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Functional Form Misspecification

Tests for Functional Form Misspecification

One can always test whether explanatory should appear as squares or higher
order terms by testing whether such terms can be excluded.

Otherwise, one can use general specification tests such as regression
specification error test (RESET) of Ramsey [photo here].

Ramsey, J.B., 1969, Tests for Specification Errors in Classical Linear
Least-Squares Regression Analysis, Journal of the Royal Statistical Society,
Series B, 31, 350-371.

Ramsey, J.B., 1970, Models, Specification Error, and Inference: A Discussion of
Some Problems in Econometric Methodology, Bulletin of the Oxford Institute of
Economics and Statistics, 32, 301-318.
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Functional Form Misspecification

James B. Ramsey (1937- ), NYU, 1968UW-MadisonPhD
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Functional Form Misspecification

a: RESET as a General Test for Functional Form Misspecification

Let by be the fitted value from the initial linear regression.

Basic Idea: include squares and possibly higher order fitted values in the
regression (similarly to the reduced White test),

y = β 0+β 1x1+ � � �+β k xk + δ 1by2+ δ 2by3+error ,

and then test whether δ 1 = δ 2 = 0 by the F test.

If by2 and by3 cannot be excluded, this is evidence for omitted higher order terms
and interactions, i.e., for misspecification of functional form.

One may also include higher order terms, which implies complicated interactions
and higher order terms of all explanatory variables.

RESET provides little guidance as to where misspecification comes from.
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Functional Form Misspecification

Example: Housing Price Equation

We estimate two models for housing prices:

price = β 0+β 1lotsize+β 2sqrft+β 3bdrms+u

in level form and

lprice = β 0+β 1llotsize+β 2lsqrft+β 3bdrms+u

in log form (except bdrms).

For the first specification,

F2,(88�3�2�1) = 4.67,p-value= .012.

This is evidence of functional form misspecification.

For the second specification,

F2,(88�3�2�1) = 2.56,p-value= .084.

This is less evidence for misspecification.

Ping Yu (HKU) Specification and Data Issues 6 / 35



Functional Form Misspecification

b: Tests against Nonnested Alternatives
Mizon-Richard Test

Suppose we want to know which of the following two specifications is more
appropriate:

y = β 0+β 1x1+β 2x2+u (1)

or
y = β 0+β 1 log (x1)+β 2 log (x2)+u. (2)

Method I: Mizon, G.E. and J.F. Richard, 1986, The Encompassing Principle and Its
Application to Testing Nonnested Hypotheses, Econometrica, 54, 657-678. [photo
here]

Basic Idea: construct a comprehensive model that contains each model as a
special case and then to test the restrictions that led to each of the models.

Specifically, let

y = γ0+ γ1x1+ γ2x2+ γ3 log (x1)+ γ4 log (x2)+u.

Test H0 : γ3 = γ4 = 0 for model (1) and test H0 : γ1 = γ2 = 0 for model (2).
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Functional Form Misspecification

Grayham E. Mizon (?-),
Southampton, 1972LSEPhD

Jean-Francois Richard (1943-),
Pittsburgh, 1973LouvainPhD
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Functional Form Misspecification

continue
Davidson-MacKinnon test

Method II: Davidson, R. and J.G. MacKinnon, 1981, Several Tests of Model
Specification in the Presence of Alternative Hypotheses, Econometrica, 49,
781-793. [photo here]

Basic Idea: if (1) is true, then the fitted values from the other model, (2), should be
insignificant in (1), and vise versa.

Specifically, run the regression

y = β 0+β 1x1+β 2x2+θ1
bby +error ,

and test H0 : θ1 = 0 for model (1), where bby is the predicted value from model (2).

Similarly, run the regression

y = β 0+β 1 log (x1)+β 2 log (x2)+θ2by +error ,

and test H0 : θ2 = 0 for model (2), where by is the predicted value from model (1).
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Functional Form Misspecification

Russell Davidson (1941-),
McGill, 1977UBCPhD

James G. MacKinnon (1951-),
Queen, 1975PrincetonPhD
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Functional Form Misspecification

Discussion

Problem I: In nonnested testing, a clear winner need not emerge. Both models
could be rejected or neither model could be rejected.
- In the latter case, we can use the adjusted R-squared to choose between them.
If both models are rejected, more work needs to be done.

