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The Nature of Time Series Data

The Nature of Time Series Data

A times series is a temporal ordering of observations; it may not be arbitrarily
reordered.

Typical Features: serial correlation/nonindependence of observations.

How should we think about the randomness in time series data?
- The outcome of economic variables (e.g., GDP, Dow Jones) is uncertain; they
should therefore be modeled as random variables.
- Time series are sequences of r.v.’s (= stochastic process/time series process).
- Randomness does not come from sampling from a population as the
cross-sectional data.
- "Sample" = the one realized path of the time series out of the many possible
paths the stochastic process could have taken. [figure here]
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The Nature of Time Series Data
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Figure: China GDP from 1978 to 2015: Red is the Realized GDP and Blues are Potential GDPs
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The Nature of Time Series Data

Example: US Inflation and Unemployment Rates 1948-2003

Here, there are only two time series. There may be many more variables whose
paths over time are observed simultaneously.

Time series analysis focuses on modeling the dependency of a variable on
its own past, and on the present and past values of other variables.
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The Nature of Time Series Data

Autocorrelation

The correlation of a series with its own lagged values is called autocorrelation or
serial correlation.

The first autocorrelation of yt is Corr (yt ,yt�1) and the first autocovariance of yt is
Cov (yt ,yt�1). Thus

Corr (yt ,yt�1) =
Cov (yt ,yt�1)p

Var (yt )Var (yt�1)
= ρ1.

Similarly, the j th autocorrelation is

Corr
�
yt ,yt�j

�
=

Cov
�
yt ,yt�j

�q
Var (yt )Var

�
yt�j

� = ρ j .

These are population correlations - they describe the population joint distribution
of (yt ,yt�1) and

�
yt ,yt�j

�
.

The j th sample autocorrelation is an estimate of the j th population autocorrelation,
i.e., the sample analog of Corr

�
yt ,yt�j

�
.
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The Nature of Time Series Data

Sample Autocorrelation

Recall that for a sample f(xi ,yi ) : i = 1, � � � ,ng,

dCov (x ,y) =
1
n

n

∑
i=1
(xi �x) (yi �y) .

For a time series fyt : t = 1, � � � ,Tg, dCov
�
yt ,yt�j

�
is supposedly

dCov
�
yt ,yt�j

�
=

1
T

T

∑
t=1
(yt �yt )

�
yt�j �yt�j

�
.

However,
y1, � � � ,yj�1,yj ,yj+1, � � � ,yT�j�1,yT�j| {z }

yt�j

,yT�j+1, � � � ,yT

and

y1, � � � ,yj�1,yj ,

ytz }| {
yj+1, � � � ,yT�j�1,yT�j ,yT�j+1, � � � ,yT ,

the summation should be from j+1 to T ; otherwise, yt�j for t � j is not defined.
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The Nature of Time Series Data

continue

Correspondingly,

yt = y j+1,T �
1

T � j

T

∑
t=j+1

yt ,

yt�j = y1,T�j �
1

T � j

T�j

∑
t=1

yt .

As a result, the j th sample autocorrelation is

bρ j =
dCov

�
yt ,yt�j

�
dVar (yt )

,

where

dCov
�
yt ,yt�j

�
=

1
T � j

T

∑
t=j+1

�
yt �y j+1,T

��
yt�j �y1,T�j

�
,

dVar (yt ) =
1
T

T

∑
t=1

�
yt �y1,T

�2
.

Note: Here, we assume constant variance, i.e., Var (yt ) does not depend on t .
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The Nature of Time Series Data

Example: US CPI Inflation Rate

Figure: US Quarterly CPI Inflation Rate: 1960:I-2004:IV
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The Nature of Time Series Data

Sample Autocorrelations of Inft and ∆Inft

The sample autocorrelations of the quarterly rate of U.S. inflation (Inft ) and the
quarter-to-quarter change in the quarterly rate of inflation (∆Inft � Inft � Inft�1)
are summarized in the following table:

Lag Inft ∆Inft
1 0.84 �0.26
2 0.76 �0.25
3 0.76 0.29
4 0.67 �0.06

Table: First Four Sample Autocorrelations of the US Inflation Rate and Its Change

The inflation rate is highly serially correlated (bρ Inf
1 = 0.84).

