Ch07. Multiple Regression Analysis with Qualitative Information: Binary (or Dummy) Variables

Ping Yu

HKU Business School The University of Hong Kong

Ping Yu (HKU)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Describing Qualitative Information

æ

イロン イヨン イヨン イヨン

Quantitative and Qualitative Information

- Quantitative Variables: hourly wage, years of education, college GPA, amount of air pollution, firm sales, number of arrests, etc., where the magnitude of variable conveys useful information.
- Qualitative Variable: gender, race, industry (manufacturing, retail, finance, etc.), region (South, North, West, etc.), rating grade (A, B, C, D, F, etc), etc.
- A way to incorporate qualitative information is to use dummy variables.
- A dummy variable is also called a binary variable or a zero-one variable.
- Dummy variables may appear as the dependent or as independent variables.
- We consider only independent dummy variables.

A Single Dummy Independent Variable

æ

・ロン ・回 と ・ ヨン・

Example: A Simple Wage Equation

Suppose

wage =
$$\beta_0 + \delta_0$$
 female + β_1 educ + u ,

where

 $female = \begin{cases} 1, & \text{if the person is a woman,} \\ 0, & \text{if the person is a man,} \end{cases}$ is a dummy variable.

- δ₀ is the wage gain/loss if the person is a woman rather than a man (holding other things fixed).
- Alternative interpretation of δ_0 :

$$\begin{array}{rcl} \delta_0 & = & E\left[\textit{wage}|\textit{female} = 1,\textit{educ}\right] - E\left[\textit{wage}|\textit{female} = 0,\textit{educ}\right] \\ & = & \beta_0 + \delta_0 + \beta_1\textit{educ} - \left(\beta_0 + \beta_1\textit{educ}\right), \end{array}$$

i.e. the difference in mean wage between men and women with the same level of education. [figure here]

• Note that the mean wage difference is the same at **all** levels of education, i.e., the mean wage equations for men and women are parallel.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Figure: Graph of wage = $\beta_0 + \delta_0$ female + β_1 educ for $\delta_0 < 0$

æ

イロン イヨン イヨン イヨン

Dummy Variable Trap

• The model

$$wage = \beta_0 + \gamma_0 male + \delta_0 female + \beta_1 educ + u$$

cannot be estimated due to perfect collinearity.

- Why? There is an **exact** relationship among the independent variables: 1 = male + female.
- When using dummy variables, one category always has to be omitted:

wage =
$$\beta_0 + \delta_0$$
 female + β_1 educ + u ,

where men is the base group or benchmark group, i.e., the group with the dummy equal to zero/used for comparison, or

wage =
$$\beta_0 + \gamma_0$$
 male + β_1 educ + u ,

where women is the base group (or category).

• Alternatively, one could omit the intercept,

wage =
$$\gamma_0$$
 male + δ_0 female + β_1 educ + u .

Disadvantage Without Intercept

• More difficult to test for differences between the parameters:

$$H_0: \gamma_0 = \delta_0,$$

and the t statistic is

$$t=rac{\widehat{\gamma}-\widehat{\delta}}{f seig(\widehat{\gamma}-\widehat{\delta}ig)},$$

but $se(\hat{\gamma} - \hat{\delta})$ is not available from the output of standard econometric softwares (as discussed in chapter 4).

• The *R*-squared formula is valid only if the regression contains an intercept: Recall that

$$R^2 = 1 - \frac{SSR}{SST}$$
 with $SST = \sum_{i=1}^n (y_i - \overline{y})^2$,

where \overline{y} is $\hat{\beta}_0$ in the regression

$$y = \beta_0 + u$$
,

so SST can be treated as the SSR for the restricted regression of $y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u$ with $\beta_1 = \dots = \beta_k = 0$.

