
Chapter 1. Introduction�

The term "econometrics" was �rst used by Pawel Ciompa in 1910 in a somewhat obscure book

published in Germany. To Ciompa, the goals of "oekonometrie" were to describe economic data

series mathematically and to display them geometrically and graphically. According to the Nobel

Laureate Ragnar Frisch (1936), however, Ciompa�s view of econometrics was too narrow, since it

emphasized only the descriptive side of econometrics. Writing as founding editor in the inaugural

issue of Econometrica in 1933, Frisch de�ned econometrics in more general terms:

Econometrics is by no means the same as economic statistics. Nor is it identical with what we call general

economic theory, although a considerable portion of this theory has a de�nitely quantitative character. Nor

should econometrics be taken as synonomous with the application of mathematics to economics. Experience

has shown that each of these three view-points, that of statistics, economic theory, and mathematics, is

a necessary, but not by itself a su¢ cient, condition for a real understanding of the quantitative relations

in modern economic life. It is the uni�cation of all three that is powerful. And it is this uni�cation that

constitutes econometrics.

To Frisch, econometrics embodies a creative tension between theory and observation:

Theory, in formulating its abstract quantitative notions, must be inspired to a larger extent by the

technique of observation. And fresh statistical and other factual studies must be the healthy element of

disturbance that constantly threatens and disquiets the theorist and prevents him from coming to rest on

some inherited, obsolete set of assumptions.

With the general notion of econometrics by Frisch in mind, we in this chapter �rst use a

famous example in labor economics to put linear regression (the main topic of this course) in a

general framework, then discuss the objective of econometrics and microeconometrics and the role

of economic theory in econometrics, followed by main econometric approaches used in this course,

and conclude with a summary of notations.

1 Linear Regression and Its Extensions

Suppose we observe fyi;xigni=1, where yi is the response variable and xi is the covariates. The
objective is to study the relationship between yi and xi. To be speci�c, we can think yi is the wage

rate, xi includes education and experience, and the target is to study the return to schooling.
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The most general model is

y = m(x;u); (1)

where x = (x1; x2)0 with x1 being education and x2 being experience, u is a vector of unobservable

errors (e.g., the innate ability, skill, quality of education, work ethic, interpersonal connection,

preference, and family background), which may be correlated with x (why?), and m(�) can be any
(nonlinear) function. To simplify our discussion, suppose u is one-dimensional and represents the

ability of individuals. In this model, the return to schooling is

@m(x1; x2; u)

@x1
;

which depends on the levels of x1 and x2 and also u. In other words, for di¤erent levels of education,

the returns to schooling are di¤erent; furthermore, for di¤erent levels of experience (which is ob-

servable) and ability (which is unobservable), the returns to schooling are also di¤erent. This model

is called the nonadditively separable nonparametric model (NSNM) since u is not additively
separable. When u is additively separable, we get the additively separable nonparametric
model (ASNM),

y = m(x) + u:

In this model, the return to schooling is

@m(x1; x2)

@x1
;

which depends only on observables. A special case of this model is the additive separable
model (ASM) where m(x) = m1(x1) + m2(x2). In this case, the return to schooling is

@m(x1)
@x1

,

which depends only on x1. There is also the case where the return to schooling depends on the

unobservable but not other covariates. For example, suppose

y = �(u) +m1(x1)�1(u) +m2(x2)�2(u);

and then the return to schooling is
@m1(x1)

@x1
�1(u);

which does not depend on x2 but depend on x1 and u. A special case of this model is the random
coe¢ cient model (RCM) of Hildreth and Houck (1968) where m1(x1) = x1 and m2(x2) = x2.1

In this case, the return to schooling is �1(u) which depends only on u. Of course, the return to

schooling may depend only on x2 and u. For example, if

y = �(x2; u) + x1�1(x2; u);

then the return to schooling is �1(x2; u) which does not depend on x1. A special case is the varying

