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Effects of Data Scaling on OLS Statistics

Section 2.4a: SLR

The fitted regression line in the example of CEO salary and return on equity is

\salary = 963.191+18.501roe,

n = 209,R2 = .0132

How will the intercept and slope estimates change when the units of measurement
of the dependent and independent variables changes?

Suppose the salary is measured in dollars rather than thousands of dollars, the
intercept should be 963,191 and the slope should be 18,501. (why?)

Solution: convert a new problem to an old problem whose solution is known.
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Effects of Data Scaling on OLS Statistics

A Brute-Force Solution

Suppose y�i = w1yi and x�i = w2xi .

Then bβ �1 = ∑n
i=1

�
x�i �x�

�
y�i

∑n
i=1

�
x�i �x�

�2 =
w1w2 ∑n

i=1 (xi �x)yi

w2
2 ∑n

i=1 (xi �x)2
=

w1

w2

bβ 1,

and bβ �0 = y��x�bβ �1 = w1y �w2x
w1

w2

bβ 1 = w1

�
y �xbβ 1

�
= w1

bβ 0,

where x� = w2x and y� = w1y .

But when the number of regressors is large, the formula of bβ is complicated.

The textbook derives the relationship between bβ � and bβ by FOCs, while we
employ the objective functions.
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Effects of Data Scaling on OLS Statistics

Relationship Between Objective Functions

Recall that �bβ 0,
bβ 1

�
= arg min

β 0,β 1

n

∑
i=1
(yi �β 0�β 1xi )

2 , (1)

where arg means arguments.

Now, for the rescaled data,

min
β
�
0,β

�
1

n

∑
i=1
(y�i �β

�
0�β

�
1x�i )

2

= min
β
�
0,β

�
1

n

∑
i=1
(w1yi �β

�
0�β

�
1w2xi )

2

= min
β
�
0,β

�
1

w2
1

n

∑
i=1

�
yi �

β
�
0

w1
�β

�
1

w2

w1
xi

�2

,

where note that since (β �0,β
�
1) can be freely chosen,

�
β
�
0

w1
,β �1

w2
w1

�
can also be

freely chosen although (w1,w2) are fixed, just as (β 0,β 1) in (1).
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Effects of Data Scaling on OLS Statistics

Relationship Between bβ ’s and bσ2’s

So (why?)

bβ 0 =
bβ �0
w1

and bβ 1 =
bβ �1 w2

w1

=) bβ �0 = w1
bβ 0 and bβ �1 = w1

w2

bβ 1

Also,

bσ�2 =
1

n�2

n

∑
i=1

bu�2i =
1

n�2

n

∑
i=1

�
y�i � bβ �0� bβ �1x�i

�2

=
w2

1
n�2

n

∑
i=1

�
yi � bβ 0� bβ 1xi

�2

=
w2

1
n�2

n

∑
i=1

bu2
i

= w2
1 bσ2.

Or, the standard error of the regression (SER) bσ� = w1bσ .
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Effects of Data Scaling on OLS Statistics

Relationship Between R2’s and Standard Errors

It turns out that R�2 = R2:

R�2 = 1� SSR�

SST �

= 1�
∑n

i=1

�
y�i � bβ �0� bβ �1x�i

�2

∑n
i=1

�
y�i �y�

�2

= 1�
w2

1 ∑n
i=1 bu2

i

w2
1 ∑n

i=1 (yi �y)2

= 1� SSR
SST

= R2

Standard Errors:

bβ �0 = w1
bβ 0 and bβ �1 = w1

w2

bβ 1

=) se
�bβ �0�= w1 �se

�bβ 0

�
and se

�bβ �1�= w1

w2
�se

�bβ 1

�
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Effects of Data Scaling on OLS Statistics

Relationship Between t Statistics and CIs (Section 6.1: MLR)

It is natural to predict that t statistic is the same as before:

tbβ �1 =
bβ �1

se
�bβ �1� =

w1
w2
bβ 1

w1
w2
�se

�bβ 1

� = bβ 1

se
�bβ 1

� = tbβ 1
.

The CI for β 1 is the original CI multiplied by w1
w2

:hbβ �1�1.96 �se
�bβ �1� , bβ �1+1.96 �se

�bβ �1�i
=

w1

w2

hbβ 1�1.96 �se
�bβ 1

�
, bβ 1+1.96 �se

�bβ 1

�i
.

