moment equations extract only partial "reliable" information from the full model.

Such kind of model is called the reduced form model. In econometrics, structural models begin
from deductive theories of the economy, while reduced form models begin by identifying particular

relationships between variables. See Chapter 2 of Cameron and Trivedi (2005) for more discussions

on these concepts.21

In econometrics, moment conditions often originate from the first order conditions (FOCs) in

an optimization problem. Consider the following microeconometric example. Suppose the firms

are maximizing their profits conditional on the information in hand; then the problem for firm i is

max
di

Eν|z [π(di, zi, νi; θ)] . (5)

Here, π is the profit function, e.g.,

π(di, zi, νi; θ) = pif(Li, νi; θ)− wiLi,

where zi = (pi, wi)
′ is all information used in decision and can be observed by both the firm and

the econometrician, pi is the output price and wi is the wage rate, νi is the exogenous random error

(e.g., weather, financial crisis, trade war, COVID-19, etc.) and cannot be observed or controlled by

either the firm or the econometrician, and di = Li is the decision of labor input. θ is the technology

21Historically, these two concepts were defined by the pioneering Cowles Commission econometricians who devel-
oped the first rigorous framework for inference and policy analysis. These concepts received their clearest statement
in a classic paper by Hurwicz (1962). A structural relationship in its original usage is a relationship invariant to a
class of policy interventions and can be used to make valid policy forecasts for policies in that class. The explicit
parametrizations used in the modern version of the “structural” literature are intended to represent policy invariant
parameters. Reduced forms are one representation of a structure that represent endogenous variables in terms of
exogenous variables. Current meanings of “structure”and “reduced form”have changed greatly from their original
meanings.
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parameter, e.g., if f(Li, νi; θ) = Lφi · exp(νi), then θ = φ, which is known to the firm but unknown

to the econometrician. Our goal is to estimate θ, which is relevant to measure the causal effect -

the effect of labor input on profit. The FOCs of (5) are

Eν|z

[
∂π(di, zi, νi; θ)

∂di

]
≡ m(di, zi|θ) = 0.

If there is randomness even in zi,22 then the objective function changes to max
di

Ev,z [π(di, zi, νi; θ)],

and the FOCs change to

E [m(di, zi|θ)] = 0, (6)

which are a special set of moment conditions. In macroeconomics, a model as follows is very

standard.

max
{ct}∞t=1

∞∑
t=1

ρtE0 [u (ct)]

s.t. ct+1 + kt+1 = ktRt+1, k0 is known,

where ρ is the discount factor, E0[u(·)] is the conditional expected utility based on the information
at t = 0, kt is the capital accumulation at time period t, ct is the consumption at t, and Rt is the

gross return rate at t. From dynamic programming, we have the Euler equation

E0

[
ρ
u′ (ct+1)

u′ (ct)
Rt+1

]
= 1.

If u(c) = c1−α−1
1−α , α > 0, is the isoelastic utility function with the constant relative risk aversion

α,23 then we get

E0

[
ρ

(
ct
ct+1

)α
Rt+1

]
= 1. (7)

Suppose ρ is known while α is unknown; then (7) is a moment condition for α.

Equations (4), (6) and (7) are the population version of moment conditions. Although some

econometricians treat "population" as a physical population (e.g., all individuals in the US census)

in the real world, the term "population" is often treated abstractly, and is potentially infinitely

large. Since the population distribution is unknown, we cannot solve the population moment

conditions to estimate the parameters. In practice, we often have a set of finite data points from

the population, so we can substitute the population distribution in the moment conditions by the

empirical distribution of the data. This is the analog method proposed in Goldberger (1968) and
advocated in Manski (1988, 1994).24 Specifically, suppose the true distribution of a random vector

22The difference between zi and νi is that zi can be observed ex post while νi cannot. That zi is random means
that the decision is made before zi is revealed, or the decision is made ex ante.
23The coeffi cient of relative risk aversion (RRA) is defined as R (c) = cA (c) = − cu

′′(c)
u′(c) , where A (c) = −

u′′(c)
u′(c)

is the coeffi cient of absolute risk aversion (ARA).
24Charles F. Manski (1948-) is an econometrician at Northwestern University. He is famous for works on the

discrete choice model and partial identification.

