
Ch08. Heteroskedasticity
(Sections 8.1-8.4)

Ping Yu

HKU Business School
The University of Hong Kong

Ping Yu (HKU) Heteroskedasticity 1 / 43



Consequences of Heteroskedasticity for OLS

Consequences of Heteroskedasticity for OLS

Ping Yu (HKU) Heteroskedasticity 2 / 43



Consequences of Heteroskedasticity for OLS

Definition of Heteroskedasticity

If
Var (ui jx i ) = σ

2

is constant, that is, if the variance of the conditional distribution of ui given x i does
not depend on x i , then ui is said to be homoskedastic. [figure here]

Otherwise, if
Var (ui jx i ) = σ

2 (x i )� σ
2
i ,

that is, the variance of the conditional distribution of ui given x i depends on x i ,
then ui is said to be heteroskedastic. [figure here]

Recall that
Var (ui jx i ) = E

h
u2

i jx i

i
�E [ui jx i ]

2 = E
h
u2

i jx i

i
because E [ui jx i ] = 0 (Assumption MLR.4).
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Consequences of Heteroskedasticity for OLS

Homoskedasticity
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Consequences of Heteroskedasticity for OLS

Heteroskedasticity

Figure: An Example for Heteroskedasticity: Wage and Education
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Consequences of Heteroskedasticity for OLS

A Real-Data Example of Heteroskedasticity

Figure: Average Hourly Earnings vs. Years of Education (data source: Current Population Survey)
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Consequences of Heteroskedasticity for OLS

Consequences of Heteroskedasticity for OLS

OLS is still unbiased under heteroskedasticity because Assumption MLR.4
E [ujx] = 0 does not involve conditional variance.

Also, interpretation of R-squared and R-bar squared is not changed because

R2 t 1� σ2
u

σ2
y
,

where σ2
u is the unconditional variance of u while heteroskedasticity is about the

conditional variance of u.

Heteroskedasticity invalidates variance formulas for OLS estimators.

The usual F -tests and t-tests are not valid under heteroskedasticity because as
mentioned before, normality assumption implies homoskedasticity.

Under heteroskedasticity, OLS is no longer the best linear unbiased estimator
(BLUE); there may be more efficient linear estimators as will be discussed below.
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Heteroskedasticity-Robust Inference after OLS Estimation

Heteroskedasticity-Robust Inference
after OLS Estimation
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Heteroskedasticity-Robust Inference after OLS Estimation

Heteroskedasticity-Robust Inference after OLS Estimation

Formulas for OLS standard errors and related statistics have been developed that
are robust to heteroskedasticity of unknown form.

All formulas are only valid in large samples. (related to chapter 5, which is not
discussed in this course)

Formula for heteroskedasticity-robust OLS standard error:

dVar
�bβ j

�
=

∑n
i=1br2

ij
bu2

i

SSR2
j

= SSR�1
j

"
n

∑
i=1

br2
ij bu2

i

#
SSR�1

j .

- Also called Eicker/Huber/White standard errors [photo here] or sandwich-form
standard errors. They involve the squared residuals from the regression (bui ) and
from a regression of xj on all other explanatory variables (brij ). [see the next slides
for more discussions]

Using these formulas, the usual t-test is valid asymptotically (i.e., n! ∞).

The usual F -statistic does not work under heteroskedasticity, but
heteroskedasticity-robust versions are available in most software.
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Heteroskedasticity-Robust Inference after OLS Estimation

Eicker/Huber/White Standard Errors

This form of standard errors are originally derived in the following two papers:
- Eicker, F., 1967, Limit Theorems for Regressions with Unequal and Dependent
Errors, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, 1, 59-82, Berkeley: University of California Press.
- Huber, P.J., 1967, The Behavior of Maximum Likelihood Estimates Under
Nonstandard Conditions, Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, 1, 221-233, Berkeley: University of
California Press.