Problem II: Rejecting (1) using, say, the Davidson-MacKinnon test does not mean
that (2) is the correct model. Model (1) can be rejected for a variety of functional
form misspecifications.

Problem III: Cannot be used if the models differ in their definition of the dependent
variables, e.g., y versus log (y). [see Chapter 6 for goodness-of-fit measures that
can be compared.]
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Using Proxy Variables for Unobserved Explanatory Variables

Using Proxy Variables for Unobserved Explanatory
Variables
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Using Proxy Variables for Unobserved Explanatory Variables

Example: Omitted Ability in a Wage Equation

Suppose the true wage equation is

log (wage) = β 0+β 1educ+β 2exper +β 3abil+u.

In general, the estimates for the returns to education and experience will be
biased because one has omitted the (unobservable) ability variable.

Idea: find a proxy variable for ability which is able to control for ability differences
between individuals so that the coefficients of the other variables will not be
biased. A possible proxy for ability is the IQ score or similar test scores.
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Using Proxy Variables for Unobserved Explanatory Variables

General Approach to Using Proxy Variables

Suppose
y = β 0+β 1x1+β 2x2+β 3x�3 +u,

where x�3 is an unobservable omitted variable but has a proxy variable x3 for it.
Regressing the omitted variable on its proxy, we have

x�3 = δ 0+ δ 3x3+ v3,

where δ 3 is usually positive for x3 to be a suitable proxy for x�3 .
Assumption I: The proxy is "just a proxy" for the omitted variable, it does not
belong to the population regression, i.e., it is uncorrelated with its error:

Cov (x3,u) = 0.

- If the error and the proxy were correlated, the proxy would actually have to be
included in the original population regression function.
Assumption II: The proxy variable is a "good" proxy for the omitted variable, i.e.,
using other variables in addition will not help to predict the omitted variable:

E [x�3 jx1,x2,x3] = E [x�3 jx3] = δ 0+ δ 3x3,

which implies Cov (x1,v3) = Cov (x2,v3) = 0; in other words, all the correlations
between x�3 and (x1,x2) are through x3.
- Otherwise, x1 and x2 would have to be included in the regression for the omitted
variable.
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Using Proxy Variables for Unobserved Explanatory Variables

Plug-in Solution to the Omitted Variables Problem

Plug in x3 for x�3 and run regression of y on (x1,x2,x3).

The relationship between y and (x1,x2,x3) is

y = β 0+β 1x1+β 2x2+β 3 (δ 0+ δ 3x3+ v3)+u

= (β 0+β 3δ 0)+β 1x1+β 2x2+β 3δ 3x3+(β 3v3+u) ,

where Cov (x1,v3) = Cov (x2,v3) = Cov (x3,v3) = 0 (why?) and
Cov (x1,u) = Cov (x2,u) = Cov (x3,u) = 0 (why?).

In this regression model, the error term β 3v3+u is uncorrelated with all
explanatory variables. As a consequence, all coefficients will be correctly
estimated using OLS. The coefficients for the explanatory variables x1 and x2 will
be correctly identified.
- The coefficient for the proxy variable may also be of interest (it is a multiple of the
coefficient of the omitted variable).
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Using Proxy Variables for Unobserved Explanatory Variables

Revisit the Wage Example

Assumption I: Should be fulfilled as IQ score is not a direct wage determinant;
what matters is how able the person proves at work.

Assumption II: Most of the variation in ability should be explainable by variation in
IQ score, leaving only a small rest to educ and exper .
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Using Proxy Variables for Unobserved Explanatory Variables

a: Using Lagged Dependent Variables as Proxy Variables

In many cases, omitted unobserved factors may be proxied by the value of the
dependent variable from an earlier time period.