12



X satisfies the following moment conditions,

E [m(X|θ0)] = 0,

i.e., ∫
m(x|θ0)dF (x) = 0,

where m : Θ ⊂ Rk → Rk, and F (·) is the true cumulative probability function (cdf) of X. Here,
you need to pay attention to our notations. In elementary econometrics,

E [m(X|θ0)] =

{ ∫
m(x|θ0)f(x)dx,∑J
j=1m(xj |θ0)pj ,

if X is continuous,

if X is discrete,

where f(x) is the probability density function (pdf) of X, and {pj = P (X = xj)|j = 1, · · · , J} is
the probability mass function (pmf) of X. We write E [m(X|θ0)] as a Riemann—Stieltjes integral∫
m(x|θ0)dF (x) to cover both cases (and even more general cases). Substituting F (·) by F̂n, the

empirical distribution25, we have ∫
m(x|θ)dF̂n(x) = 0,

which is equivalent to
1

n

n∑
i=1

m(Xi|θ) = 0. (8)

The MoM estimator θ̂ (X1, · · · , Xn) is the solution to (8). Similarly, the MLE can be constructed

as the maximizer of the average log-likelihood function

`n(θ) =
1

n

n∑
i=1

ln f (Xi|θ) ,

which is equivalent to the maximizer of the log-likelihood function

Ln(θ) =
n∑
i=1

ln f (Xi|θ)

or the likelihood function

Ln(θ) = exp {Ln(θ)} =

n∏
i=1

f (Xi|θ) .

Note that if f(x|θ) is smooth in θ, the FOCs for the MLE are

1

n

n∑
i=1

s(Xi|θ) = 0,

25Recall that F̂n(x) = n−1
∑n
i=1 1(Xi ≤ x).
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where s(·|θ) = ∂ ln f(·|θ)/∂θ is called the score function in the likelihood literature.26 So the

MLE is a special MoM estimator in this case. However, f(x|θ) can be discontinuous as a function

of θ, so the objective function of the MLE is more general than that of the MoM estimator. In

statistics, the former is termed as the M-estimator ("M" for maximization), and the later is
termed as the Z-estimator ("Z" for zero).

The modern version of the likelihood method in the semiparametric setup is the empirical

likelihood method introduced by Owen (1988, 2001); see also Gallant and Nychka (1987) for the

semi-nonparametric maximum likelihood estimation and Geman and Hwang (1982) for the non-

parametric maximum likelihood estimation. The modern version of the method of moments is the

generalized method of moments (GMM) introduced by Hansen (1982). We will cover only the

GMM method in this course.

Another principle, which is useful especially in linear models, is projection. We will dicuss this

principle in the next chapter. This principle provides more straightforward interpretations of the

above-mentioned estimators by geometric intuitions.

(**)The above discussion concentrates on models where identification is not an issue, that is,

the true value of θ can be uniquely identified or "point" identified under some "intuitive" regularity

conditions. Quite often, econometricians would like to use a more general setup such as in Section

1 because economic theory does not provide much information about the relationship between y

and x, or the data structure and/or model structure are not informative enough to the parameters

of interest. In such cases, point identification is impossible. There are four responses to such a

hard situation. First, use a restrictive model while admit that the model is possibly misspecified

and check what the estimator would converge to (the limit is called the pseudo-true value or
quasi-true value). Second, find some smart suffi cient conditions for point identification. Early
literature concentrates on identification of simultaneous equations system; see, e.g., Hausman (1983)

and Hsiao (1983) for a summary of literature. Recent literature concentrates on nonparametric

identification; see, e.g., Matzkin (1994, 2007) for a summary of literature and Matzkin (2013)

for an introduction. There may be two problems with these identification conditions: (i) these

conditions may not be consistent with the data; (ii) the identified parameter is sensitive to these

conditions. To the first problem, some misspecification testing (or lack-of-fit/goodness-of-fit
testing) is usually conducted, and to the second problem, some sensitivity analysis is often carried
out. Third, allow the model to be partially identified, i.e., the identified objects are sets rather

than points; see Manski (1995, 2003, 2007) for a summary of literature and Tamer (2010) for an

introduction. Fourth, select the true model or average a sequence of models; see Claeskens and

Hjort (2008) for an introduction. Some responses are interwined, e.g., the goodness-of-fit testing

is closely related to model selection. In this course, we only provide some examples of the first

response and some brief discussion on misspecification testing and model selection.

Point identification only means that we can estimate the parameter consistently. The natural

next step is to derive the asymptotic distribution of the estimator. Given the asymptotic distri-

bution, we may ask whether the convergence rate is optimal and if it is whether the asymptotic
26More often,

∑n
i=1 s(Xi|θ) is called the score function.
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Figure 2: Econometric Spectrum from Identification to Effi ciency

distribution is optimal; see Bickel et al. (1998) for a comprehensive summary of the effi ciency

literature and see Newey (1990a) for an introduction.

