Ch06. Multiple Regression Analysis: Further Issues

Ping Yu

HKU Business School The University of Hong Kong

K ロ ト K 何 ト

澄後 メモド

 \rightarrow

Ξ

Effects of Data Scaling on OLS Statistics

K ロ ト K 何 ト

→ 重き → 重き →

Ξ

Section 2.4a: SLR

The fitted regression line in the example of CEO salary and return on equity is

 $salary = 963.191+18.501$ roe, $n = 209, R^2 = 0.0132$

- How will the intercept and slope estimates change when the units of measurement of the dependent and independent variables changes?
- Suppose the salary is measured in dollars rather than thousands of dollars, the intercept should be 963,191 and the slope should be 18,501. (why?)
- Solution: convert a new problem to an old problem whose solution is known.

KO KARA KE KAEK LE HORO

A Brute-Force Solution

• Suppose
$$
y_i^* = w_1 y_i
$$
 and $x_i^* = w_2 x_i$.

• Then

$$
\widehat{\beta}_1^* = \frac{\sum_{i=1}^n (x_i^* - \overline{x}^*) y_i^*}{\sum_{i=1}^n (x_i^* - \overline{x}^*)^2} = \frac{w_1 w_2 \sum_{i=1}^n (x_i - \overline{x}) y_i}{w_2^2 \sum_{i=1}^n (x_i - \overline{x})^2} = \frac{w_1}{w_2} \widehat{\beta}_1.
$$

and

$$
\widehat{\beta}_0^* = \overline{y}^* - \overline{x}^* \widehat{\beta}_1^* = w_1 \overline{y} - w_2 \overline{x} \frac{w_1}{w_2} \widehat{\beta}_1 = w_1 \left(\overline{y} - \overline{x} \widehat{\beta}_1 \right) = w_1 \widehat{\beta}_0,
$$

where $\overline{x}^* = w_2 \overline{x}$ and $\overline{y}^* = w_1 \overline{y}$.

- \bullet But when the number of regressors is large, the formula of $\widehat{\beta}$ is complicated.
- The textbook derives the relationship between $\widehat{\beta}^*$ and $\widehat{\beta}$ by FOCs, while we employ the objective functions.

K ロメ K 御 メ K 唐 メ K 唐 メー

Relationship Between Objective Functions

• Recall that

$$
\left(\widehat{\beta}_0,\widehat{\beta}_1\right) = \arg\min_{\beta_0,\beta_1}\sum_{i=1}^n\left(y_i-\beta_0-\beta_1x_i\right)^2.
$$
 (1)

where arg means arguments.

• Now, for the rescaled data,

$$
\min_{\beta_0^*,\beta_1^*} \sum_{i=1}^n (y_i^* - \beta_0^* - \beta_1^* x_i^*)^2
$$
\n
$$
= \min_{\beta_0^*,\beta_1^*} \sum_{i=1}^n (w_1 y_i - \beta_0^* - \beta_1^* w_2 x_i)^2
$$
\n
$$
= \min_{\beta_0^*,\beta_1^*} w_1^2 \sum_{i=1}^n \left(y_i - \frac{\beta_0^*}{w_1} - \beta_1^* \frac{w_2}{w_1} x_i \right)^2,
$$

where note that since (β_0^*,β_1^*) can be freely chosen, $\left(\frac{\beta_0^*}{w_1},\beta_1^*\frac{w_2}{w_1}\right)$ can also be freely chosen although (w_1,w_2) are fixed, just as (β_0,β_1) in [\(1\)](#page-4-0).