1The RCM dates back as early as Rubin (1950).
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coe¢ cient model (VCM) originated by Robinson (1989, 1991), Cleveland et al. (1992) and Hastie
and Tibshirani (1993), where

y = �(x2) + x1�1(x2) + u;

and the return to schooling is �1(x2) depending only on x2. When the return to schooling does not

depend on either (x1; x2) or u, we get the linear regression model (LRM),

y = �+ x1�1 + x2�2 + u � x0� + u;

where x � (1; x1; x2)0, � � (�; �1; �2)0, and the return to schooling is �1 which is constant.
Table 1 summarizes the models above.

x1 X X X X
x2 X X X X
u X X X X
Model NSNM ASNM ? ? ASM VCM RCM LRM

Table 1: Models Based on What the Return to Schooling Depends on

The models in the table can be divided into two subclasses: x and u are uncorrelated (or even inde-

pendent) and x and u are correlated. In the former case, x is called exogenous, and in the latter
case, x is called endogenous. Further extensions include models with limited dependent vari-
ables (LDV) and multiple equations. We can also study di¤erent characteristics of the conditional

distribution of y given x. Two popular choices are conditional mean

m(x) = E[yjx] =
Z
yf(yjx)dy =

Z
m(x; u)f(ujx)du

and conditional quantile

Q� (x) = inf fyjF (yjx) � �g ; � 2 (0; 1);

where m(x) is often called the conditional expectation function (CEF), and Q:5(x) is the
conditional median. Other characteristics include conditional variance

�2(x) = V ar(yjx) = E
h
(y �m(x))2

���xi ;
which measures the dispersion of f(yjx),2 conditional skewness E

��
y�m(x)
�(x)

�3����x� which measures
the asymmetry of f(yjx), and conditional kurtosis E

��
y�m(x)
�(x)

�4����x� which measures the heavy-
tailedness of f(yjx). Figure 1 displays the hourly wage densities for male and female workers from
the 1985 Current Population Survey (CPS).3 These are conditional densities - the density of hourly

2�(x) =
p
�2(x) is called the conditional standard deviation.

3The sample has 528 individuals who were full-time employed (de�ned as those who had worked at least 36 hours
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Figure 1: Wage Densities for Male and Female from the 1985 CPS

wages conditional on gender. From this �gure, we can read out many interesting features of the

female and male wage distributions. First, both mean and median of male wage are larger than

those of female wage. Second, for both male and female wage, median is less than mean, which

indicates that wage distributions are positively skewed. This is corroborated by the fact that the

skewness of both male and female wage is greater than zero (1.0 and 2.9, respectively). Third, the

variance of male wage (27.9) is greater than that of female wage (22.4). Fourth, the right tail of

male wage is heavier than that of female wage.

Exercise 1 Suppose that the random variables Y and X only take the values 0 and 1, and have

the following joint probability distribution

X = 0 X = 1

Y = 0 :1 :2

Y = 1 :4 :3

Find E[Y jX = x], E[Y 2jX = x] and V ar(Y jX = x) for x = 0 and x = 1.

Exercise 2 Suppose Y jX = x follows the uniform distribution on [0; x + 1], and X follows the

Bernoulli distribution with the success probability p = 2=3. What is the conditional mean function

E[Y jX = x] ? What is the conditional variance function V ar(Y jX = x)? What is the conditional

median function Med(Y jX = x)? What is the conditional distribution XjY ? What is E[XjY = y],
V ar(XjY = y) and Med(XjY = y)?

per week for at least 48 weeks the past year), and are not in the military, 244 of which are female and the rest are
male.
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There are some other simpli�cations of the general model or combinations of simpli�ed models.

For example, the VCM can be simpli�ed to the partially linear model (PLM) of Robinson (1988)

where y = �(x2) + x1�1 + u, E[ujx1; x2] = 0.4 Combining the LRM and the ASNM, we get the

single index model (SIM) of Ichimura (1993) where y = m(x0�) + u, E[ujx1; x2] = 0.
This course will concentrate on the conditional mean estimation in the linear regression model

(with one equation) with and without endogeneity. We will also discuss some LDV models without

endogeneity.