Example (City Crime Rates):

crime = β 0+β 1unem+β 2expend +β 3crime�1,

where
crime = a measure of per capita crime
unem = the city unemployment rate
expend = per capita spending on law enforcement

Including the past crime rate will at least partly control for the many omitted factors
that also determine the crime rate in a given year.

Another way to interpret this equation is that one compares cities which had the
same crime rate last year; this avoids comparing cities that differ very much in
unobserved crime factors.
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Models with Random Slopes

Models with Random Slopes
(Random Coefficient Models)
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Models with Random Slopes

History of Random Coefficient Models (RCMs)

P.A.V.B. Swamy (1934-)
Federal Reserve, 1968UW-MadisonPhD
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Models with Random Slopes

RCM

In the return-to-schooling example, the return to education may vary across
individuals, i.e.,

yi = β 0+bixi +ui � ai +bixi .

where yi = log (wagei ) and xi = edui .

Generally, write ai = α+ci with α = E [ai ] and bi = β +di with β = E [bi ], where α

is the average intercept and ci is the random component, the average slope β is
called average partial effect (APE) or average marginal effect (AME).

Thus,
yi = α+βxi +(ci +dixi )� α+βxi +ui .

To guarantee E [ui jxi ] = 0, assume E [ci jxi ] = E [di jxi ] = 0, i.e., the individual
random components are mean independent of the explanatory variable.

Now, E [ci +dixi jxi ] = 0 and Var (ci +dixi jxi ) = σ2
c +σ2

d x2
i , i.e., the model is

heteroskedastic, which implies that WLS or OLS with robust standard errors will
consistently estimate the average intercept and average slope in the population.
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Properties of OLS under Measurement Error
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Properties of OLS under Measurement Error

a: Measurement Error in the Dependent Variable

Suppose y = y�+e0, i.e., mismeasured value = true value + measurement error.

If the population regression is

y� = β 0+β 1x1+ � � �+β k xk +u,

satisfying the Gauss-Markov assumptions, then the estimated regression is

y = β 0+β 1x1+ � � �+β k xk +u+e0.

For simplicity, assume e0 is independent of x and u with mean zero.

Consequence: Estimates will be less precise because the error variance is higher
(Var (u+e0) = Var (u)+Var (e0)> Var (u)); otherwise, OLS will be unbiased and
consistent (as long as the measurement error is unrelated to the values of the
explanatory variables, E [e0jx] = E [e0] = 0).
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Properties of OLS under Measurement Error

b: Measurement Error in an Explanatory Variable

Suppose x1 = x�1 +e1, i.e., mismeasured value = true value + measurement error.

If the population regression is

y = β 0+β 1x�1 +u,

then the estimated regression is

y = β 0+β 1x1+(u�β 1e1) .

Classical error-in-variables assumption (CEV): Cov
�
x�1 ,e1

�
= 0, i.e., the

measurement error is uncorrelated with the true value.

Now,
Cov (x1,e1) = Cov (x�1 ,e1)+Cov (e1,e1) = σ

2
e1
,

and
Cov (x1,u�β 1e1) = �β 1Cov (x1,e1) = �β 1σ

2
e1
,

i.e., the mismeasured variable x1 is correlated with the error term!
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Properties of OLS under Measurement Error

Consequences of Measurement Error in an Explanatory Variable

Under the classical errors-in-variables assumption, OLS is biased and inconsistent
because the mismeasured variable is endogenous.

One can show that

E
hbβ 1

i
= β 1+

Cov (x1,u�β 1e1)

Var (x1)
= β 1�β 1

σ2
e1

σ2
x�1
+σ2

e1

= β 1

 
1�

σ2
e1

σ2
x�1
+σ2

e1

!
= β 1

σ2
x�1

σ2
x�1
+σ2

e1

.

Since the reliability coefficient
σ2

x�1
σ2

x�1
+σ2

e1

is less than 1, E
hbβ 1

i
is always closer to

zero than β 1, which is called the attenuation bias.