Figure 2 summarizes the econometric spectrum from identification to effi ciency. (**)

4 Notations

Real numbers (or scalars) are written using lower case italics. Vectors are defined as column vectors

and represented using lowercase bold. For example, in linear regression the regressor vector x is a

k × 1 column vector with jth entry xj and the parameter vector β is a k × 1 column vector with

jth entry βj , i.e.,

x
(k×1)

=


x1

...

xk

 and β
(k×1)

=


β1
...

βk

 .

Then the linear regression model y = β1x1 + · · ·+ βkxk + u is expressed as y = x′β + u. Without

further specification, x1 = 1. So we can express x = (1,x′)′ and β = (β1,β
′)′, where x =

(x2, · · · , xk)′ and β = (β2, · · · , βk)′. At times a subscript i is added to denote the typical ith
observation. The linear regression equation for the ith observation is then

yi = x′iβ + ui.

15



In this course observations are assumed to be independent over i (not between yi and xi!) since we

consider only cross-sectional data. Furthermore, if the data is randomly gathered, it is reasonable

to model each observation as a random draw from the same probability distribution. In this case we

say that the data are independent and identically distributed, or iid. We call this a random
sample.

Matrices are represented using uppercase bold. In matrix notation the sample (data, or
dataset) is (y,X), where y is an n× 1 vector with ith entry yi and X is a matrix with ith row x′i,

i.e.,

y
(n×1)

=


y1

...

yn

 and X
(n×dim(x))

=


x′1
...

x′n

 ,

where the first column of X is assumed to be ones if without further specification, i.e., the first

column of X is

1n =


1
...

1

 .

The bold zero, 0, denotes a vector or matrix of zeros. Usually the dimensions will be clear from

the context. Sometimes, we need to express X as

X =
(
X1 · · · Xk

)
,

where different from xi, Xj , j = 1, · · · , k, represents the jth column of X and is all the observations

for jth variable. The linear regression model upon stacking all n observations is then

y = Xβ + u,

where u is an n× 1 column vector with ith entry ui.

Sometimes, the true value of a parameter is indexed by a subscript 0. When the subscript 0

is absent, it means that the result holds for a generic true value of the parameter. Sometimes

(especially in nonlinear models), the capital letters such as X denote random variables or random

vectors and the corresponding lower case letters such as x denote the potential values they may take.

Generic notation for a parameter in nonlinear environments (e.g., nonlinear models or nonlinear

constraints) is θ, while in linear environments is β. All notations should be clear from the context.

Usually, ‖·‖ means the Euclidean norm. For a vector a ∈ Rn, ‖a‖ =
(∑n

i=1 a
2
i

)1/2. For a
m × n matrix A, ‖A‖ =

(∑m
i=1

∑n
j=1 a

2
ij

)1/2
= [tr(A′A)]1/2,27 where for an n × n matrix A,

tr(A) =trace(A) =
∑n

i=1 aii. For an n × n symmetric matrix A, A ≥ 0 means A is positive

semi-definite, i.e., for any nonzero α ∈ Rn, α′Aα ≥ 0; A > 0 means A is positive definite, i.e.,

for any nonzero α ∈ Rn, α′Aα > 0; A ≤ 0 and A < 0 are similarly defined. For two matrices A

27This matrix norm is also called the Frobenius norm or the Hilbert—Schmidt norm.
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and B, A ≥ B means A−B ≥ 0, and similarly A > B means A−B > 0; this is called Loewner

order. For a vector a ∈ Rn, diag(a) means a diagonal matrix with diagonal elements a1, · · · , an. In
is the n× n identity matrix. For two matrices, Am×n and Bk×l, the Kronecker product A⊗B is

an mk × nl matrix and is defined as

A⊗B =


a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .

For a m × n matrix A = (A1, · · · ,An), vec(A) = (A′1, · · · ,A′n)
′. For a square matrix A, its

jth diagonal element is denoted as Ajj . All convergences are as n → ∞, so we do not write out
"n→∞" explicitly throughout the course.

Exercise 4 Show that for two n × n matrices A and B, (i) tr(A + B) = tr(A) + tr(B) and

tr(AB) = tr(BA); (ii) if A is symmetric, ‖A‖ =
(∑n

i=1 λ
2
i

)1/2
, where λi, i = 1, · · · , n, are

eigenvalues of A.

� is used to signal the end of an example, and � the end of a proof. ≡ means "defined as".
Analytical exercises are given in the relevant context. Empirical exercises are given at the end

of each chapter.

This course will concentrate on linear models. Nonlinear models will be briefly discussed with

emphasis on intuition rather than rigorous proof. Sections, proofs, exercises or footnotes indexed

by * are optional. Paragraphs started and ended with (**) are also optional.
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