2 Econometrics, Microeconometrics and Economic Theory

In modern econometrics, any economy is viewed as a stochastic process fWit : t 2 (�1;1) , i = 1; � � � ; ntg
which summarizes the economic behavior of all individuals at time t, and any economic phenom-

enon (i.e., a data set) is viewed as a (partial) realization of this stochastic process, where Wit can

be in�nite-dimensional, and nt is the number of individuals at time t. Typically, three types of

data are collected. (i) cross-sectional data. The observations are fwi : i = 1; � � � ; ng at a �xed time
point t, where w is a subset of W (e.g., wage, consumption, education, etc) or a transformation

of W (e.g., aggregations such as unemployment rates in di¤erent countries, consumption at the

household level and investment of di¤erent coporations), and n � nt. (ii) time series data. The

observations are fwt : t = 1; � � � ; Tg for the same target of interest (e.g., GDP, CPI, stock price,
etc), where the time unit can be year, quarter, month, day, hour or even second. (iii) panel data or

longitudinal data. The observations are fwit : t = 1; � � � ; T ; i = 1; � � � ; ng. If specify to the setup
in the last section, we can think w = (y;x0)0. Since wt in time series data can be a vector or for

a group of individuals, the di¤erence between time series data and panel data is blurred. Usually,

the distinction is from a technical perspective: if T is much larger than n, the data is treated as

time series; if n is much larger than T , the data is treated as a panel. Of course, there is literature

considering the case where both n and T are large.

The objective of econometrics is to infer (characteristics of) the probability law of this economic

stochastic process (i.e., the data generating process) using observed data, and then use the obtained

knowledge to explain what has happened (i.e., internal validity), and predict what will happen (i.e.,

external validity). The internal validity concerns three problems: What is a plausible value for the

parameter? (point estimation) What are a plausible set of values for the parameter? (set/interval

estimation) Is some preconceived notion or economic theory on the parameter "consistent" with

the data? (hypothesis testing). In other words, the objectives of econometrics are estimation,

inferences (including hypothesis testing and con�dence interval (CI) construction) and prediction.

This course will concentrate on microeconometrics, i.e., the main data types analyzed in this

course are cross-sectional data and panel data.5 Our discussion will be close to Hayashi (2000),

Cameron and Trivedi (2005), Hansen (2007) and Wooldridge (2010). We also use part of materials

from Ruud (2000). Other popular text books include Amemiya (1985), Goldberger (1991), Davidson

4Di¤erent from the models in Table 1, x1 and x2 are not symmetrically treated in the PLM.
5Maybe only cross-sectional data will be discussed due to time constraint.

5



and MacKinnon (1993, 2004), Davidson (1999), Angrist and Pischke (2009) and Greene (2012).

One main objective of microeconometrics is to explore causal relationships between a response

variable y and some covariates x.6 For example, we may be interested in the e¤ect of class sizes

on test scores, police expenditures on crime rates, climate change on economic activity, years of

schooling on wages, baby-bearing on the labor force participation of women, institutional structure

on growth, the e¤ectiveness of rewards on behavior, the consequences of medical procedures on

health outcomes, or any variety of possible causal relationships. Sometimes, we estimate parameters

that are inputs of the measurements of causal e¤ects; sometimes, our targets are causal e¤ects

directly. One caveat is that causality is di¤erent from correlation. For example, using umbrellas

can predict raining but we cannot claim umbrellas cause raining. Noncausal relationships describe

only associations, so are of less economic interests.

(**)Two inherent barriers are that the causal e¤ect is typically speci�c to an individual and that

it is unobserved. Consider the e¤ect of schooling on wages. The causal e¤ect is the actual di¤erence

one would receive in wages if we could change his/her level of education holding all else constant.

This is speci�c to each individual as their employment outcomes in these two distinct situations

is individual. The causal e¤ect is unobserved because we can only observe their actual level of

education and actual wage, not the counterfactual wage if their education had been di¤erent. This

is termed as the fundamental problem of causal inference in Holland (1986). Brie�y stated, all

causal inference involves comparison of a factual with a counterfactual outcome.