Last quarter’s inflation rate contains much information about this quarter’s inflation
rate.

What’s the intuitive meaning of bρ∆Inf
1 = �0.26< 0?

- the plot is also dominated by multiyear swings.
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The Nature of Time Series Data

Other Economic Time Series
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The Nature of Time Series Data

History of Cointegration

Engle, R.F. and C.W.J. Granger, 1987, Co-integration and Error Correction:
Representation, Estimation and Testing, Econometrica, 55, 251–276.

Clive Granger (1934-2009),
UCSD, 2003NP, 1959NottinghamPhD
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The Nature of Time Series Data

continue
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The Nature of Time Series Data

History of AutoregRessive Conditional Heteroskedasticity (ARCH)

Engle, R.F., 1982, Autoregressive Conditional Heteroscedasticity with Estimates of
Variance of United Kingdom Inflation, Econometrica, 50, 987-1008.

Robert Engle (1942-),
NYU, 2003NP, 1969CornellPhD
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Examples of Time Series Regression Models

a: Static Models

A static model relating y to z is

yt = β 0+β 1zt +ut .

In static time series models, the current value of one variable is modeled as the
result of the current values of explanatory variables.

Example (Phillips Curve [photo here]): There is a contemporaneous relationship
between unemployment and inflation [figure here],

inft = β 0+β 1unemt +ut .

Example: The current murder rate is determined by the current conviction rate,
unemployment rate, and fraction of young males in the population,

mrdrtet = β 0+β 1convrtet +β 2unemt +β 3yngmlet +ut .
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Examples of Time Series Regression Models

History of The Phillips Curve

A.W. Phillips (1914-1975),
New Zealander, LSE, 1949LSESociologyPhD
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Examples of Time Series Regression Models
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Examples of Time Series Regression Models

b: Finite Distributed Lag Models

In finite distributed lag (FDL) models, the explanatory variables are allowed to
influence the dependent variable with a time lag.

Mathematically,

yt = α0+ δ 0zt + δ 1zt�1+ � � �+ δ qzt�q +ut

is an FDL of order q, where q is finite.

Example: The fertility rate may depend on the tax value of a child, but for
biological and behavioral reasons, the effect may have a lag,

gftt = α0+ δ 0pet + δ 1pet�1+ δ 2pet�2+ut ,

where
gftt = general fertility rate (children born per 1,000 women in year t)
pet = tax exemption in year t
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Examples of Time Series Regression Models

Effect of a Transitory Shock

If there is a one time shock in a past period, the dependent variable will change
temporarily by the amount indicated by the coefficient of the corresponding lag.

Consider an FDL of order 2,

yt = α0+ δ 0zt + δ 1zt�1+ δ 2zt�2+ut .

At time t , z increases by one unit from c to c+1 and then reverts to its previous
level at time t+1:

� � � ,zt�2 = c,zt�1 = c,zt = c+1,zt+1 = c,zt+2 = c, � � �

Then, by setting the errors to be zero,

yt�1 = α0+ δ 0c+ δ 1c+ δ 2c,

yt = α0+ δ 0 (c+1)+ δ 1c+ δ 2c,

yt+1 = α0+ δ 0c+ δ 1 (c+1)+ δ 2c,

yt+2 = α0+ δ 0c+ δ 1c+ δ 2 (c+1) ,

yt+3 = α0+ δ 0c+ δ 1c+ δ 2c.

Ping Yu (HKU) Basic Time Series 20 / 48



Examples of Time Series Regression Models

continue

So
yt �yt�1 = δ 0,

i.e., δ 0 is the immediate change in y due to the one-unit increase in z at time t ,
and is usually called impact propensity or impact multiplier.

Similarly,
δ 1 = yt+1�yt�1

is the change in y one period after the temporary change, and

δ 2 = yt+2�yt�1

is the change in y two periods after the temporary change.

At time t+3, y has reverted back to its initial level: yt+3 = yt�1 because only two
lags of z appears in the FDL model.

In summary,

δ j =
∂yt+j

∂zt
.