The results for β 0 are similar; the only difference is to replace w1
w2

by w1.
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Effects of Data Scaling on OLS Statistics

Unit Change in Logarithmic Form

Changing the unit of measurement of y and x , when they appear in logarithmic
form, does not affect any of the slope estimates, but may affect the intercept
estimate.

why?

min
β
�
0,β

�
1

n

∑
i=1
[log (y�i )�β

�
0�β

�
1 log (x�i )]

2

= min
β
�
0,β

�
1

n

∑
i=1
[log (yi )+ log (w1)�β

�
0�β

�
1 log (xi )�β

�
1 log (w2)]

2

= min
β
�
0,β

�
1

n

∑
i=1
[log (yi )� (β �0+β

�
1 log (w2)� log (w1))�β

�
1 log (xi )]

2
,

so bβ 0 = bβ �0+ bβ �1 log (w2)� log (w1) and bβ 1 =
bβ �1

=) bβ �0 = bβ 0� bβ 1 log (w2)+ log (w1) and bβ �1 = bβ 1.

I.e., the elasticity is invariant to the units of measurement of either y or x , and the
intercept is related to both the original intercept and slope.
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Effects of Data Scaling on OLS Statistics

Example: Japanese Learning

Suppose we want to study the SLR,

yi = β 0+β 1xi +ui ,

where
yi = exam mark in Japanese language course
xi = hours of study per day during the semester (average hours)

The fitted regression line is

byi = 20 + 14xi

(5.6) (3.5)

If you do not study at all, the predicted mark is 20. One additional hour of study
per day increases exam mark by 14 marks. At the mean value x = 3 hours of
study per day is expected to result in a mark of y = 62.
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Effects of Data Scaling on OLS Statistics

continue

Now if we report hours of study per week
�
x�i
�

rather than per day, the variable
has been scaled:

x�i = w2xi = 7xi and y�i = w1yi = yi .

If we run the regression based on x�i and yi , we get

byi = 20 + 2x�i
(5.6) (0.5)

Each additional hour of study per week increases the exam mark by 2 marks
[intuition here].

t statistic remains the same: 2
0.5 =

14
3.5 .

The CI for β
�
1, [2�1.96�0.5,2+1.96�0.5] = [1.02,2.98], is 1/7 of the CI for β 1,

which is [14�1.96�3.5,14+1.96�3.5] = [7.14,20.98] .

Note that the means x� and y� will still be on the newly estimated regression line:

y� = 20+2x�

62 = 20+2�21
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More on Functional Form

a: More on Using Logarithmic Functional Forms

Logarithmic transformations have the convenient percentage/elasticity
interpretation.

Slope coefficients of logged variables are invariant to rescalings.

Taking logs often eliminates/mitigates problems with outliers. (why? figure here)

Taking logs often helps to secure normality (e.g., log(wage) vs. wage) and
homoskedasticity (see Chapter 8 for an example).

Variables measured in units such as years (e.g., education, experience, tenure,
age, etc) should not be logged.

Variables measured in percentage points (e.g., unemployment rate, participation
rate of a pension plan, etc.) should also not be logged.

Logs must not be used if variables take on zero or negative values (e.g., hours of
work during a month).

It is hard to reverse the log-operation when constructing predictions. (we will
discuss more on this point later in this chapter)
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More on Functional Form

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
­2

­1.5

­1

­0.5

0

0.5

1

1.5

2

Figure: logy < y and lim
y!∞
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More on Functional Form

b: Models with Quadratics

Example: Suppose the fitted regression line for the wage equation is

\wage = 3.73+ .298exper � .0061exper2

(.35) (.041) (.0009)

n = 526,R2 = .093 (quite small)

The predicted wage is a concave function of exper . [figure here]

The marginal effect of exper on wage is

∂wage
∂exper

= bβ 1+2bβ 2exper = .298�2� .0061exper .