A variable x1 can be said to have a causal e¤ect on the response variable y if y changes with x1
when all other inputs are held constant. In the formulation of (1), the causal e¤ect of x1 on y is

�(x1; x2; u) = dm(x1; x2; u)=dx1: (2)

Sometimes it is useful to write this relationship as a potential outcome function

y(x1) = m(x1; x2; u);

where the notation implies that y(x1) is holding x2 and u constant. A popular example arises

in the analysis of treatment e¤ects with a binary regressor x1. Often, x1 is denoted as d. Let

d = 1 indicate treatment (e.g. a medical procedure or a training program) and d = 0 indicate

non-treatment (or control). In this case, y(d) can be written as

y1 = m1(x2; u);

y0 = m0(x2; u):

In the literature on treatment e¤ects, it is common to refer to y0 and y1 as the latent (or poten-

tial) outcomes associated with non-treatment and treatment, respectively. This potential outcome

6 In a letter to J.S. Switzer in 1953, Albert Einstein said, development of Western science is based on two great
achievements: the invention of the formal logical system (in Euclidean geometry) by Greek philosophers, and the
discovery of the possibility to �nd out causal relationships by systematic experiment (during the Renaissance).
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approach goes back at least to J.P. Neyman (1923) and R.A. Fisher (1925, 1935)7, but the modern

version is usually attributed to Rubin (1973a, 1973b, 1974, 1977, 1978). In this case, the causal

e¤ect of treatment (or the treatment e¤ect) is

�(x2; u) = y1 � y0;

which is the ceteris paribus change of outcomes for an agent across states 0 and 1. �(x2; u)

is random (a function of x2 and u) as both potential outcomes y0 and y1 are di¤erent across

individuals. Also, we cannot observe both outcomes from the same individual, we only observe the

realized value y = dy1 + (1� d)y0.
As the causal e¤ect varies across individuals and is not observable, it cannot be measured on

the individual level. We therefore focus on aggregate causal e¤ects, in particular what is known as

the average treatment e¤ect (ATE).8 The ATE of x1 on y conditional on x2 is

�(x1; x2) = E [�(x1; x2; u)jx1; x2] =
Z
�(x1; x2; u)f(ujx1; x2)du;

or

�(x2) = E [�(x2; u)jx1; x2] =
Z
�(x2; u)f(ujx2)du;

where f(ujx1; x2) is the conditional density of u given x1; x2 and f(ujx2) is similarly de�ned. We
can think of the ATE �(x1; x2) or �(x2) as the average e¤ect in the general population with a

speci�c value of x2 and/or x1.

When conduct a regression analysis (that is, consider the regression of observed wages on

educational attainment), we may hope that the regression reveals the average causal e¤ect, that is,

dm(x1; x2)=dx1 = �(x1; x2) or m(1; x2)�m(0; x2) = �(x2). But this is not generally true.

dm(x1; x2)

dx1
=

d
R
m(x1; x2; u)f(ujx1; x2)du

dx1

=

Z
dm(x1; x2; u)

dx1
f(ujx1; x2)du+

Z
m(x1; x2; u)

df(ujx1; x2)
dx1

du

= �(x1; x2) +

Z
m(x1; x2; u)

df(ujx1; x2)
dx1

du;

so unless df(ujx1; x2)=dx1 = 0, dm(x1; x2)=dx1 6= �(x1; x2). In other words, only if u ? x1jx2 or
u is independent of x1 conditional on x2, regression analysis can be interpreted causally, in the

sense that it uncovers average causal e¤ects.9 This condition is not easy to hold. Consider the

return to schooling example. This condition means that the education decision does not depend on

idiosyncratic characteristics such as expectation of the future wage after controlling observables x1
7Jerzy Neyman (1894-1981) and Ronald A. Fisher (1890-1962) are two iconic founders of modern statistical theory.
8The quantile treatment e¤ect (QTE) is also popular nowadays.
9The conditional independence notation u ? x1jx2 was introduced by Dawid (1979). Note that u ? x1jx2 is

weaker than u ? (x1; x2). Roughly speaking, u could have correlation with x1 but only indirectly through x2. Full
independence implies the CIA and implies that each regression derivative equals that variable�s average causal e¤ect,
but full independence is not necessary in order to causally interpret a subset of the regressors.
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and x2, or the decision of education choice can be fully explained by observables. In the treatment

literature, this condition is termed as "ignorable treatment assignment", "conditional independence

assumption (CIA)",10 "selection on observables" or "unconfoundedness".

