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Describing Qualitative Information

Quantitative and Qualitative Information

Quantitative Variables: hourly wage, years of education, college GPA, amount of
air pollution, firm sales, number of arrests, etc., where the magnitude of variable
conveys useful information.

Qualitative Variable: gender, race, industry (manufacturing, retail, finance, etc.),
region (South, North, West, etc.), rating grade (A, B, C, D, F, etc), etc.

A way to incorporate qualitative information is to use dummy variables.

A dummy variable is also called a binary variable or a zero-one variable.

Dummy variables may appear as the dependent or as independent variables.

We consider only independent dummy variables.
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A Single Dummy Independent Variable

Example: A Simple Wage Equation

Suppose
wage = β 0+ δ 0female+β 1educ+u,

where

female =
�

1,
0,

if the person is a woman,
if the person is a man,

is a dummy variable.

δ 0 is the wage gain/loss if the person is a woman rather than a man (holding other
things fixed).

Alternative interpretation of δ 0:

δ 0 = E [wagejfemale = 1,educ]�E [wagejfemale = 0,educ]

= β 0+ δ 0+β 1educ� (β 0+β 1educ) ,

i.e. the difference in mean wage between men and women with the same level of
education. [figure here]

Note that the mean wage difference is the same at all levels of education, i.e., the
mean wage equations for men and women are parallel.

Ping Yu (HKU) Dummy Variables 5 / 35



A Single Dummy Independent Variable

Figure: Graph of wage = β 0+ δ 0female+β 1educ for δ 0 < 0
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A Single Dummy Independent Variable

Dummy Variable Trap

The model
wage = β 0+ γ0male+ δ 0female+β 1educ+u

cannot be estimated due to perfect collinearity.

Why? There is an exact relationship among the independent variables:
1=male+ female.

When using dummy variables, one category always has to be omitted:

wage = β 0+ δ 0female+β 1educ+u,

where men is the base group or benchmark group, i.e., the group with the dummy
equal to zero/used for comparison, or

wage = β 0+ γ0male+β 1educ+u,

where women is the base group (or category).

Alternatively, one could omit the intercept,

wage = γ0male+ δ 0female+β 1educ+u.
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A Single Dummy Independent Variable

Disadvantage Without Intercept

More difficult to test for differences between the parameters:

H0 : γ0 = δ 0,

and the t statistic is

t =
bγ� bδ

se
�bγ� bδ� ,

but se
�bγ� bδ� is not available from the output of standard econometric softwares

(as discussed in chapter 4).

The R-squared formula is valid only if the regression contains an intercept: Recall
that

R2 = 1� SSR
SST

with SST =∑n
i=1 (yi �y)2 ,

where y is bβ 0 in the regression

y = β 0+u,

so SST can be treated as the SSR for the restricted regression of
y = β 0+β 1x1+ � � �+β k xk +u with β 1 = � � �= β k = 0.
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A Single Dummy Independent Variable

Example: Hourly Wage Equation with Intercept Shift

The fitted wage equation is

\wage = �1.57�1.81female+ .572educ+ .025exper + .141tenure

(.72) (.26) (.049) (.012) (.021)

n = 526,R2 = .364

Holding education, experience, and tenure fixed, women earn bδ 0 = $1.81 less per
hour than men.

Does that mean that women are discriminated against?

Not necessarily. Being female may be correlated with other productivity
characteristics (e.g., baby birth) that have not been controlled for.

Ping Yu (HKU) Dummy Variables 9 / 35



A Single Dummy Independent Variable

continue

Let’s compare means of subpopulations described by dummies:

\wage = 7.10�2.51female

(.21) (.30)

n = 526,R2 = .116 (< .364 as expected)

Not holding other factors constant, women earn $2.51 per hour less than men, i.e.
the difference between the mean wage of men and that of women is $2.51.

Discussion:
- It can easily be tested whether difference in means is significant,

jt j=
����2.51
.30

���= j�8.37j> 1.96.

- The wage difference between men and women is larger if no other things are
controlled for; i.e. part of the difference is due to differences in education,
experience and tenure between men and women.