Later, Halbert White (we will talk more about him later in this chapter) in UCSD
derived it independently:
- White, H., 1980, A Heteroskedasticity-Consistent Covariance Matrix Estimator
and a Direct Test for Heteroskedasticity, Econometrica, 48, 817-838.

White (1980) is the most-cited paper in economics since 1970. (why?)
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Heteroskedasticity-Robust Inference after OLS Estimation

Friedhelm Eicker (1927-),
German, Dortmund, 1956MainzPhD

Peter J. Huber (1934-),
Swiss, Bayreuth, 1962ETH ZurichPhD
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Heteroskedasticity-Robust Inference after OLS Estimation

(*) Derivation of Var
�bβ j

�
Under Heteroskedasticity

Consider the SLR case and condition on fxi , i = 1, � � � ,ng. Recall that

bβ 1�β 1 =
∑n

i=1 (xi �x)ui

∑n
i=1 (xi �x)2

.

If Var (ui ) = σ2
i , then

Var
�bβ 1

�
= Var

 
∑n

i=1 (xi �x)ui

∑n
i=1 (xi �x)2

!
=

∑n
i=1 (xi �x)2 Var (ui )h

∑n
i=1 (xi �x)2

i2 =
∑n

i=1 (xi �x)2 σ2
i

SST 2
x

.

In the MLR case,

Var
�bβ j

�
=

∑n
i=1br2

ij σ2
i

SSR2
j

,

i.e., replaces xi �x by brij , where SSRj = SSTj

�
1�R2

j

�
= ∑n

i=1br2
ij with brij being the

residual in the regression

xj � 1,x1, � � � ,xj�1,xj+1, � � � ,xk .
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Heteroskedasticity-Robust Inference after OLS Estimation

continue

In the homoskedastic case, σ2
i = σ2, so

Var
�bβ j

�
=

∑n
i=1br2

ij σ2

SSR2
j

= σ
2 ∑n

i=1br2
ij

SSR2
j

= σ
2 SSRj

SSR2
j

=
σ2

SSRj

as derived in Chapter 3.

Note also that

Var
�bβ j

�
=

∑n
i=1br2

ij σ2
i

SSR2
j

=
1

SSRj

n

∑
i=1

br2
ij

SSRj
σ

2
i =

1
SSRj

n

∑
i=1

wij σ
2
i ,

where

wij =
br2
ij

SSRj
=

br2
ij

∑n
i=1br2

ij

satisfies wij � 0 and
n

∑
i=1

wij = 1.

Compared with the homoskedastic case, the heteroskedasticity-robust variance

replaces σ2 by a weighted average of
n

σ2
i : i = 1, � � � ,n

o
.

The estimated variance of of bβ j just replaces σ2
i in Var

�bβ j

�
by bu2

i .
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Heteroskedasticity-Robust Inference after OLS Estimation

(*) Why σ2
i Can Be Estimated by bu2

i ?

Consider the simple case where x is binary, e.g., x = 1(college graduate), and
Var (ujx = 1) = σ2

1 > σ2
0 = Var (ujx = 0).

Suppose the first n1 individuals are college graduates, and the remaining
n0 = n�n1 are noncollege graduates.

Then

Var
�bβ 1

�
=

∑n
i=1 (xi �x)2 σ2

i

SST 2
x

=
∑n1

i=1

�
1� n1

n

�2
σ2

1+∑n
i=n1+1

�
0� n1

n

�2
σ2

0h
∑n1

i=1

�
1� n1

n

�2
+∑n

i=n1+1

�
0� n1

n

�2i2

=
n1
�
1� n1

n

�2
σ2

1+n0
�
0� n1

n

�2
σ2

0h
n1
�
1� n1

n

�2
+n0

�
0� n1

n

�2i2 .