In the linear regression,

�(x1; x2) =

Z
�(x1; x2; u)f(ujx1; x2)du =

Z
�1f(ujx1; x2)du = �1;

and

dm(x1; x2)

dx1
=

d(x1�1 + x2�2 + E[ujx1; x2])
dx1

= �1 +
dE[ujx1; x2]

dx1
;

so if E[ujx1; x2] = 0, the regression coe¢ cients have causal interpretation.
The CIA assumption essentially assumes that we can impose an exogenous variation on x1,

holding other covariates at controlled settings. This can happen in a controlled social exper-
iment (famous social experiments include the National Supported Work Demonstration (NSW)
program and the National Job Training Partnership Act (JTPA) of 1982), but such experiments

are generally expensive to organize and run. Therefore, it is more attractive to implement causal

modeling using data generated by a natural experiment or quasi-experiment, where some
causal variable changes exogenously and independently of other explanatory variables, so "natu-

rally" provide treated and untreated subjects. For example, Card and Krueger (1994) estimate the

minimum wage e¤ects on employment by noticing that New Jersey increases minimum wage while

neighboring Pennsylvania does not, creating a natural experiment in which observations from the

"treated" state can be compared with those from the "control" state. More often, program eval-

uation or treatment evaluation is based on observational data (or survey or census data) where
the causal variables themselves re�ect individual decisions and hence are potentially endogenous.

Understanding the individual choice process provides not only estimates of the "e¤ect of cause"

but additional insights on the "cause of e¤ect", which are important to the external validity for a

new policy in a common environment or existing policies in new environments. See Heckman and

Vytlacil (2007a,b) and Imbens and Wooldridge (2009) for a comprehensive summary of the existing

literature, but we will not discuss this topic in this course. (**)

Economic theory or model is not a general framework that embeds an econometric model. In

contrast, economic theory is often formulated as a restriction on the probability law of the eco-

nomic stochastic process or the data generating process (DGP). Such a restriction can be used to

validate economic theory, and to improve forecasts if the restriction is valid or approximately valid.

Usually, the economic theory play the following roles in econometric modeling: (i) indication of

the nature (e.g., conditional mean, conditional variance, etc) of the relationship between y and x:

which moments are important and of interest? (ii) choice of economic variables x (e.g., theoretical

10CIA is also a short for Central Intelligence Agency which may be more famous.

8



considerations may suggest that certain variables have no direct e¤ect on others because they do

not enter into agents�utility function, nor do they a¤ect the constraints these agents face); (iii)

restriction on the functional form or parameters of the relationship; (iv) help judge causal relation-

ship (e.g., whether women�s fertility choice a¤ects their employment statuses and hours worked). In

summary, any economic theory can be formulated as a restriction on the probability distribution of

the economic stochastic process. Economic theory plays an important role in simplifying statistical

relationships so that a parsimonious econometric model can eventually capture essential economic

relationships.

3 Econometric Approaches

There are two econometric traditions: the frequentist approach and the Bayesian approach. The

former treats the parameter as �xed (i.e., there is only one true value) and the samples as random,

while the latter treats the parameter as random and the samples as �xed. This course will concen-

trate on the frequentist approach. Two main methods in this tradition are the likelihood method

and the method of moments (MoM).

The estimator in the likelihood method is called themaximum likelihood estimator (MLE).
The MLE was recommended, analyzed (with �awed attempts at proofs) and vastly popularized by

R.A. Fisher between 1912 and 1922 (although it had been used earlier by Gauss, Laplace, T.N.

Thiele,11 and F.Y. Edgeworth12). Much of the theory of maximum-likelihood estimation was �rst

developed for Bayesian statistics, and then simpli�ed by later authors. The basic idea of the MLE

is to guess the truth which could generate the phenomenon we observed most likely (practical

examples here). Mathematically,

�MLE = argmax
�
E[ln(f(Xj�))] = argmax

�

Z
f(x) ln f(xj�)dx = argmax

�

Z
ln f(xj�)dF (x); (3)

where X is a random vector, f(x) is the true probability density function (pdf) or the true prob-

ability mass function (pmf), f(xj�) is the speci�ed parametrized pdf or pmf, and F (x) is the
true cumulative probability function (cdf). Equivalently, �MLE minimizes the entropy of f(xj�),
�E[ln(f(Xj�))]. Another explanation of the MLE is to minimize the Kullback-Leibler infor-
mation distance between f(x) and f(xj�).13 This distance is de�ned as

KLIC =

Z
f(x) ln

�
f(x)

f(xj�)

�
dx:

Exercise 3 Why are the two de�nitions of �MLE equivalent?