- When more factors (such as baby birth) are controlled for, then we expect
���bδ 0

���
would be even smaller (until insignificance?).
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A Single Dummy Independent Variable

Example: Effects of Training Grants on Hours of Training

The fitted regression line is

\hrsemp = 46.67+26.25grant� .98log(sales)�6.07log(employ)

(43.41)(5.59) (3.54) (3.88)

n = 105,R2 = .237

where
hrsemp = hours training per employee, at the firm level
grant = dummy indicating whether firm received training grant
employ = number of employees

This is an example of program evaluation:
- treatment group (= grant receivers) vs. control group (= no grant).
- tgrant = 4.70> 1.96, but is the effect of treatment on the outcome of interest
causal? The answer depends on whether E [ujgrant ] = 0. It might be that to get
grants, some firms give more training to their employees.
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A Single Dummy Independent Variable

a: Using Dummy Explanatory Variables in Equations for log(y)

Example (Housing Price Regression): The fitted regression line is

\log(price) = �1.35+ .168log(lotsize)+ .707log(sqrft)

(.65) (.038) (.093)

+.027bdrms+.054colonial

(.029) (.045)

n = 88,R2 = .649

where
colonial = dummy for the colonial style [figure here]

Now,
∂ log (price)

∂colonial
=

∂price/price
∂colonial

= 5.4%,

As the dummy for colonial style changes from 0 to 1, the house price increases by
5.4 percentage points.
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A Single Dummy Independent Variable

American Colonial Architecture

American colonial architecture includes several building design styles associated
with the colonial period of the United States, including First Period English
(late-medieval), French Colonial, Spanish Colonial, Dutch Colonial and Georgian.
These styles are associated with the houses, churches and government buildings
of the period from about 1600 through the 19th century.

- From Wiki

Figure: Corwin House, Salem, Massachusetts, built about 1660, First Period English
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Using Dummy Variables for Multiple Categories

Using Dummy Variables for Multiple Categories

1) Define membership in each category by a dummy variable;

2) Leave out one category (which becomes the base category).

Example (Log Hourly Wage Equation): The fitted regression line is

\log (wage) = �.321+.213marrmale�.198marrfem+

(.100)(.055) (.0058)

�.110singfem+ .079educ+ .027exper � .00054exper2

(.056) (.007) (.005) (.00011)

+.029tenure� .00053tenure2

(.007) (.00023)

n = 526,R2 = .461

Holding other things fixed, married women earn 19.8% less than single men (= the
base category); similarly, married men earn 21.3% more and single women earn
11.0% (< 19.8%) less than single men. [economic intuition here]
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Using Dummy Variables for Multiple Categories

a: Incorporating Ordinal Information by Using Dummy Variables

Example (City Credit Ratings and Municipal Bond Interest Rates): We can
consider two specifications of the regression line.

The first specification is

MBR = β 0+β 1CR+other factors,

where
MBR = municipal bond interest rate
CR = credit rating from 0�4 (0= worst, 4= best)

This specification would probably not be appropriate as the credit rating only
contains ordinal information.

A better way to incorporate this information is to define dummies:

MBR = β 0+ δ 1CR1+ δ 2CR2+ δ 3CR3+ δ 4CR4+other factors,

where CR1, � � � ,CR4 are dummies indicating whether the particular rating applies,
e.g., CR1= 1 if CR = 1 and CR1= 0 otherwise.

All effects are measured in comparison to the worst rating (= base category).
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Using Dummy Variables for Multiple Categories

Difference Between These Two Specifications

Specification 1:

CR = 0=)MBR = β 0,

CR = 1=)MBR = β 0+β 1,

CR = 2=)MBR = β 0+2β 1,

CR = 3=)MBR = β 0+3β 1,

CR = 4=)MBR = β 0+4β 1,

where the increase in MBR for each rating improvement is the same - β 1.

Specification 2:

CR = 0=)MBR = β 0,

CR = 1=)MBR = β 0+ δ 1,

CR = 2=)MBR = β 0+ δ 2,

CR = 3=)MBR = β 0+ δ 3,

CR = 4=)MBR = β 0+ δ 4,

where the increase in MBR for each rating improvement can be different due to
the arbitrariness of δ 1, � � � ,δ 4.
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Interactions Involving Dummy Variables

a: Interactions among Dummy Variables

Reconsider the female and marital status effect on log(wage) by adding the
female �married interaction term:

\log (wage) = �.321� .110female+ .213married�.301female �married + � � �
(.100) (.056) (.055) (.072)

These two specifications are equivalent: four categories are generated. [2�2
table in the next slide]

marrmale: setting married = 1 and female = 0, we get bδ 2 = .213 as before.

marrfem: setting married = 1 and female = 1, we getbδ 1+
bδ 2+

bδ 3 = �.110+ .213� .301= �.198 as before.

singfem: setting married = 0 and female = 1, we get bδ 1 = �.110 as before.
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Interactions Involving Dummy Variables

(*) What is the Meaning of the Coefficient of female �married , bδ 3?