イロメ イ母メ イヨメ イヨメーヨ

Relationship Between $\widehat{\beta}$'s and $\widehat{\sigma}^2$'s

• So (why?)

$$
\widehat{\beta}_0 = \frac{\widehat{\beta}_0^*}{w_1} \text{ and } \widehat{\beta}_1 = \widehat{\beta}_1^* \frac{w_2}{w_1}
$$

\n
$$
\implies \widehat{\beta}_0^* = w_1 \widehat{\beta}_0 \text{ and } \widehat{\beta}_1^* = \frac{w_1}{w_2} \widehat{\beta}_1
$$

Also,

$$
\hat{\sigma}^{*2} = \frac{1}{n-2} \sum_{i=1}^{n} \hat{u}_i^{*2} = \frac{1}{n-2} \sum_{i=1}^{n} (y_i^* - \hat{\beta}_0^* - \hat{\beta}_1^* x_i^*)^2
$$

\n
$$
= \frac{w_1^2}{n-2} \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2
$$

\n
$$
= \frac{w_1^2}{n-2} \sum_{i=1}^{n} \hat{u}_i^2
$$

\n
$$
= w_1^2 \hat{\sigma}^2.
$$

Or, the standard error of the regression (SER) $\widehat{\sigma}^* = w_1 \widehat{\sigma}$ $\widehat{\sigma}^* = w_1 \widehat{\sigma}$ $\widehat{\sigma}^* = w_1 \widehat{\sigma}$.

Relationship Between R^2 's and Standard Errors

It turns out that $R^{*2} = R^2$:

$$
R^{*2} = 1 - \frac{SSR^*}{SST^*}
$$

=
$$
1 - \frac{\sum_{i=1}^{n} (y_i^* - \hat{\beta}_0^* - \hat{\beta}_1^* x_i^*)^2}{\sum_{i=1}^{n} (y_i^* - \overline{y}^*)^2}
$$

=
$$
1 - \frac{w_1^2 \sum_{i=1}^{n} \hat{u}_i^2}{w_1^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}
$$

=
$$
1 - \frac{SSR}{SST} = R^2
$$

• Standard Errors:

$$
\widehat{\beta}_0^* = w_1 \widehat{\beta}_0 \text{ and } \widehat{\beta}_1^* = \frac{w_1}{w_2} \widehat{\beta}_1
$$
\n
$$
\implies \text{ se } (\widehat{\beta}_0^*) = w_1 \cdot \text{se } (\widehat{\beta}_0) \text{ and } \text{se } (\widehat{\beta}_1^*) = \frac{w_1}{w_2} \cdot \text{se } (\widehat{\beta}_1)
$$

K ロ X K 御 X K 重 X K 重 X …重

Relationship Between t Statistics and CIs (Section 6.1: MLR)

 \bullet It is natural to predict that t statistic is the same as before:

$$
t_{\widehat{\beta}^*_1}=\frac{\widehat{\beta}^*_1}{\mathsf{se}\left(\widehat{\beta}^*_1\right)}=\frac{\frac{w_1}{w_2}\widehat{\beta}_1}{\frac{w_1}{w_2}\cdot \mathsf{se}\left(\widehat{\beta}_1\right)}=\frac{\widehat{\beta}_1}{\mathsf{se}\left(\widehat{\beta}_1\right)}=t_{\widehat{\beta}_1}.
$$

The CI for β_1 is the original CI multiplied by $\frac{w_1}{w_2}$:

$$
\begin{aligned} &\left[\widehat{\beta}^*_1-1.96\cdot\text{se}\left(\widehat{\beta}^*_1\right),\widehat{\beta}^*_1+1.96\cdot\text{se}\left(\widehat{\beta}^*_1\right)\right] \\ =&\quad \frac{w_1}{w_2}\left[\widehat{\beta}_1-1.96\cdot\text{se}\left(\widehat{\beta}_1\right),\widehat{\beta}_1+1.96\cdot\text{se}\left(\widehat{\beta}_1\right)\right]. \end{aligned}
$$

The results for β_0 are similar; the only difference is to replace $\frac{w_1}{w_2}$ by w_1 .