We can estimate σ2
1 by bσ2

1 =
1
n1

∑n1
i=1
bu2

i and σ2
0 by bσ2

0 =
1
n0

∑n
i=n1+1 bu2

i .
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Heteroskedasticity-Robust Inference after OLS Estimation

continue

Substituting σ2
1 by bσ2

1 and σ2
0 by bσ2

0, we have

dVar
�bβ 1

�
=

n1
�
1� n1

n

�2 bσ2
1+n0

�
0� n1

n

�2 bσ2
0

SST 2
x

=
n1
�
1� n1

n

�2 1
n1

∑n1
i=1
bu2

i +n0
�
0� n1

n

�2 1
n0

∑n
i=n1+1 bu2

i

SST 2
x

=
∑n1

i=1

�
1� n1

n

�2 bu2
i +∑n

i=n1+1

�
0� n1

n

�2 bu2
i

SST 2
x

=
∑n

i=1 (xi �x)2 bu2
i

SST 2
x

,

just replacing σ2
i by bu2

i .

Roughly speaking, bu2
i contains information about σ2

i .
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Heteroskedasticity-Robust Inference after OLS Estimation

Example: Hourly Wage Equation

The fitted regression line is

\log (wage) = �.128+ .0904educ+ .0410exper �0.0007exper2

(.105) (.0075) (.0052) (.0001)

[.107] [.0078] [.0050] [.0001]

Heteroskedasticity-robust standard errors may be larger or smaller (why? check
slide 27) than their nonrobust counterparts. The differences are small in this
example, but can be quite large if there is strong heteroskedasticity.
- In most empirical applications, the heteroskedasticity-robust standard errors tend
to be larger than the homoskedasticity-only standard errors. In other words, the t
statistic using the heteroskedasticity-robust standard errors tend to be less
significant.
The null hypothesis here is

H0 : β exper = β exper2 = 0.

The two F statistics are

F = 17.95 and Frobust = 17.99,

which are not too different in this example, but may be quite different in general.
Suggestion: To be on the safe side, it is advisable to always compute robust s.e.’s.
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Testing for Heteroskedasticity

Testing for Heteroskedasticity
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Testing for Heteroskedasticity

Method I: The Graphical Method

Although we can always use the robust standard errors regardless of
homo/hetero, it may still be interesting whether there is heteroskedasticity
because then OLS may not be the most efficient linear estimator anymore.

The key idea of all testing methods is that σ2
i can be approximated by bu2

i (this idea

has already been used in dVar
�bβ j

�
). Note that ui is not observable, so u2

i is not

observable.

The graphical method just plots bu2
i against xi to check whether there are some

patterns. [figure here]

With homoskedasticity we’ll see something like the first graph: no relationship
between bu2

i and the explanatory variable (or combination of explanatory variables

such as byi =
bβ 0+

bβ 1xi1+ � � �+ bβ k xik if k > 1).

Alternatively, with heteroskedasticity we’ll see patterns like the other graphs:
nonconstant variance (approximated by squared residuals).
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Testing for Heteroskedasticity

Figure: Graphical Method to Detect Heteroskedasticity
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Testing for Heteroskedasticity

Method II: The Breusch-Pagan (BP) Test

Breusch, T.S. and A.R. Pagan, 1979, Simple Test for Heteroskedasticity and
Random Coefficient Variation, Econometrica, 47, 1287–1294.

Trevor Breusch (1953-),
ANU, 1979ANUPhD

Adrian Pagan (1947-),
University of Sydney, 1972ANUPhD
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Testing for Heteroskedasticity

continue

The null hypothesis of the BP test is

H0 : Var (ujx1, � � � ,xk ) = Var (ujx) = σ
2.

Recall that Var (ujx) = E
h
u2jx

i
, so we want to test

E
h
u2jx1, � � � ,xk

i
= E

h
u2
i
= σ

2,

that is, the mean of u2 must not vary with x1, � � � ,xk .

As a result, we run the following regression:

bu2 = δ 0+ δ 1x1+ � � �+ δ k xk +error

and test
H0 : δ 1 = � � �= δ k = 0,

that is, regress squared residuals on all explanatory variables and test whether
this regression has explanatory power.
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Testing for Heteroskedasticity

continue

The resulting F statistic is (recall the F test for overall significance of a regression
in Chapter 4)

F =
R2bu2 /k�

1�R2bu2

�
/(n�k �1)

� Fk ,n�k�1,

A large test statistic (= a high R-squared) is evidence against the null hypothesis.