Four Categories:

Female Male
Single δ 1 0
Married δ 1+ δ 2+ δ 3 δ 2

DID:

(E [log (wage) jfemale = 1,married = 1]�E [log (wage) jfemale = 1,married = 0])

� (E [log (wage) jfemale = 0,married = 1]�E [log (wage) jfemale = 0,married = 0])

= [(δ 1+ δ 2+ δ 3)�δ 1]� [δ 2�0]

= difference (in gender) in difference (in marriage)

= [(δ 1+ δ 2+ δ 3)�δ 2]� [δ 1�0]

= difference (in marriage) in difference (in gender)

Analog:
∂ 2y

∂x1∂x2
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Interactions Involving Dummy Variables

b: Allowing for Different Slopes

Consider the model

log (wage) = β 0+ δ 0female+β 1educ+ δ 1female �educ+u.

where

β 0 = intercept of men, β 1 = slope of men,

β 0+ δ 0 = intercept of women, β 1+ δ 1 = slope of women.

Interacting both the intercept and the slope with the female dummy enables one to
model completely independent wage equations for men and women. [figure here]

Interested Hypotheses:
H0 : δ 1 = 0,

i.e., the return to education is the same for men and women, and

H0 : δ 0 = δ 1 = 0,

i.e., the whole wage equation is the same for men and women.
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Interactions Involving Dummy Variables

Figure: (a) δ 0 < 0,δ 1 < 0; (b) δ 0 < 0,δ 1 > 0
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Interactions Involving Dummy Variables

Example: Log Hourly Wage Equation

The fitted regression line is

\log (wage) = .389�.227female+ .082educ

(.119)(.168) (.008)

�.0056female �educ+ .029exper � .00058exper2

(.0131) (.005) (.00011)

+.032tenure� .00059tenure2

(.007) (.00024)

n = 526,R2 = .441

jtfemale�educ j=
����.0056
.0131

���= j�.43j< 1.96: No evidence against hypothesis that the

return to education is the same for men and women.
jtfemalej=

����.227
.168

���= j�1.35j< 1.96: Does this mean that there is no significant

evidence of lower pay for women at the same levels of educ, exper , and tenure?
No: this is only the effect for educ = 0 since

∂ log (wage)
∂ female

= �.227� .0056educ.
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Interactions Involving Dummy Variables

To answer the question one has to recenter the interaction term, e.g., around
educ = 12.5 (= average education) to have female � (educ�12.5):
∂ log(wage)

∂ female = bδ 0+
bδ 1 (educ�12.5) with new bδ 0 = �.297

0 12.5

0.162

0.389

1.117

1.414

male
female

Figure: The New new bδ 0 = �.227+12.5� (�.0056) = �.297<�.227
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Interactions Involving Dummy Variables

c: Testing for Differences in Regression Functions across Groups

This is a special F test with the unrestricted model containing full set of
interactions,

cumgpa = β 0+ δ 0female+β 1sat+ δ 1female �sat+β 2hsperc

+δ 2female �hsperc+β 3tothrs+ δ 3female � tothrs+u

and the restricted model with same regression for both groups,

cumgpa= β 0+β 1sat+β 2hsperc+β 3tothrs+u,

where
cumpga= college GPA
sat = standardized aptitude test score
hsperc = high school rank percentile
tothrs = total hours spent in college courses

The null hypothesis is
H0 : δ 0 = δ 1 = δ 2 = δ 3 = 0.

All interaction effects are zero, i.e., the same regression coefficients apply to both
men and women.
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Interactions Involving Dummy Variables

Estimation of the Unrestricted Model

The estimated unrestricted model is

\cumgpa = 1.48�.353female+ .0011sat+.00075female �sat

(.21)(.411) (.0002) (.00039)

�.0085hsperc�.00055female �hsperc+ .0023tothrs

(.0014) (.00316) (.0009)

�.00012female � tothrs

(.00163)

n = 366,R2 = .406,R
2
= .394

It can be shown that [proof not required]

SSRur = SSRmale+SSRfemale,

where SSRmale is the SSR in the regression

cumgpa= β 0+β 1sat+β 2hsperc+β 3tothrs+u,

using only the data of male, and SSRfemale is the SSR using only the data of
female.
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Interactions Involving Dummy Variables

Testing Results

Tested individually, the hypothesis that the interaction effects are zero cannot be
rejected.

Tested jointly, the F statistic is

F =
(SSRr �SSRur )/q
SSRur /(n�k �1)

=
(85.515�78.355)/4
78.355/ (366�7�1)

t 8.18,

and the null is rejected.

SSRur = SSRmale+SSRfemale = 58.752+19.603= 78.355, nmale = 276,
nfemale = 90 and n = 366.