A useful property of MLEs is what has come to be known as the invariance property of MLEs.
11Thorvald Nicolai Thiele (1838-1910) was a Danish astronomer, actuary and mathematician. He wa the �rst to

propose a mathematical theory of Brownian motion; he also introduced the cumulants in statistics.
12Francis Ysidro Edgeworth (1845-1926) was an Anglo-Irish philosopher and political economistis. He is most

famous for Edgeworth box in microeconomics and Edgeworth expansion in econometrics.
13Equivalently,
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Informally speaking, the invariance property of MLEs says that if b�MLE is the MLE of �, then

�(b�MLE) is the MLE of �(�). Another key advantage of the MLE is that it reaches the so-

called Cramér (1946)-Rao (1945) Lower Bound (CRLB) asymptotically.14 The CRLB is the
asymptotic variance bound that a "regular"15 estimator of � can reach. Informally speaking, for

any regular estimator of �, say, b�,
AV ar

�b�� � CRLB,
while the MLE reaches this bound, where AV ar(�) denotes the asymptotic variance of an estimator.

The MoM estimator was �rst introduced by Karl Pearson in 1894.16 The original problem is

to estimate k unknown parameters, say � = (�1; � � � ; �k), in f(x). However, we are not fully sure
about the functional form of f(x). Nevertheless, we know the functional form of the moments of

X 2 R as a function of �:
E[X] = g1(�);

E[X2] = g2(�);
...

E[Xk] = gk(�):

(4)

There are k functions with k unknowns, so we can solve out � uniquely in principle. The MoM

estimator uses only the moment information in X, while the MLE uses "all" information in X, so

the MLE is more e¢ cient than the MoM estimator. However, the MoM estimator is more robust

than the MLE since it does not rely on the correctness of the full distribution but relies only on

the correctness of the moment functions. E¢ ciency and robustness are a common trade-o¤ among

econometric methods.

The model based on the likelihood method uses all information so usually needs to specify the

underlying economic behavior in details. Such kind of model is called the structural model. On
the other side, the moment equations extract only partial "reliable" information from the full model.

Such kind of model is called the reduced form model. In econometrics, structural models begin
from deductive theories of the economy, while reduced form models begin by identifying particular

relationships between variables. See Chapter 2 of Cameron and Trivedi (2005) for more discussions

on these concepts.

In econometrics, moment conditions often originate from the �rst order conditions (FOCs) in

an optimization problem. Consider the following microeconometric example. Suppose the �rms

are maximizing their pro�ts conditional on the information in hand; then the problem for �rm i is

max
di

E�jz [�(di; zi; �i; �)] : (5)

14 In some cases, the MLE reaches this bound in �nite samples.
15 In �nite samples, change "regular" to "unbiased" and "asymptotic variance" to "variance".
16Karl Pearson (1857-1936) is the father of Egon Pearson (1895-1980). The former is also famous for the Pearson

correlation coe¢ cient, and the latter is famous for the Neyman-Pearson (1933) Lemma in hypothesis testing.
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Here, � is the pro�t function, e.g.,

�(di; zi; �i; �) = pif(Li; �i; �)� wiLi;

where zi = (pi; wi)
0 is all information used in decision and can be observed by both the �rm and

the econometrician, pi is the output price and wi is the wage rate, �i is the exogenous random

error (e.g., weather, �nancial crisis, etc) and cannot be observed or controlled by either the �rm

or the econometrician, and di = Li is the decision of labor input. � is the technology parameter,

e.g., if f(Li; �i; �) = L�i � exp(�i), then � = �, which is known to the �rm but unknown to the

econometrician. Our goal is to estimate �, which is relevant to measure the causal e¤ect - the e¤ect

of labor input on pro�t. The FOCs of (5) are

E�jz

�
@�(di; zi; �i; �)