Alternatively, we can use the Lagrange multiplier (LM) statistic,

LM = nR2bu2 � χ
2
k .

Again, high R-squared leads to rejection of the null hypothesis.

(*) Why LM � χ2
k ? Recall that F ! χ2

k /k when n! ∞. While

LM = kF � n
n�k �1

�
1�R2bu2

�
,

where n
n�k�1 ! 1 as n! ∞ and R2bu2 ! 0 under H0.
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Testing for Heteroskedasticity

Example: Heteroskedasticity in Housing Price Equations

The fitted regression line is

[price = �21.77+ .00207lotsize+ .123sqrft+13.85bdrms

(29.48) (.00064) (.013) (9.01)

n = 88,R2 = .672

The R-squared from the regression of bu2 on lotsize,sqrft and bdrms is,
R2bu2 = .1601. The resulting

F =
.1601/3

(1� .1601)/(88�3�1)
t 5.34 with p-value= .002,

LM = 88� .1601t 14.09 with p-value= .0028. [figure here]

So both tests reject the null, and we conclude that the model is heteroskedastic
when the dependent variable is price.
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Testing for Heteroskedasticity

Figure: The 5% Critical Value and Rejection Region in an χ2
3 Distribution: a χ2-distributed variable

only takes on positive values
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Testing for Heteroskedasticity

continue

The fitted regression line after the logarithmic transformation is

\log (price) = �1.30+ .168log (lotsize)+ .700log (sqrft)+ .037bdrms

(.65) (.038) (.093) (.028)

n = 88,R2 = .643

The R-squared from the regression of bu2 on log (lotsize) , log (sqrft) and bdrms is,
R2bu2 = .0480< .1601. The resulting

F =
.0480/3

(1� .0480)/(88�3�1)
t 1.41 with p-value= .245,

LM = 88� .0480t 4.22 with p-value= .239.

So neither test can reject the null, and we conclude that the model is
homoskedastic when the dependent variable is log(price).

As mentioned in Chapter 6, taking logs on the dependent variable often helps to
secure homoskedasticity.
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Testing for Heteroskedasticity

Method III: The White Test

H. White, 1980, A Heteroskedasticity-Consistent Covariance Matrix Estimator and
a Direct Test for Heteroskedasticity, Econometrica, 48, 817-838.

Halbert White, Jr. (1950-2012), UCSD, 1976MITPhD

Website of his company: http://www.bateswhite.com/
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Testing for Heteroskedasticity

continue

Similar to the BP test, but regress squared residuals on all explanatory variables,
their squares, and interactions:bu2 = δ 0+ δ 1x1+ δ 2x2+ δ 3x3+ δ 4x2

1 + δ 5x2
2 + δ 6x2

3

+δ 7x1x2+ δ 8x1x3+ δ 9x2x3+error

Here, k = 3 results in 9 regressors. Generally, we have

k + k +C2
k = 2k + k(k�1)

2 =
k(k+3)

2 regressors.
The null hypothesis is

H0 : δ 1 = � � �= δ 9 = 0,

i.e., the White test detects more general deviations (not only linear form but
quadratic form in x i ) from homoskedasticity than the BP test.
We can apply the F or LM test to detect heteroskedasticity, e.g., LM = nR2bu2 � χ2

9
here.
(*) Why quadratic form in x i? This is not because White Taylor expands σ2 (x i ) to
the second order rather than the first order as BP. Actually, White tried to test

dVar
�bβ j

�
=

∑n
i=1

br2
ij

SSRj
bu2

i

SSRj

?
=

1
n ∑n

i=1 bu2
i

SSRj
=

eσ2

SSRj
=dVarhomo

�bβ j

�
;

this is why the quadratic terms of x i appear.
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Testing for Heteroskedasticity

Disadvantage of This Form of the White Test

Including all squares and interactions leads to a large number of estimated
parameters. E.g. k = 6 leads to 27 parameters to be estimated.