Example: Hourly Wage Equation with Intercept Shift

• The fitted wage equation is

 $\widehat{wage} = -1.57 - 1.81 \text{ female} + .572 \text{ educ} + .025 \text{ exper} + .141 \text{ tenure}$ $(.72) \quad (.26) \qquad (.049) \qquad (.012) \qquad (.021)$ $n = 526, R^2 = .364$

- Holding education, experience, and tenure fixed, women earn $\widehat{\delta}_0 = \$1.81$ less per hour than men.
- Does that mean that women are discriminated against?
- Not necessarily. Being female may be correlated with other productivity characteristics (e.g., baby birth) that have not been controlled for.

continue

• Let's compare means of subpopulations described by dummies:

$$\widehat{wage} = 7.10 - 2.51$$
 female
(.21) (.30)
 $n = 526, R^2 = .116 (< .364$ as expected

- Not holding other factors constant, women earn \$2.51 per hour less than men, i.e. the difference between the mean wage of men and that of women is \$2.51.
- Discussion:
 - It can easily be tested whether difference in means is significant,

$$|t| = \left|\frac{-2.51}{.30}\right| = |-8.37| > 1.96.$$

- The wage difference between men and women is larger if no other things are controlled for; i.e. part of the difference is due to differences in education, experience and tenure between men and women.

- When more factors (such as baby birth) are controlled for, then we expect δ_0 would be even smaller (until insignificance?).

Example: Effects of Training Grants on Hours of Training

• The fitted regression line is

 $\widehat{hrsemp} = 46.67 + 26.25 grant - .98 \log(sales) - 6.07 \log(employ)$ $(43.41)(5.59) \qquad (3.54) \qquad (3.88)$ $n = 105, R^2 = .237$

where

hrsemp = hours training per employee, at the firm level grant = dummy indicating whether firm received training grant employ = number of employees

- This is an example of program evaluation:
 - treatment group (= grant receivers) vs. control group (= no grant).

- $t_{grant} = 4.70 > 1.96$, but is the effect of treatment on the outcome of interest <u>causal</u>? The answer depends on whether E[u|grant] = 0. It might be that to get grants, some firms give more training to their employees.

a: Using Dummy Explanatory Variables in Equations for log(y)

• Example (Housing Price Regression): The fitted regression line is

$$\widehat{\log(\text{price})} = -1.35 + .168 \log(\text{lotsize}) + .707 \log(\text{sqrft}) \\ (.65) \quad (.038) \qquad (.093) \\ + .027 \text{bdrms} + .054 \text{colonial} \\ (.029) \qquad (.045) \\ n = 88, R^2 = .649$$

where

colonial = dummy for the colonial style [figure here]

Now,

$$\frac{\partial \log (\textit{price})}{\partial \textit{colonial}} = \frac{\partial \textit{price} / \textit{price}}{\partial \textit{colonial}} = 5.4\%,$$

• As the dummy for colonial style changes from 0 to 1, the house price increases by 5.4 percentage points.

American Colonial Architecture

 American colonial architecture includes several building design styles associated with the colonial period of the United States, including First Period English (late-medieval), French Colonial, Spanish Colonial, Dutch Colonial and Georgian. These styles are associated with the houses, churches and government buildings of the period from about 1600 through the 19th century.

- From Wiki

Figure: Corwin House, Salem, Massachusetts, built about 1660, First Period English

Using Dummy Variables for Multiple Categories

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Using Dummy Variables for Multiple Categories

- 1) Define membership in each category by a dummy variable;
- 2) Leave out one category (which becomes the base category).
- Example (Log Hourly Wage Equation): The fitted regression line is

 $\widehat{\log(wage)} = -.321 + .213 marrmale - .198 marrfem + (.100)(.055) (.0058) \\ -.110 singfem + .079 educ + .027 exper - .00054 exper^2 \\ (.056) (.007) (.005) (.00011) \\ +.029 tenure - .00053 tenure^2 \\ (.007) (.00023) \\ n = 526. R^2 = .461$

Holding other things fixed, married women earn 19.8% less than single men (= the base category); similarly, married men earn 21.3% more and single women earn 11.0% (< 19.8%) less than single men. [economic intuition here]

a: Incorporating Ordinal Information by Using Dummy Variables

- Example (City Credit Ratings and Municipal Bond Interest Rates): We can consider two specifications of the regression line.
- The first specification is

 $MBR = \beta_0 + \beta_1 CR + other factors,$

where

MBR = municipal bond interest rate

CR = credit rating from 0 – 4 (0 = worst, 4 = best)

- This specification would probably not be appropriate as the credit rating only contains ordinal information.
- A better way to incorporate this information is to define dummies:

 $MBR = \beta_0 + \delta_1 CR_1 + \delta_2 CR_2 + \delta_3 CR_3 + \delta_4 CR_4 + other factors,$

where CR_1, \dots, CR_4 are dummies indicating whether the particular rating applies, e.g., CR1 = 1 if CR = 1 and CR1 = 0 otherwise.