@di

�
= m(di; zij�) = 0:

If there is randomness even in zi,17 then the objective function changes to max
di

Ev;z [�(di; zi; �i; �)],

and the FOCs change to

E [m(di; zij�)] = 0; (6)

which are a special set of moment conditions. In macroeconomics, a model as follows is very

standard.

max
fctg1t=1

1P
t=1
�tE0 [u (ct)]

s.t. ct+1 + kt+1 = ktRt+1, k0 is known,

where � is the discount factor, E0[u(�)] is the conditional expected utility based on the information
at t = 0, kt is the capital accumulation at time period t, ct is the consumption at t, and Rt is the

gross return rate at t. From dynamic programming, we have the Euler equation

E0

�
�
u0 (ct+1)

u0 (ct)
Rt+1

�
= 1:

If u(c) = c1���1
1�� , � > 0, then we get

E0

�
�

�
ct
ct+1

��
Rt+1

�
= 1. (7)

Suppose � is known while � is unknown; then (7) is a moment condition for �.

(4), (6) and (7) are the population version of moment conditions. Although some econometri-

cians treat "population" as a physical population (e.g., all individuals in the US census) in the real

world, the term "population" is often treated abstractly, and is potentially in�nitely large. Since

the population distribution is unknown, we cannot solve the population moment conditions to es-

timate the parameters. In practice, we often have a set of data points from the population, so we
17The di¤erence between zi and �i is that zi can be observed ex post while �i cannot. That zi is random means

that the decision is made before zi is revealed, or the decision is made ex ante.
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can substitute the population distribution in the moment conditions by the empirical distribution

of the data. This is the analog method advocated in Manski (1988, 1994). Speci�cally, suppose
the true distribution of a random vector X satis�es the following moment conditions,

E [m(Xj�0)] = 0;

i.e., Z
m(xj�0)dF (x) = 0;

where m : � � Rk ! Rk, and F (�) is the true cumulative probability function (cdf) of X. Here,
you need to pay attention to our notations. In elementary econometrics,

E [m(Xj�0)] =
( R

m(xj�0)f(x)dx;PJ
j=1m(xj j�0)pj ;

if X is continuous,

if X is discrete,

where f(x) is the probability density function (pdf) of X, and fpj = P (X = xj)jj = 1; � � � ; Jg is
the probability mass function (pmf) of X. We write E [m(Xj�0)] as a Riemann�Stieltjes integralR
m(xj�0)dF (x) to cover both cases (and even more general cases). Substituting F (�) by bFn, the

empirical distribution18, we have Z
m(xj�)d bFn(x) = 0;

which is equivalent to
1

n

nX
i=1

m(Xij�) = 0: (8)

The MoM estimator b� (X1; � � � ; Xn) is the solution to (8). Similarly, the MLE can be constructed
as the maximizer of the average log-likelihood

`n(�) =
1

n

nX
i=1

ln f (Xij�) ;

which is equivalent to the maximizer of the log-likelihood function

Ln(�) =
nX
i=1

ln f (Xij�)

or the likelihood function

Ln(�) = exp fLn(�)g =
nY
i=1

f (Xij�) :

18Recall that bFn(x) = n�1Pn
i=1 1(Xi � x):
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Note that if f(xj�) is smooth in �, the FOCs for the MLE are

1

n

nX
i=1

s(Xij�) = 0;

where s(�j�) = @ ln f(�j�)=@� is called the score function in the likelihood literature. So the MLE
is a special MoM estimator in this case. However, f(xj�) can be discontinuous as a function of �,
so the objective function of the MLE is more general than that of the MoM estimator. In statistics,

the former is termed as the M-estimator ("M" for maximization), and the later is termed as the
Z-estimator ("Z" for zero).

The modern version of the likelihood method in the semiparametric setup is the empirical

likelihood method introduced by Owen (1988, 2001); see also Gallant and Nychka (1987) for the

semi-nonparametric maximum likelihood estimation and Geman and Hwang (1982) for the non-

parametric maximum likelihood estimation. The modern version of the method of moments is the

generalized method of moments (GMM) introduced by Hansen (1982). We will cover only the

GMM method in this course.