Lag Distribution: δ j as a function of j , which summarizes the dynamic effect that a
temporary increase in z has on y . [figure here]
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Examples of Time Series Regression Models

Figure: A Lag Distribution with Two Nonzero Lags

The effect is biggest after a lag of one period. After that, the effect vanishes (if the
initial shock was transitory).
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Examples of Time Series Regression Models

Effect of Permanent Shock

If there is a permanent shock in a past period, i.e., the explanatory variable
permanently increases by one unit, the effect on the dependent variable will be the
cumulated effect of all relevant lags. This is a long-run effect on the dependent
variable.

At time t , z permanently increases by one unit from c to c+1 :

zs = c,s < t and zs = c+1, s � t .

Then,

yt�1 = α0+ δ 0c+ δ 1c+ δ 2c,

yt = α0+ δ 0 (c+1)+ δ 1c+ δ 2c,

yt+1 = α0+ δ 0 (c+1)+ δ 1 (c+1)+ δ 2c,

yt+2 = α0+ δ 0 (c+1)+ δ 1 (c+1)+ δ 2 (c+1) ,

yt+3 = yt+2.
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Examples of Time Series Regression Models

continue

With a permanent increase in z, after one period, y will increase by δ 0+ δ 1, and
after two periods, y will increase by δ 0+ δ 1+ δ 2 and then stay there.

The sum of the coefficients on current and lagged z, δ 0+ δ 1+ δ 2, is the long-run
change in y given a permanent increase in z, and is called the long-run propensity
(LRP) or long-run multiplier.

In summary, in an FDL of order q,

LRP = δ 0+ δ 1+ � � �+ δ q =
∂yt+q

∂zt
+ � � �+

∂yt+q

∂zt+q
.

In the figure, the long run effect of a permanent shock is the cumulated effect of all
relevant lagged effects. It does not vanish (if the initial shock is a permanent one).
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Finite Sample Properties of OLS under Classical Assumptions

(**) Finite Sample Properties of OLS
under Classical Assumptions
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Finite Sample Properties of OLS under Classical Assumptions

Standard Assumptions for the Time Series Model

Assumption TS.1 (Linear in Parameters):

yt = β 0+β 1xt1+ � � �+β k xtk +ut .

- The time series involved obey a linear relationship.
- The stochastic processes yt ,xt1, : : : ,xtk are observed, the error process ut is
unobserved.
- The definition of the explanatory variables is general, e.g., they may be lags or
functions of other explanatory variables.

Assumption TS.2 (No Perfect Collinearity): In the sample (and therefore in the
underlying time series process), no independent variable is constant nor a perfect
linear combination of the others.
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Finite Sample Properties of OLS under Classical Assumptions

continue

Assumption TS.3 (Zero Conditional Mean):

E [ut jX] = 0,

where

X=

0BBBBBB@

x11 x12 � � � x1k
...

...
...

...
xt1 xt2 � � � xtk
...

...
...

...
xT 1 xT 2 � � � xTk

1CCCCCCA
collects all the information on the complete time paths of all explanatory variables.

Assumption TS.3 assumes that the mean value of the unobserved factors is
unrelated to the values of the explanatory variables in all periods:

Cov
�
ut ,xsj

�
= 0 for all j and all t and s.

Assumption TS.3 is the strict exogeneity assumption for the regressors,

Ping Yu (HKU) Basic Time Series 27 / 48



Finite Sample Properties of OLS under Classical Assumptions

Discussion of Assumption TS.3

Contemporaneous Exogeneity:

E [ut jxt ] = 0,

where xt = (xt1, : : : ,xtk ) is the values of all explanatory variables in period t .
- It implies Cov

�
ut ,xtj

�
= 0 for all j .

So strict exogeneity is stronger than contemporaneous exogeneity. In the
cross-sectional case, they are equivalent due to random sampling.
TS.3 rules out feedback from the dependent variable on future values of the
explanatory variables; this is often questionable especially if explanatory variables
"adjust" to past changes in the dependent variable, e.g., xt = yt�1, then
Cov (ut�1,xt ) = Cov (ut�1,yt�1) 6= 0.
Example: In a simple static model to explain a city’s murder rate in terms of police
officers per capita,