This relationship is true only if all interaction terms are included in the unrestricted
model.
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Interactions Involving Dummy Variables

Chow Test

In general, if the test is computed in this way, i.e.,

F =
[SSRP � (SSR1+SSR2)]/ (k +1)
(SSR1+SSR2)/ [n�2 (k +1)]

,

it is called the Chow-Test. [photo here]
- SSRP is the SSR for the pooled (restricted) regression; [see below]
- SSR1 and SSR2 are the SSRs for the two separate regressions; [see below]
- The number of restrictions is k +1 with k being the number of nonconstant
regressors in the pooled regression; [see below]
- The total number of parameters in the unrestricted model is 2(k +1). [see below]

SSRP : yi = β 0+β 1xi1+ � � �+β k xik +ui , i = 1, � � � ,n.

SSRur : yi = β 0+β 1xi1+ � � �+β k xik + δ 0Di + δ 1Dixi1+ � � �+ δ k Dixik +ui ,
i = 1, � � � ,n.

SSR1: yi = β 0+β 1xi1+ � � �+β k xik +ui , i = 1, � � � ,n1.

SSR2: yi = β 0+β 1xi1+ � � �+β k xik +ui , i = n1+1, � � � ,n.

H0: δ 0 = δ 1 = � � �= δ k = 0.
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Interactions Involving Dummy Variables

Gregory C. Chow (1929-),
Princeton, 1955ChicagoPhD

Chow, G.C., 1960, Tests of Equality Between Sets of Coefficients in Two Linear
Regressions, Econometrica, 28, 591-605.

Caution: Chow-Test assumes a constant error variance across groups as
assumed in the F test.
- E [ui jDi ] = σ2 for Di = 0 and 1.
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Interactions Involving Dummy Variables

Applications of the Chow-Test

Time Series: Structural Change Cross Section: Male vs. Female

Figure: Restricted and Unrestricted Models in the Chow Test

You must pass the Chow test to pass this course!
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A Binary Dependent Variable: The Linear Probability Model

(**) A Binary Dependent Variable:
The Linear Probability Model
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A Binary Dependent Variable: The Linear Probability Model

Linear Regression When the Dependent Variable is Binary

Suppose
y = β 0+β 1x1+ � � �+β k xk +u, (1)

with E [ujx] = 0; then

E [y jx] = β 0+β 1x1+ � � �+β k xk .

If the dependent variable y only takes on the values 1 and 0, then

E [y jx] = 1 �P (y = 1jx)+0 �P (y = 0jx) = P (y = 1jx) ,

i.e.,
P (y = 1jx) = β 0+β 1x1+ � � �+β k xk ,

where P (y = 1jx) is called the response probability.

Since P (y = 1jx) is linear in x, the model (1) is called the linear probability model
(LPM).

In the LPM,
β j = ∂P (y = 1jx)/∂xj

describes the effect of the explanatory variable xj on the probability that y = 1.
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A Binary Dependent Variable: The Linear Probability Model

Example: Labor Force Participation of Married Women

The fitted regression line is

cinfl = .596� .0034nwifeinc+ .038educ+ .039exper

(.154)(.0014) (.007) (.006)

�.00060exper2� .016age�.262kidslt6+ .0130kidsge6

(.00018) (.002) (.0034) (.0132)

n = 753,R2 = .264

where
infl = dummy for "in the labor force” of a married women
nwifeinc = husband’s earnings (in thousands of dollars)
kidslt6= number of children less than six years old
kidsge6= number of kids between 6 and 18 years of age

All variables except kidsge6 are statistically significant, and all of the significant
variables have correct signs.

If the number of kids under six years increases by one, the probability that the
woman works falls by 26.2%.
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A Binary Dependent Variable: The Linear Probability Model

Graph for nwifeinc=50, exper=5, age=30, kindslt6=1, kidsge6=0

The maximum level of education in the sample is educ = 17. For the given case,
this leads to a predicted probability to be in the labor force of about 50%.
Negative predicted probability but no problem because no woman in the sample
has educ < 5.
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A Binary Dependent Variable: The Linear Probability Model

Disadvantages and Advantages of the LPM

Disadvantages:

Predicted probabilities may be larger than one or smaller than zero.

Marginal probability effects sometimes logically impossible, e.g., the first small
child would reduce the probability by a large amount, but subsequent children
would have a smaller marginal effect; going from zero to four young children
reduces the probability of working by ∆cinfl = .262�4= 1.048!

The LPM is necessarily heteroskedastic:

Var (y jx) = P (y = 1jx) (1�P (y = 1jx))

by the variance formula of a Bernoulli random variable.
- Heterosceasticity consistent standard errors need to be computed.

Advantages:

Easy estimation and interpretation.

Estimated effects and predictions often reasonably good in practice.
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