The first year of experience increases the wage by some $.30, the second year by
.298�2(.0061)(1) = $.29< $.30 etc.
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More on Functional Form

Figure: Wage Maximum with Respect to Work Experience

Mincer (1974, Schooling, Experience and Earnings) assumed
log(wage) = β 0+β 1educ+β 2exper +β 3exper2+u. [photo here]

Ping Yu (HKU) MLR: Further Issues 16 / 39



More on Functional Form

History of the Wage Equation

Jacob Mincer (1922-2006), Columbia,
father of modern labor economics
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More on Functional Form

Example: Effects of Pollution on Housing Prices

The fitted regression line is

\log (price) = 13.39� .902log(nox)� .087log(dist)

(.57) (.115) (.043)

�.545rooms+ .062rooms2� .048stratio

(.165) (.013) (.006)

n = 506,R2 = .603

where
nox = nitrogen oxide in air
dist = distance from employment centers, in miles
stratio = student/teacher ratio

The predicted log (price) is a convex function of rooms. [figure here]
The coefficient of rooms is negative. Does this mean that, at a low number of
rooms, more rooms are associated with lower prices?
The marginal effect of rooms on log (price) is

∂ log(price)
∂ rooms

=
∂price/price

∂ rooms
= �.545+2� .062rooms.

Ping Yu (HKU) MLR: Further Issues 18 / 39



More on Functional Form

Figure: Calculation of the Turnaround Point
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More on Functional Form

Other Possibilities

Using Quadratics Along with Logarithms:

log (price) = β 0+β 1 log(nox)+β 2 log(nox)2

+β 3crime+β 4rooms+β 5rooms2+β 6stratio+u,

which implies
∂ log (price)
∂ log(nox)

=
%∂price
%∂nox

= β 1+2β 2 log(nox).

Higher Order Polynomials: It is often assumed that the total cost takes the
following form,

cost = β 0+β 1quantity +β 2quantity2+β 3quantity3+u,

which implies a U-shaped marginal cost (MC), where β 0 is the total fixed cost.
[figure here]
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More on Functional Form

0 0

TFC

TVC
TC

Figure: Quadratic MC Implies Cubic TC: q� is the inflection point
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More on Functional Form

c: Models with Interaction Terms

In the model

price = β 0+β 1sqrft+β 2bdrms+β 3sqrft �bdrms+β 4bthrms+u,

sqrft �bdrms is the interaction term.

The marginal effect of bdrms on price is

∂price
∂bdrms

= β 2+β 3sqrft .

The effect of the number of bedrooms depends on the level of square footage.

Interaction effects complicate interpretation of parameters: β 2 is the effect of
number of bedrooms, but for a square footage of zero.

How to avoid this interpretation difficulty?
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More on Functional Form

Reparametrization of Interaction Effects

The model
y = β 0+β 1x1+β 2x2+β 3x1x2+u

can be reparametrized as

y = α0+ δ 1x1+ δ 2x2+β 3 (x1�µ1) (x2�µ2)+u,

where µ1 = E [x1] and µ2 = E [x2] are population means of x1 and x2, and can be
replaced by their sample means.

What is the relationship between
�bα0,

bδ 1,
bδ 2

�
and

�bβ 0,
bβ 1,

bβ 2

�
? (Exercise)

Now,
∂y
∂x2

= δ 2+β 3 (x1�µ1) ,

i.e., δ 2 is the effect of x2 if all other variables take on their mean values.

Advantages of reparametrization:
- It is easy to interpret all parameters.
- Standard errors for partial effects at the mean values are available.
- If necessary, interaction may be centered at other interesting values.

Ping Yu (HKU) MLR: Further Issues 23 / 39



More on Goodness-of-Fit and Selection of Regressors

More on Goodness-of-Fit and Selection of Regressors
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More on Goodness-of-Fit and Selection of Regressors

a: Adjusted R-Squared

General remarks on R-squared:
- A high R-squared does not imply that there is a causal interpretation.
- A low R-squared does not preclude precise estimation of partial effects.
Recall that

R2 = 1� SSR/n
SST /n

= 1�
eσ2

ueσ2
y

,

so R2 is estimating the population R-squared

ρ
2 = 1� σ2

u

σ2
y
,

the proportion of the variation in y in the population explained by the independent
variables.
Adjusted R-Squared:

R
2
= 1� SSR/ (n�k �1)

SST / (n�1)
= 1�

bσ2
ubσ2
y

,

is sometimes also called R-bar squared [photo here], where bσ2
u and bσ2

y are
unbiased estimators of σ2

u and σ2
y due to the correction of dfs.
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More on Goodness-of-Fit and Selection of Regressors

History of R
2

Henri Theil (1924-2000)1, Chicago and Florida

1He is a Dutch econometrician. Two other Dutch econometricians, Jan Tinbergen (1903-1994) and Tjalling
Koopmans (1910-1985) won the Nobel Prize in economics in 1969 and 1975, respectively.