mrdrtet = β 0+β 1polpct +ut ,

if Cov (polpct+1,ut ) 6= 0 then TS.3 fails even if Cov
�
ut ,polpct�j

�
= 0 for

j = 0,1,2, � � �
Example: In an agricultural production function, the rainfall is strictly exogenous,
while the labor input is not.
If the error term is related to past values of the explanatory variables, one should
include these values as contemporaneous regressors, i.e., use the FDL model.
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Finite Sample Properties of OLS under Classical Assumptions

a: Unbiasedness of OLS

Theorem 10.1: Under assumptions TS.1-TS.3,

E
h bβ j

���Xi= β j , j = 0,1, � � � ,k ,

for any values of β j .
The proof is similar to that of Theorem 3.1.
The analysis of omitted variables bias is also similar.
As in Chapter 3, we condition on the regressors X. Conditional unbiasedness
implies unconditional unbiasedness:

E
hbβ j

i
= E

h
E
h bβ j

���Xii= E
h
β j

i
= β j .

(*) Law of Iterated Expectations (LIE): For two r.v.’s, E [E [Y jX ]] = E [Y ].
- Intuition: E [Y jX ] = µ(X ) averages over Y for each group of individuals with a
specific X value, and then E [E [Y jX ]] = E [µ(X )] averages over X by the
probability of each X group, which results in the unconditional mean of Y . [figure
here]

- E [ujx ] = 0 implies the unconditional mean of u, E [u]
LIE
= E [E [ujx ]] = E [0] = 0.

We can also show, by applying the LIE, that Var (ujx) = σ2 implies Var (u) = σ2,
and E [ujx ] = 0 implies Cov (x ,u) = 0.
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Finite Sample Properties of OLS under Classical Assumptions
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Figure: Illustration of the LIE: the distribution of log(wage) given educ mimics the real data in
Chapter 8

E [log(wage)] = E [E [log(wagejeduc)]] = E [m(educ)] = ∑J
j=1 m(educj )pj .
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Finite Sample Properties of OLS under Classical Assumptions

Standard Assumptions for the Time Series Model (continue)

Assumption TS.4 (Homoskedasticity): Var (ut jX) = Var (ut ) = σ2.
- The volatility of the errors must not be related to the explanatory variables in
any of the periods.

A sufficient condition is that ut is independent of X and that Var (ut ) is constant
over time.

In the time series context, homoskedasticity may also be easily violated, e.g., if the
volatility of the dependent variable depends on regime changes (recall the
Chow-test, see also the example below).

Assumption TS.5 (No Serial Correlation): Cov (ut ,usjX) = 0, t 6= s.
- Conditional on the explanatory variables, the unobserved factors must not be
correlated over time.

This assumption is specific to time series. In the cross-sectional case, it
automatically holds due to random sampling.

The assumption may also serve as substitute for the random sampling assumption
if sampling a cross-section is not done completely randomly.

In this case, given the values of the explanatory variables, errors have to be
uncorrelated across cross-sectional units (e.g., states).
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Finite Sample Properties of OLS under Classical Assumptions

More on Assumption TS.5

This assumption may easily be violated if, conditional on knowing the values of the
independent variables, omitted factors are correlated over time.

Strictly, suppose the true model is

yt = β 0+β 1xt +β 2zt +ut ,

while we fit
yt = β 0+β 1xt + vt .

If Cov (zt ,zs) 6= 0, t 6= s, then

Cov (vt ,vs) = Cov (β 2zt +ut ,β 2zs+us) = β
2
2Cov (zt ,zs)

even if
Cov (zt ,us) = 0 for all t ,s and Cov (ut ,us) = 0 for t 6= s.
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Finite Sample Properties of OLS under Classical Assumptions

b: Three Parallel Theorems

Theorem 10.2 (OLS Sampling Variances): Under assumptions TS.1-TS.5,

Var
� bβ j

���X�= σ2

SSTj

�
1�R2

j

� , j = 1, � � � ,k .

Theorem 10.3 (Unbiased Estimation of σ2): Under assumptions TS.1-TS.5,

E
hbσ2

i
= σ

2,

where bσ2 = SSR
T�k�1 .

Theorem 10.4 (The Gauss-Markov Theorem): Under assumptions TS.1-TS.5, the
OLS estimators are BLUEs conditional (or unconditional) on X.