• All effects are measured in comparison to the worst rating (= base category).

Difference Between These Two Specifications

• Specification 1:

$$\begin{array}{rcl} CR & = & 0 \Longrightarrow MBR = \beta_0, \\ CR & = & 1 \Longrightarrow MBR = \beta_0 + \beta_1, \\ CR & = & 2 \Longrightarrow MBR = \beta_0 + 2\beta_1, \\ CR & = & 3 \Longrightarrow MBR = \beta_0 + 3\beta_1, \\ CR & = & 4 \Longrightarrow MBR = \beta_0 + 4\beta_1, \end{array}$$

where the increase in *MBR* for each rating improvement is the same - β_1 . • Specification 2:

$$\begin{array}{rcl} CR & = & 0 \Longrightarrow MBR = \beta_0, \\ CR & = & 1 \Longrightarrow MBR = \beta_0 + \delta_1, \\ CR & = & 2 \Longrightarrow MBR = \beta_0 + \delta_2, \\ CR & = & 3 \Longrightarrow MBR = \beta_0 + \delta_3, \\ CR & = & 4 \Longrightarrow MBR = \beta_0 + \delta_4, \end{array}$$

where the increase in *MBR* for each rating improvement can be different due to the arbitrariness of $\delta_1, \dots, \delta_4$.

Interactions Involving Dummy Variables

æ

・ロン ・回 と ・ ヨン・

a: Interactions among Dummy Variables

 Reconsider the female and marital status effect on log(wage) by adding the female · married interaction term:

 $\widehat{\log(wage)} = -.321 - .110 female + .213 married - .301 female \cdot married + \cdots$ (.100) (.056) (.055) (.072)

- These two specifications are equivalent: four categories are generated. [2 × 2 table in the next slide]
- marrmale: setting married = 1 and female = 0, we get $\hat{\delta}_2$ = .213 as before.
- marrfem: setting married = 1 and female = 1, we get $\hat{\delta}_1 + \hat{\delta}_2 + \hat{\delta}_3 = -.110 + .213 .301 = -.198$ as before.
- singlem: setting married = 0 and female = 1, we get $\hat{\delta}_1 = -.110$ as before.

(*) What is the Meaning of the Coefficient of female married, $\hat{\delta}_3$?

• Four Categories:

	Female	Male
Single	δ_1	0
Married	$\delta_1 + \delta_2 + \delta_3$	δ_2

• **DID**:

 $(E[\log(wage)|female = 1, married = 1] - E[\log(wage)|female = 1, married = 0])$

-(E[log(wage)|female = 0, married = 1] - E[log(wage)|female = 0, married = 0])

$$= [(\delta_1 + \delta_2 + \delta_3) - \delta_1] - [\delta_2 - 0]$$

= difference (in gender) in difference (in marriage)

$$= [(\delta_1+\delta_2+\delta_3)-\delta_2]-[\delta_1-0]$$

= difference (in marriage) in difference (in gender)

• Analog:

 $\frac{\partial^2 y}{\partial x_1 \partial x_2}$

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト - 三日

b: Allowing for Different Slopes

Consider the model

$$\log(wage) = \beta_0 + \delta_0 female + \beta_1 educ + \delta_1 female \cdot educ + u.$$

where

- $\beta_0 =$ intercept of men, $\beta_1 =$ slope of men,
- $eta_0+\delta_0 \quad = \quad \mbox{intercept of women, } eta_1+\delta_1 = \mbox{slope of women.}$
- Interacting both the intercept and the slope with the female dummy enables one to model completely independent wage equations for men and women. [figure here]
- Interested Hypotheses:

$$H_0:\delta_1=0,$$

i.e., the return to education is the same for men and women, and

$$H_0:\delta_0=\delta_1=0$$
,

i.e., the whole wage equation is the same for men and women.