It is suggested to use an alternative form of the White test:

bu2 = δ 0+ δ 1by + δ 2by2+error ,

where by = bβ 0+
bβ 1x1+ � � �+ bβ k xk is the predicted value, and δ 1by + δ 2by2 is a

special (why?) quadratic form of x i .

The null hypothesis here is
H0 : δ 1 = δ 2 = 0,

and the F or LM statistics can apply, e.g., LM = nR2bu2 � χ2
2.

Example (Heteroskedasticity in Log Housing Price Equations): We regress bu2 on
\lprice and \lprice

2
in the above example. R2bu2 = .0392, so

LM = 88� .0392t 3.45 with p-value= .178< .239,

but we still cannot reject the model is homoskedastic as the BP test.
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Weighted Least Squares Estimation

Weighted Least Squares Estimation
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Weighted Least Squares Estimation

a: The Heteroskedasticity Is Known up to a Multiplicative Constant

Suppose
Var (ujx) = σ

2h (x) ,

where h (x)> 0 is known, but σ2 is unknown.

Note that
σ

2
i = σ

2h (x i )� σ
2hi .

In the regression,
yi = β 0+β 1xi1+ � � �+β k xik +ui ,

if we transform the model by dividing both sides by
p

hi , then we have

yip
hi
= β 0

1p
hi
+β 1

xi1p
hi
+ � � �+β k

xikp
hi
+

uip
hi
,

denoted as
y�i = β 0x�i0+β 1x�i1+ � � �+β k x�ik +u�i ,

where x�i0 =
1p
hi

, i.e., this regression model has no intercept.
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Weighted Least Squares Estimation

The Transformed Model Is Homoskedastic

Note that

E [u�i jx i ] = E

"
uip
hi

�����x i

#
=

1p
hi

E [ui jx i ]
MLR.4
= 0,

so

Var (u�i jx i ) = E
h
u�2i jx i

i
�E [u�i jx i ]

2 = E
h
u�2i jx i

i
= E

24 uip
hi

!2
������x i

35= E

"
u2

i
hi

�����x i

#

=
1
hi

E
h

u2
i

���x i

i
=

1
hi

σ
2hi = σ

2.

Example (Savings and Income): Consider the simple savings function,

savi = β 0+β 1inci +ui ,Var (ui jinci ) = σ
2inci . [figure here]

After the transformation,

savip
inci

= β 0
1p
inci

+β 1
incip
inci

+u�i ,

where u�i is homoskedastic - Var
�
u�i jinci

�
= σ2.

Ping Yu (HKU) Heteroskedasticity 31 / 43



Weighted Least Squares Estimation

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

Figure: savi = β 0+β 1inci +ui with β 0 = 0, β 1 = 0.5 and Var (ui jinci ) = 0.09inci

Ping Yu (HKU) Heteroskedasticity 32 / 43



Weighted Least Squares Estimation

Weighted Least Squares (WLS)

OLS in the transformed model is weighted least squares (WLS):

min
β 0,β 1,��� ,β k

n

∑
i=1

 
yip
hi
�β 0

1p
hi
�β 1

xi1p
hi
��� ��β k

xikp
hi

!2

() min
β 0,β 1,��� ,β k

n

∑
i=1

1
hi
(yi �β 0�β 1xi1��� ��β k xik )

2 .

Observations with a large variance get a smaller weight in the optimization
problem because hi _ σ2

i .

Why is WLS more efficient than OLS in the original model? Observations with a
large variance are less informative than observations with small variance and
therefore should get less weight. [check the saving example again]

If the other Gauss-Markov assumptions hold as well, OLS applied to the
transformed model, or the WLS, is the best linear unbiased estimator (BLUE).

WLS is a special case of generalized least squares (GLS) which accounts for also
serial correlation among fui , i = 1, � � � ,ng.
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Weighted Least Squares Estimation

(*) Which R-Squared Is Calculated?