Assumptions TS.1-TS.5 are the appropriate Gauss-Markov assumptions for time
series applications.
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Finite Sample Properties of OLS under Classical Assumptions

c: Inference under the Classical Linear Model Assumptions

Assumption TS.6 (Normality): ut is independent of X, and ut
iid� N

�
0,σ2

�
.

- This assumption implies TS.3-TS.5.

Theorem 10.5 (Normal Sampling Distributions): Under assumptions TS.1-TS.6,
the OLS estimators have the usual normal distribution (conditional on X). The
usual F - and t-tests are valid. The usual construction of CIs is also valid.

Example (Static Phillips Curve): The fitted regression line is

cinf t = 1.42+ .468unemt

(1.72)(.289)

n = 49,R2 = .053,R
2
= .033

Contrary to theory, the estimated Phillips Curve does not suggest a tradeoff
between inflation and unemployment.
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Finite Sample Properties of OLS under Classical Assumptions

Discussion of CLM Assumptions

TS.1: inft = β 0+β 1unemt +ut . The error term contains factors such as monetary
shocks, income/demand shocks, oil price shocks, supply shocks, or exchange rate
shocks.

TS.2: A linear relationship might be restrictive, but it should be a good
approximation. Perfect collinearity is not a problem as long as unemployment
varies over time.

TS.3: E [ut junem1, � � � ,unemT ] = 0 is easily violated. unemt�1 "=) ut #: past
unemployment shocks may lead to future demand shocks which may dampen
inflation. ut�1 "=) unemt ": an oil price shock means more inflation and may lead
to future increases in unemployment.

TS.4: Var (ut junem1, � � � ,unemT ) = σ2 is violated if monetary policy is more
"nervous" in times of high unemployment.

TS.5: Corr (ut ,usjunem1, � � � ,unemT ) = 0 is violated if exchange rate influences
persist over time (they cannot be explained by unemployment).

TS.6: If TS.3-5 is questionable, TS.6 is also questionable. Also, normality is
questionable.
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Functional Form and Dummy Variables

Functional Form and Dummy Variables
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Functional Form and Dummy Variables

Functional Form and Dummy Variables

Logarithmic transformation has the usual elasticity interpretation. For example, in
the FDL model, we can define short-run elasticity (corresponding to impact
propensity) and long-run elasticity (corresponding to LRP) by using logarithmic
functional forms.
Dummy variables are often used to isolate certain periods that may be
systematically different from other periods.
Example (Effects of Personal Exemption on Fertility Rates): The fitted regression
line is cgfr t = 98.68+ .083pet �24.24ww2t �31.59pillt

(3.68) (.030) (7.46) (4.08)

n = 72,R2 = .473,R
2
= .450

where
ww2= dummy for World War II years (1941-45)
pill = dummy for availability of contraceptive pill (1963-present)

During World War II, the fertility rate was temporarily (much) lower (gfr ranges
from 65 to 127 during 1913-1984).
It has been permanently lower since the introduction of the pill in 1963.
The effect of tax exemption is significant both statistically and economically ($12
tax exemption=)one more baby per 1,000 women).
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Trends and Seasonality

Trends and Seasonality
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Trends and Seasonality

a: Characterizing Trending Time Series

Modelling a Linear Time Trend:

yt = α0+α1t+et .

- E [yt ] = α0+α1t , the expected value of the dependent variable is a linear
function of time. [figure here]
- This is equivalent to say that

E [∆yt ] = E [yt �yt�1] = α0+α1t� (α0+α1 (t�1)) = α1.

Modelling an Exponential Time Trend:

log (yt ) = α0+α1t+et .

- ∂ log(yt )
∂ t = ∂yt /yt

∂ t = α1, so the growth rate is constant over time. [figure here]
- This is equivalent to say that

E [∆ log (yt )] = E [log (yt )� log (yt�1)] = α0+α1t� (α0+α1 (t�1)) = α1.
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Trends and Seasonality

Figure: Example for a Time Series with a Linear Upward Trend
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Trends and Seasonality

Figure: Example for a Time Series with an Exponential Trend
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Trends and Seasonality

b: Using Trending Variables in Regression Analysis

If trending variables are regressed on each other, a spurious relationship may
arise if the variables are driven by a common trend. This is an example of
spurious regression problem.