Ping Yu (HKU) MLR: Further Issues 26 / 39



More on Goodness-of-Fit and Selection of Regressors

continue

R
2

takes into account degrees of freedom of the numerator and denominator, so is
generally a better measure of goodness-of-fit.

R
2

imposes a penalty for adding new regressors: k " =) R
2 #

R
2

increases if and only if the t statistic of a newly added regressor is greater than
one in absolute value. [proof not required]
- Compared with y = β 0+β 1x1+u, the regression y = β 0+β 1x1+β 2x2+u has

a larger R
2

if and only if ���tbβ 2

���> 1.

Relationship between R2 and R
2
: by

1�R2 =
SSR
SST

=
n�k �1

n�1
SSR/ (n�k �1)

SST / (n�1)
=

n�k �1
n�1

�
1�R

2
�
,

we have

R
2
= 1�

�
1�R2

� n�1
n�k �1

< R2

unless k = 0 or R2 = 1. [figure here]

Note that R
2

even gets negative if R2 < k
n�1 .
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More on Goodness-of-Fit and Selection of Regressors

0 1

0

1

Figure: Relationship Between R
2

and R2

Ping Yu (HKU) MLR: Further Issues 28 / 39



More on Goodness-of-Fit and Selection of Regressors

b: Using Adjusted R-squared to Choose between Nonnested Models

Models are nonnested if neither model is a special case of the other.

For example, to incorporate diminishing return of sales to R&D, we consider two
models:

rdintens = β 0+β 1 log(sales)+u,

rdintens = β 0+β 1sales+β 2sales2+u,

where
rdintens = R&D intensity.

R2 = .061 and R
2
= .030 in model 1 and R2 = .148 and R

2
= .090 in model 2.

A comparison between the R-squared of both models would be unfair to the first
model because the first model contains fewer parameters.

In the given example, even after adjusting for the difference in degrees of freedom,
the quadratic model is preferred.
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More on Goodness-of-Fit and Selection of Regressors

Comparing Models with Different Dependent Variables

R-squared or adjusted R-squared must not be used to compare models which
differ in their definition of the dependent variable.

Example (CEO Compensation and Firm Performance):

\salary = 830.63+ .0163sales+19.63roe

(223.90)(.0089) (11.08)

n = 209,R2 = .029,R
2
= .020,SST = 391,732,982

and

\lsalary = 4.36+ .275lsales+ .0179roe

(0.29)(.033) (.0040)

n = 209,R2 = .282,R
2
= .275,SST = 66.72

There is much less variation in log(salary) that needs to be explained than in

salary , so it is not fair to compare R2 and R
2

of the two models. (we will discuss
how to compare the fitting of these two models later in this chapter)
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More on Goodness-of-Fit and Selection of Regressors

c: Controlling for Too Many Factors in Regression Analysis

In some cases, certain variables should not be held fixed:
- In a regression of traffic fatalities on state beer taxes (and other factors) one
should not directly control for beer consumption.
- why? Beer taxes influence traffic fatalities only through beer consumption; if beer
consumption is controlled, then the coefficient of beer taxes measures the
indirect effect of beer taxes, which is hardly interesting.
- In a regression of family health expenditures on pesticide usage among farmers
one should not control for doctor visits.
- why? Health expenditures include doctor visits, and we would like to pick up all
effects of pesticide use on health expenditure.

Different regressions may serve different purposes:
- In a regression of house prices on house characteristics, one would include price
assessments and also housing attributes if the purpose of the regression is to
study the validity of assessments; one should not include price assessments if the
purpose of the regression is to estimate a hedonic price model,2 which measures
the marginal values of various housing attributes.

2What consumers are seeking to acquire is not goods themselves (e.g. cars or train journeys) but the
characteristics they contain (e.g., display of fashion sense, transport from A to B).
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More on Goodness-of-Fit and Selection of Regressors

History of Hedonic Price Model

Hedonic Utility: Lancaster, Kelvin J., 1966, A New Approach to Consumer Theory,
Journal of Political Economy, 74, 132-157.