Be cautious about which R2 is reported for WLS in practice.
There are two methods: recall that

R2 = 1� SSR
SST

.

(I): The dependent variable is yi (i.e., SST = ∑n
i=1 (yi �y)2), and SSR is

calculated from bui = yi � bβ 0� bβ 1xi1��� �� bβ k xik .

- In this case, R2 for WLS is smaller than OLS although WLS is more efficient than
OLS. This is because they share the same SST , but OLS minimizes SSR.
- This should be the correct R2 to be reported.

(II): The dependent variable is yip
hi

(i.e., SST = ∑n
i=1

�
yip
hi
� yp

h

�2
. This is not

correct because the transformed model does not include an intercept which is
required for R2 calculation), and SSR is calculated from

eui =
yip
hi
� bβ 0

1p
hi
� bβ 1

xi1p
hi
��� �� bβ k

xikp
hi
.

- Quite often, people just report the R2 from the transformed model carelessly,
e.g., copy from standard econometric softwares.
Check the following example.
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Weighted Least Squares Estimation

Example: Financial Wealth Equation

R2
OLS > R2

WLS , which is also possible when method (II) of the last slide is used to
calculate R2

WLS , so we cannot tell which method of R2
WLS is used in this example

[see slide 42 for a counter-example].
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Weighted Least Squares Estimation

401(k) Plan

In the early 1980s, the United States introduced several tax-deferred savings
options designed to increase individual savings for retirement, the most popular
being Individual Retirement Accounts (IRAs) and 401(k) plans.

IRAs and 401(k) plans are similar in that both allow the individual to deduct
contributions to retirement accounts from taxable income and they both permit
tax-free accrual of interest.

The key difference between these schemes is that employers provide 401(k) plans
and may match some percentage of the employee 401(k) contributions.

Therefore, only workers in firms that offer such programs are eligible, whereas
IRAs are open to all.
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Weighted Least Squares Estimation

Important Special Case of Heteroskedasticity

If the observations are reported as averages at the city/county/state/country/firm
level, they should be weighted by the size of the unit.
Suppose we have only average values related to 401(k) contributions at the firm
level, but the individual level data are not available.
Suppose the individual level equation is

contribi,e = β 0+β 1earnsi,e+β 2agei,e+β 3mratei +ui,e,

where
contribi,e = annual contribution by employee e who works for firm i
earnsi,e = annual earning for this person
mratei = the amount the firm puts into an employee’s account for every dollar

the employee contributes or the match rate
Then the firm level equation is

contribi = β 0+β 1earnsi +β 2agei +β 3mratei +ui ,

where the error term ui =
1

mi
∑mi

e=1 ui,e has variance [check Chapter 2, slide 67]

Var (ui ) =
σ2

mi

if Var (ui,e) = σ2, i.e., ui,e is homoskedastic at the employee level, where mi is the
number of employees at firm i .
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Weighted Least Squares Estimation

continue

hi =
1

mi
, so in the WLS,

min
β 0,β 1,��� ,β k

n

∑
i=1

1
hi
(yi �β 0�β 1xi1��� ��β k xik )

2

= min
β 0,β 1,��� ,β k

n

∑
i=1

mi (yi �β 0�β 1xi1��� ��β k xik )
2 .

In summary, if errors are homoskedastic at the employee level, WLS with weights
equal to firm size mi should be used.

If the assumption of homoskedasticity at the employee level is not exactly right,
one can calculate robust standard errors after WLS (i.e., for the transformed
model). [see more discussion later]

That is, it is always a good idea to compute fully robust standard errors and test
statistics after WLS estimation.
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(*) b: Unknown Heteroskedasticity Function (Feasible GLS)

Assume
Var (ujx) = σ

2 exp (δ 0+ δ 1x1+ � � �+ δ k xk ) = σ
2h(x),

where exp-function is used to ensure positivity.