In this case, it is important to include a trend in the regression:

yt = β 0+β 1xt +β 3t+ut .

If xt also includes a trend, then xt is correlated with t . The regression

yt = β 0+β 1xt +ut (1)

would have an omitted variable bias. This is why the spurious regression problem
appears.

If xt has a trend but yt does not, then bβ 1 in (1) tends to be insignificant. This is
because the trending in xt might be too dominating and obscure any partial effect
it might have on yt .

Either yt or some of the regressors has a time trend, add t in.
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Trends and Seasonality

Example: Housing Investment and Prices (spurious regression)

The fitted regression line is

\log (invpc) = �.550+1.241log (price)

(.043) (.382)

n = 42,R2 = .208,R
2
= .189

where
invpc = per capita housing investment (in thousands of dollars)
price = housing price index (equal to 1 in 1982)

It looks as if investment and prices are positively related.

If adding the time trend in,

\log (invpc) = �.913� .381log (price)+ .0098t

(.136) (.679) (.0035)

n = 42,R2 = .341 (> .208) ,R
2
= .307

There is no significant relationship between price and investment anymore.

Ping Yu (HKU) Basic Time Series 43 / 48



Trends and Seasonality

c: A Detrending Interpretation of Regressions with a Time Trend

It turns out that the OLS coefficients in a regression including a trend are the same
as the coefficients in a regression without a trend but where all the variables have
been detrend ed before the regression.

This follows from the FWL theorem.

Specifically, suppose y � 1,x , t , and we are interested in bβ 1.
1 xt � 1, t =) ẍt
2 yt � 1, t =) ÿt
3 ÿt � ẍt =) bβ 1
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Trends and Seasonality

d: Computing R-Squared when the Dependent Variable Is Trending

Due to the trend, the variance of the dependent variable will be overstated.

It is better to first detrend the dependent variable and then run the regression on
all the independent variables (plus a trend if they are trending as well).

Specifically,
1 yt � 1, t =) ÿt
2 ÿt � 1,xt , t

The R-squared of the second-step regression is a more adequate measure of fit:

R2 = 1� SSR

∑T
t=1 ÿ2

t

,

where 1
T ∑T

t=1 ÿt = 0, and

R
2
= 1� SSR/ (T �3)�

∑T
t=1 ÿ2

t

�.
(T �2)

.
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Trends and Seasonality

continue

Recall that

R
2
= 1�

bσ2
ubσ2
y

.

Although bσ2
u =

1
T�k�1 ∑T

t=1 bu2
t is unbiased to σ2

u , bσ2
y =

1
T�1 ∑T

t=1 (yt �y)2 is not an

unbiased estimator of σ2
y if yt has a trend [figure here], where but is from

yt � 1,xt , t ,

which is the same as the residual from ÿt � 1,xt , t .

Note that  
T

∑
t=1

ÿ2
t

!
�

T

∑
t=1
(yt �y)2 ,

so

1� SSR

∑T
t=1 ÿ2

t

� 1� SSR

∑T
t=1 (yt �y)2

,

i.e., the R2 tends to be larger if yt has not been detrended before calculating R2.
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0

Figure: bσ2
y =

1
T�1 ∑T

t=1 (yt �y)2 Is NOT an Unbiased Estimator of σ2
y If yt Has a Trend
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Trends and Seasonality

e: Modelling Seasonality in Time Series

Seasonality can be used to model monthly housing starts (higher in June than in
January), retails sales (higher in fourth quarter than in the previous three quarters
because of Christmas), etc..

A simple method is to include a set of seasonal dummies:

yt = β 0+ δ 1febt + δ 2mart + δ 2aprt + � � �+ δ 11dect

+β 1xt1+ � � �+β k xtk +ut ,

where

dect =

�
= 1,
= 0,

if the observartion is from december,
otherwise,

and other dummies are similarly defined.

Similar remarks apply as in the case of deterministic time trends:
- The regression coefficients on the explanatory variables can be seen as the
result of first deseasonalizing the dependent and the explanatory variables.
- An R-squared that is based on first deseasonalizing the dependent variable
may better reflect the explanatory power of the explanatory variables.
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