Figure: (a) $\delta_0 <$ 0, $\delta_1 <$ 0; (b) $\delta_0 <$ 0, $\delta_1 >$ 0

æ

<ロ> (四) (四) (日) (日) (日)

Example: Log Hourly Wage Equation

• The fitted regression line is

$$\begin{split} \widehat{\log(wage)} &= .389 - .227 \textit{female} + .082 \textit{educ} \\ &(.119)(.168) &(.008) \\ &- .0056 \textit{female} \cdot \textit{educ} + .029 \textit{exper} - .00058 \textit{exper}^2 \\ &(.0131) &(.005) &(.00011) \\ &+ .032 \textit{tenure} - .00059 \textit{tenure}^2 \\ &(.007) &(.00024) \\ n &= 526 \ R^2 = 441 \end{split}$$

- $|t_{female \cdot educ}| = \left|\frac{-.0056}{.0131}\right| = |-.43| < 1.96$: No evidence against hypothesis that the return to education is the same for men and women.
- $|t_{female}| = \left|\frac{-.227}{.168}\right| = |-1.35| < 1.96$: Does this mean that there is no significant evidence of lower pay for women at the same levels of *educ*, *exper*, and *tenure*? No: this is only the effect for *educ* = 0 since

$$\frac{\partial \log(wage)}{\partial female} = -.227 - .0056 educ.$$

• To answer the question one has to recenter the interaction term, e.g., around educ = 12.5 (= average education) to have $female \cdot (educ - 12.5)$: $\frac{\partial \log(wage)}{\partial female} = \widehat{\delta}_0 + \widehat{\delta}_1 (educ - 12.5)$ with new $\widehat{\delta}_0 = -.297$

Figure: The New new $\widehat{\delta}_0 = -.227 + 12.5 \times (-.0056) = -.297 < -.227$

æ

・ロ・・ (日・・ 日・・ 日・・

c: Testing for Differences in Regression Functions across Groups

• This is a **special** *F* test with the unrestricted model containing full set of interactions,

$$cumgpa = \beta_0 + \delta_0 female + \beta_1 sat + \delta_1 female \cdot sat + \beta_2 hsperc + \delta_2 female \cdot hsperc + \beta_3 to thrs + \delta_3 female \cdot to thrs + u$$

and the restricted model with same regression for both groups,

 $cumgpa = \beta_0 + \beta_1 sat + \beta_2 hsperc + \beta_3 tothrs + u$,

where

1

cumpga = college GPA
sat = standardized aptitude test score
hsperc = high school rank percentile
tothrs = total hours spent in college courses

• The null hypothesis is

$$H_0: \delta_0 = \delta_1 = \delta_2 = \delta_3 = 0.$$

 All interaction effects are zero, i.e., the same regression coefficients apply to both men and women.

Estimation of the Unrestricted Model

• The estimated unrestricted model is

$$\widehat{cumgpa} = 1.48 - .353 female + .0011 sat + .00075 female \cdot sat$$

$$(.21)(.411) \quad (.0002) \quad (.00039)$$

$$- .0085 h sperc - .00055 female \cdot h sperc + .0023 to thrs$$

$$(.0014) \quad (.00316) \quad (.0009)$$

$$- .00012 female \cdot to thrs$$

$$(.00163)$$

$$n = 366, R^2 = .406, \overline{R}^2 = .394$$

• It can be shown that [proof not required]

$$SSR_{ur} = SSR_{male} + SSR_{female}$$
,

where SSR_{male} is the SSR in the regression

 $cumgpa = \beta_0 + \beta_1 sat + \beta_2 hsperc + \beta_3 tothrs + u$,

using only the data of <u>male</u>, and *SSR*_{female} is the SSR using only the data of <u>female</u>.

Ping Yu (HKU)

Testing Results

- Tested individually, the hypothesis that the interaction effects are zero cannot be rejected.
- Tested jointly, the F statistic is

$$F = \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k-1)} = \frac{(85.515 - 78.355)/4}{78.355/(366 - 7 - 1)} \approx 8.18,$$

and the null is rejected.

- $SSR_{ur} = SSR_{male} + SSR_{female} = 58.752 + 19.603 = 78.355$, $n_{male} = 276$, $n_{female} = 90$ and n = 366.
- This relationship is true only if **all** interaction terms are included in the unrestricted model.