Another principle, which is useful especially in linear models, is projection. We will dicuss this

principle in the next chapter. This principle provides more straightforward interpretations of the

above-mentioned estimators by geometric intuitions.

4 Notations

Real numbers are written using lower case italics. Vectors are de�ned as column vectors and

represented using lowercase bold. For example, in linear regression the regressor vector x is a k� 1
column vector with jth entry xj and the parameter vector � is a k � 1 column vector with jth
entry �j , i.e.,

x
(k�1)

=

0BB@
x1
...

xk

1CCA and �
(k�1)

=

0BB@
�1
...

�k

1CCA :
Then the linear regression model y = �1x1 + � � �+ �kxk + u is expressed as y = x0� + u. Without
further speci�cation, x1 = 1. So we can express x = (1;x0)0 and � = (�1;�

0)0, where x =

(x2; � � � ; xk)0 and � = (�2; � � � ; �k)0. At times a subscript i is added to denote the typical ith
observation. The linear regression equation for the ith observation is then

yi = x
0
i� + ui:

In this course observations are assumed to be independent over i (not between yi and xi!) since we

consider only cross-sectional data. Furthermore, if the data is randomly gathered, it is reasonable

to model each observation as a random draw from the same probability distribution. In this case we

say that the data are independent and identically distributed, or iid. We call this a random
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sample.
Matrices are represented using uppercase bold. In matrix notation the sample (data, or

dataset) is (y;X), where y is an n� 1 vector with ith entry yi and X is a matrix with ith row x0i,

i.e.,

y
(n�1)

=

0BB@
y1
...

yn

1CCA and X
(n�dim(x))

=

0BB@
x01
...

x0n

1CCA ;
where the �rst column of X is assumed to be ones if without further speci�cation, i.e., the �rst

column of X is

1 =

0BB@
1
...

1

1CCA :
The bold zero, 0, denotes a vector or matrix of zeros. Usually the dimensions will be clear from

the context. Sometimes, we need to express X as

X =
�
X1 � � � Xk

�
;

where di¤erent from xi, Xj , j = 1; � � � ; k, represents the jth column of X and is all the observations

for jth variable. The linear regression model upon stacking all n observations is then

y = X� + u;

where u is an n� 1 column vector with ith entry ui.
Sometimes, the true value of a parameter is indexed by a subscript 0. When the subscript 0

is absent, it means that the result holds for a generic true value of the parameter. Sometimes

(especially in nonlinear models), the capital letters such as X denote random variables or random

vectors and the corresponding lower case letters such as x denote the potential values they may take.

Generic notation for a parameter in nonlinear environments (e.g., nonlinear models or nonlinear

constraints) is �, while in linear environments is �. All notations should be clear from the context.

Usually, k�k means the Euclidean norm. For a vector a 2 Rn, kak =
�Pn

i=1 a
2
i

�1=2. For a
m � n matrix A, kAk =

�Pm
i=1

Pn
j=1 a

2
ij

�1=2
= [trace(A0A)]1=2,19 where for an n � n matrix A,

trace(A) =
Pn
i=1 aii. For an n� n symmetric matrix A, A � 0 means A is positive semi-de�nite;

A > 0 means A is positive de�nite; A � 0 and A < 0 are similarly de�ned. For a vector a 2 Rn,
diag(a) means a diagonal matrix with diagonal elements a1; � � � ; an. In is the n�n identity matrix.
All convergences are as n!1, so we do not write out "n!1" explicitly throughout the course.

� is used to signal the end of an example, and � the end of a proof. � means "de�ned as".
Analytical exercises are given in the relevant context. Empirical exercises are given at the end

of each chapter.

19This matrix norm is also called the Frobenius norm or the Hilbert�Schmidt norm.
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This course will concentrate on linear models. Nonlinear models will be brie�y discussed with

emphasis on intuition rather than rigorous proof. Sections, proofs, exercises or footnotes indexed

by * are optional. Paragraphs started and ended with (**) are also optional.
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