Hedonic Pricing: Rosen, S., 1974, Hedonic Prices and Implicit Markets: Product
Differentiation in Pure Competition, Journal of Political Economy, 82, 34-55.

Kelvin J. Lancaster (1924-1999), Columbia Sherwin Rosen (1938-2001)3, Chicago

3His student Robert H. Thaler (1945-) at the University of Chicago won the Nobel Prize in economics in 2017.
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More on Goodness-of-Fit and Selection of Regressors

d: Adding Regressors to Reduce the Error Variance

Recall that

Var
�bβ j

�
=

σ2

SSTj

�
1�R2

j

� .
- Adding regressors may exacerbate multicollinearity problems (R2

j ").
- On the other hand, adding regressors reduces the error variance (σ2 #).
Variables that are uncorrelated with other regressors should be added because
they reduce error variance (σ2 #) without increasing multicollinearity (R2

j remains
the same).

However, such uncorrelated variables may be hard to find.

Example (Individual Beer Consumption and Beer Prices): Including individual
characteristics in a regression of beer consumption on beer prices leads to more
precise estimates of the price elasticity if individual characteristics are
uncorrelated with beer prices.

log (cons) = β 0+β 1 log (price)+ indchar| {z }
uncorrelated with log(price)

+u.
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Prediction and Residual Analysis

(**) Prediction and Residual Analysis
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Prediction and Residual Analysis

c: Predicting y When log (y) is the Dependent Variable

We study only this prediction problem as promised.

Note that
log (y) = β 0+β 1x1+ � � �+β k xk +u

implies
y = exp (β 0+β 1x1+ � � �+β k xk )exp (u) =m(x)exp (u) .

Under the additional assumption that u is independent of (x1, � � � ,xk ), we have

E [y jx] = exp (β 0+β 1x1+ � � �+β k xk )E [exp (u) jx]
= exp (β 0+β 1x1+ � � �+β k xk )E [exp (u)]

� m(x)α0,

where the second equality is due to the independence between u and x, so the
predicted y is by = bm(x)bα0

where

bm(x) = exp
�bβ 0+

bβ 1x1+ � � �+ bβ k xk

�
and bα0 =

1
n

n

∑
i=1

exp (bui ) .
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Prediction and Residual Analysis

E [exp (u)] � 1

Recall that E [u] = 0, so

E [exp (u)] � exp (E [u]) = exp (0) = 1.

In the following figure, suppose u takes only two values u1 and u2 with probability
1
2 and 1

2 , respectively. Since E [u] = 1
2 (u1+u2) = 0, u1 = �u2.

Now,

E [exp (u)] =
1
2
(exp (u1)+exp(u2))

� exp
�

1
2
(u1+u2)

�
= exp (E [u]) = 1,

where the equality is achieved only if u1 = u2 = 0, i.e., u = 0.

As a result, ey = bm(x) = exp
�
\log (y)

�
under-estimates E [y jx]!
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Prediction and Residual Analysis

0
0

1

Figure: Illustration of Jensen’s Inequality
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Prediction and Residual Analysis

Comparing R-Squared of a Logged and an Unlogged Specification

Reconsider the CEO salary problem:

\salary = 613.43+ .0190sales+ .0234mktval+12.70ceoten

(65.23) (.0100) (.0095) (5.61)

n = 177,R2 = .201

and

\lsalary = 4.504+ .163lsales+ .0109mktval+ .0117ceoten

(0.257)(.039) (.050) (.0053)

n = 177, eR2 = .318

R2 and eR2 are the R-squareds for the predictions of the unlogged salary variable
(although the second regression is originally for logged salaries). Both R-squareds
can now be directly compared
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Prediction and Residual Analysis

About eR2

Recall that
R2 =[Corr (y ,by)2 ,

where by is the predicted value of y .

When lsalary is the dependent variable, the predicted value of y is bm(x)bα0 = bα0ey .

Since bα0 > 0,
[Corr (y ,by) =[Corr (y , bα0ey) =[Corr (y ,ey)

invariant to bα0, where recall that for any a> 0,

Corr (X ,aY ) = Corr (X ,Y ) =
Cov (X ,Y )p

Var (X )Var (Y )
.

As a result, eR2 =[Corr (y ,ey)2 .
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