Chow Test

• In general, if the test is computed in this way, i.e.,

$$F = \frac{[SSR_P - (SSR_1 + SSR_2)] / (k+1)}{(SSR_1 + SSR_2) / [n-2(k+1)]},$$

it is called the Chow-Test. [photo here]

- SSR_P is the SSR for the pooled (restricted) regression; [see below]
- SSR₁ and SSR₂ are the SSRs for the two separate regressions; [see below]
- The number of restrictions is k + 1 with k being the number of nonconstant regressors in the **pooled** regression; [see below]

- The total number of parameters in the unrestricted model is 2(k+1). [see below]

- SSR_P: $y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + u_i$, $i = 1, \dots, n$.
- SSR_{ur}: $y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + \delta_0 D_i + \delta_1 D_i x_{i1} + \dots + \delta_k D_i x_{ik} + u_i$, $i = 1, \dots, n$.
- SSR₁: $y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + u_i$, $i = 1, \dots, n_1$.
- SSR₂: $y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + u_i$, $i = n_1 + 1, \dots, n$.
- $H_0: \delta_0 = \delta_1 = \cdots = \delta_k = 0.$

Gregory C. Chow (1929-), Princeton, 1955ChicagoPhD

- Chow, G.C., 1960, Tests of Equality Between Sets of Coefficients in Two Linear Regressions, *Econometrica*, 28, 591-605.
- Caution: Chow-Test assumes a constant error variance across groups as assumed in the *F* test.

-
$$E[u_i|D_i] = \sigma^2$$
 for $D_i = 0$ and 1.

・ロン ・回 ・ ・ ヨン・

Applications of the Chow-Test

Figure: Restricted and Unrestricted Models in the Chow Test

You must pass the Chow test to pass this course!

Ping Yu (HKU)

æ

・ロ・・ (日・・ 日・・ 日・・

(**) A Binary Dependent Variable: The Linear Probability Model

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Linear Regression When the Dependent Variable is Binary

Suppose

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u, \tag{1}$$

with $E[u|\mathbf{x}] = 0$; then

$$\boldsymbol{E}[\boldsymbol{y}|\boldsymbol{x}] = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \boldsymbol{x}_1 + \dots + \boldsymbol{\beta}_k \boldsymbol{x}_k.$$

• If the dependent variable y only takes on the values 1 and 0, then

$$E[y|\mathbf{x}] = 1 \cdot P(y=1|\mathbf{x}) + 0 \cdot P(y=0|\mathbf{x}) = P(y=1|\mathbf{x})$$
 ,

i.e.,

$$P(y=1|\mathbf{x})=\beta_0+\beta_1x_1+\cdots+\beta_kx_k,$$

where $P(y = 1 | \mathbf{x})$ is called the response probability.

- Since $P(y = 1 | \mathbf{x})$ is linear in \mathbf{x} , the model (1) is called the linear probability model (LPM).
- In the LPM,

$$\beta_j = \partial P(y = 1 | \mathbf{x}) / \partial x_j$$

describes the effect of the explanatory variable x_i on the probability that y = 1.

Example: Labor Force Participation of Married Women

• The fitted regression line is

$$\widehat{infl} = .596 - .0034 nwifeinc + .038 educ + .039 exper (.154)(.0014) (.007) (.006) - .00060 exper^2 - .016 age - .262 kidslt6 + .0130 kidsge6 (.00018) (.002) (.0034) (.0132) n = 753, R^2 = .264$$

where

infl = dummy for "in the labor force" of a married women nwifeinc = husband's earnings (in thousands of dollars) kidslt6 = number of children less than six years old kidsge6 = number of kids between 6 and 18 years of age

- All variables except kidsge6 are statistically significant, and all of the significant variables have correct signs.
- If the number of kids under six years increases by one, the probability that the woman works falls by 26.2%.

Graph for nwifeinc=50, exper=5, age=30, kindslt6=1, kidsge6=0

- The maximum level of education in the sample is educ = 17. For the given case, this leads to a predicted probability to be in the labor force of about 50%.
- Negative predicted probability but no problem because no woman in the sample has educ < 5.

Ping Yu (HKU)

Disadvantages and Advantages of the LPM

Disadvantages:

- Predicted probabilities may be larger than one or smaller than zero.
- Marginal probability effects sometimes logically impossible, e.g., the first small child would reduce the probability by a large amount, but subsequent children would have a smaller marginal effect; going from zero to four young children reduces the probability of working by $\Delta \hat{infl} = .262 \times 4 = 1.048!$
- The LPM is necessarily heteroskedastic:

$$Var(y|\mathbf{x}) = P(y = 1|\mathbf{x})(1 - P(y = 1|\mathbf{x}))$$

by the variance formula of a Bernoulli random variable.

- Heterosceasticity consistent standard errors need to be computed.

Advantages:

- Easy estimation and interpretation.
- Estimated effects and predictions often reasonably good in practice.