Besides the magnitude of the effect of the mismeasured variable will be
attenuated towards zero, the effects of the other explanatory variables (if they are
present and precisely measured) will be biased.

Hausman (2000): "At MIT I have called this the “Iron Law of Econometrics” – the
magnitude of the estimate is usually smaller than expected." [photo here]
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Properties of OLS under Measurement Error

History of Measurement Error

Jerry A. Hausman (1946-), MIT, 1973OxfordPhD
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Missing Data, Nonrandom Samples, and Outlying Observations

Missing Data, Nonrandom Samples, and Outlying
Observations
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Missing Data, Nonrandom Samples, and Outlying Observations

b: Missing Data as Sample Selection

Missing data is a special case of sample selection (= nonrandom sampling) as the
observations with missing information cannot be used.

If the sample selection is based on independent variables x, there is no problem
as a regression conditions on the independent variables (E [ujx] = 0 still holds for
observed x values.)

In general, sample selection is no problem if it is uncorrelated with the error term
of a regression (= exogenous sample selection).

Sample selection is a problem, if it is based on the dependent variable or on the
error term (= endogenous sample selection).
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Missing Data, Nonrandom Samples, and Outlying Observations

Examples of Sample Selection

Example for exogenous sample selection: Suppose the model of interest is

saving = β 0+β 1income+β 2age+β 3size+u.

If the sample was nonrandom in the way that certain age groups, income groups,
or household sizes were over- or undersampled, this is not a problem for the
regression because it examines the savings for subgroups defined by income,
age, and household size. The distribution of subgroups does not matter.

Example for endogenous sample selection: Suppose the model of interest is

wealth = β 0+β 1educ+β 2exper +β 3age+u.

If the sample is nonrandom in the way individuals refuse to take part in the sample
survey if their wealth is particularly high or low, this will bias the regression results
because these individuals may be systematically different from those who do not
refuse to take part in the sample survey.
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Missing Data, Nonrandom Samples, and Outlying Observations

History of Sample Selection

Heckman, J., 1979, Sample Selection as a Specification Error, Econometrica, 47,
153-161.
- It is one of the most cited papers in econometrics.

James J. Heckman (1944-),
Chicago, 2000NP, 1971PrincetonPhD

Daniel L. McFadden (1937-),
Berkeley, co-winner, 1962MinnesotaPhD
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Missing Data, Nonrandom Samples, and Outlying Observations

c: Outliers and Influential Observations

Extreme values and outliers may be a particular problem for OLS because the
method is based on squaring deviations.

If outliers are the result of mistakes that occured when keying in the data, one
should just discard the affected observations.

If outliers are the result of the data generating process, the decision whether to
discard the outliers is not so easy.

Example (R&D Intensity and Firm Size): The model of interest is

rdintens = β 0+β 1sales+β 2profmarg+u,

where
rdintens = R&D expenditures as a percentage of sales (in millions)
profmarg = profits as a percentage of sales
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Missing Data, Nonrandom Samples, and Outlying Observations

Example Continue
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Least Absolute Deviations Estimation

Least Absolute Deviations Estimation
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Least Absolute Deviations Estimation

LAD

The least absolute deviations (LAD) estimator minimizes the sum of absolute
deviations (instead of the sum of squared deviations, i.e., OLS):

min
b0,b1,��� ,bk

n

∑
i=1
jyi �b0�b1xi1��� ��bk xik j .

It may be more robust to outliers as deviations are not squared. [figure here]

The LAD estimator estimates the parameters of the conditional median (instead of
the conditional mean with OLS).

The LAD estimator is a special case of quantile regression, which estimates
parameters of conditional quantiles. [photo here]
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Least Absolute Deviations Estimation

Figure: The OLS and LAD Objective Functions
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Least Absolute Deviations Estimation

History of Quantile Regression

The path-breaking paper: Koenker, R. And G. Bassett, 1978, Regression
Quantiles, Econometrica, 46, 33-50.

Roger W. Koenker (1947-),
UIUC, 1974MichiganPhD
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