Under this assumption, we can write

u2 = σ
2 exp (δ 0+ δ 1x1+ � � �+ δ k xk )v ,

where v is a multiplicative error independent of the explanatory variables, and
E [v ] = 1 (why?). (why v appears? why multiplicative v ?)

Now,

logu2 = log
�

σ
2
�
+ δ 0+E [logv ]+ δ 1x1+ � � �+ δ k xk + logv �E [logv ]

� α0+ δ 1x1+ � � �+ δ k xk +e,

where e = logv �E [logv ] with E [e] = 0, and α0 = log
�

σ2
�
+ δ 0+E [logv ].

- (**) From slides 36 and 37 of Chapter 6, E [logv ] � log (E [v ]) = log1= 0, so we
need to demean logv to guarantee E [e] = 0.
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continue

Regress log
�bu2

�
on 1,x1, � � � ,xk to have

�bα0,
bδ 1, � � � ,bδ k

�
; then the estimated h(x)

is bh(x) = exp
�bα0+

bδ 1x1+ � � �+ bδ k xk

�
,

where the term bα0 can be neglected because it can be absorbed in the constant
σ2.

As in the White test, we can regress log
�bu2

�
on 1,by and by2 to estimate h(x).

Caution: In the BP or White test, the dependent variable is bu2 rather than

log
�bu2

�
! Otherwise, the distribution of the F statistic is more complicated and

stronger assumptions (e.g., u and x are independent) are required.

Using inverse values of the estimated heteroskedasticity function as weights in
WLS, we get the feasible GLS (FGLS) estimator.

Feasible GLS is consistent and asymptotically more efficient than OLS if the
assumption on the form of Var (ujx) is correct (if incorrect, discuss later).
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(*) Example: Demand for Cigarettes

The estimated demand equation for cigarettes by OLS is

dcigs = �3.64+.880log(income)� .75log(cigpric)

(24.08)(.728) (5.773)

�.501educ+ .771age� .0090age2�2.83restaurn

(.167) (.160) (.0017) (1.11)

n = 807,R2 = .0526 (quite small)

where
cigs = number of cigarettes smoked per day
income = annual income
cigpric = the per-pack price of cigarettes (in cents)
restaurn = a binary indicator for smoking restrictions in restaurants

The income effect is insignificant.

The p-value for the BP test (either F or LM) is .000, i.e., there is strong evidence
that the model is heteroskedastic.
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continue

If estimated by FGLS, then

dcigs = �5.64+1.30log(income)�2.94log(cigpric)

(17.80)(.44) (4.46)

�.463educ+.482age� .0056age2�3.46restaurn

(.120) (.097) (.0009) (.80)

n = 807,R2 = .1134 (> .0526, so method (II) on slide 34 is used)

The income effect is now statistically significant.

Other coefficients are also more precisely estimated (without changing qualitative
results).

Interestingly, the turnaround point of age in both models is about 43:

.771
2� .0090

t
.482

2� .0056
t 43.
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(*) c: What If the Assumed Heteroskedasticity Function is Wrong?

If the heteroskedasticity function is misspecified, WLS is still consistent under
MLR.1-MLR.4, but robust standard errors should be computed since

Var (u�i jx i ) = σ
2 hi

gi
6= σ

2,

where it is assumed Var (ujx) = σ2g(x) with g(x) not equal to the true
heteroskedasticity h(x).
WLS is consistent under MLR.4 but not necessarily under MLR.40 [WLS vs. OLS:
trade-off between efficiency and robustness], where recall that

MLR.4: E [ujx] = 0=)MLR.40: E [xu] = 0.

MLR.4 implies

E [u�i jx i ] = E

"
uip
hi

�����x i

#
= 0,

but MLR.40 does not.
If OLS and WLS produce very different estimates of β , this typically indicates that
some other assumptions (e.g., MLR.4) are wrong.
If there is strong heteroskedasticity, it is still often better to use a wrong form of

heteroskedasticity in order to increase efficiency if h(x)
g(x) is more constant than

h(x), i.e., part of heteroskedasticity is offsetted.
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