イロン イ団ン イヨン イヨン 一番

Unit Change in Logarithmic Form

- Changing the unit of measurement of y and x , when they appear in logarithmic form, does not affect any of the slope estimates, but may affect the intercept estimate.
- why?

$$
\begin{aligned}\n&\min_{\beta_0^*,\beta_1^*} \sum_{i=1}^n \left[\log\left(y_i^*\right) - \beta_0^* - \beta_1^* \log\left(x_i^*\right)\right]^2 \\
&= \min_{\beta_0^*,\beta_1^*} \sum_{i=1}^n \left[\log\left(y_i\right) + \log\left(w_1\right) - \beta_0^* - \beta_1^* \log\left(x_i\right) - \beta_1^* \log\left(w_2\right)\right]^2 \\
&= \min_{\beta_0^*,\beta_1^*} \sum_{i=1}^n \left[\log\left(y_i\right) - \left(\beta_0^* + \beta_1^* \log\left(w_2\right) - \log\left(w_1\right)\right) - \beta_1^* \log\left(x_i\right)\right]^2.\n\end{aligned}
$$

so

$$
\begin{array}{rcl}\widehat{\beta}_0&=&\widehat{\beta}_0^*+\widehat{\beta}_1^*log(w_2)-log(w_1) \ \text{and} \ \widehat{\beta}_1=\widehat{\beta}_1^*\\ \implies& \widehat{\beta}_0^*=\widehat{\beta}_0-\widehat{\beta}_1 log(w_2)+log(w_1) \ \text{and} \ \widehat{\beta}_1^*=\widehat{\beta}_1.\end{array}
$$

 \bullet l.e., the elasticity is invariant to the units of measurement of either y or x, and the intercept is related to both the original intercept and [slo](#page-7-0)[pe](#page-9-0)[.](#page-7-0) ORO

Example: Japanese Learning

• Suppose we want to study the SLR,

$$
y_i = \beta_0 + \beta_1 x_i + u_i,
$$

where

 y_i = exam mark in Japanese language course

 x_i = hours of study per day during the semester (average hours)

• The fitted regression line is

$$
\hat{y}_i = 20 + 14x_i
$$
\n(5.6) (3.5)

If you do not study at all, the predicted mark is 20. One additional hour of study per day increases exam mark by 14 marks. At the mean value $\bar{x} = 3$ hours of study per day is expected to result in a mark of $\bar{y} = 62$.

イロメ イ団メ イモメ イモメー

continue

Now if we report hours of study per week (x_i^*) rather than per day, the variable has been scaled:

$$
x_i^* = w_2 x_i = 7x_i
$$
 and $y_i^* = w_1 y_i = y_i$.

If we run the regression based on x_i^* and y_i , we get

$$
\hat{y}_i = 20 + 2x_i^* \tag{5.6} (0.5)
$$

- Each additional hour of study per week increases the exam mark by 2 marks [intuition here].
- *t* statistic remains the same: $\frac{2}{0.5} = \frac{14}{3.5}$.
- The CI for β_1^* , $[2-1.96\times0.5,2+1.96\times0.5]=[1.02,2.98]$, is 1/7 of the CI for β_1 , which is $[14 - 1.96 \times 3.5, 14 + 1.96 \times 3.5] = [7.14, 20.98]$.
- Note that the means \bar{x}^* and \bar{y}^* will still be on the newly estimated regression line:

$$
\overline{y}^* = 20 + 2\overline{x}^*
$$

62 = 20 + 2 × 21

KO KARA KE KAEK LE HORO

More on Functional Form

重

イロト イ部 トイヨ トイヨ トー

a: More on Using Logarithmic Functional Forms

- Logarithmic transformations have the convenient percentage/elasticity interpretation.
- Slope coefficients of logged variables are invariant to rescalings.
- Taking logs often eliminates/mitigates problems with outliers. (why? figure here)
- Taking logs often helps to secure normality (e.g., log(wage) vs. wage) and homoskedasticity (see Chapter 8 for an example).
- Variables measured in units such as years (e.g., education, experience, tenure, age, etc) should not be logged.
- Variables measured in percentage points (e.g., unemployment rate, participation rate of a pension plan, etc.) should also not be logged.
- Logs must not be used if variables take on zero or negative values (e.g., hours of work during a month).
- It is hard to reverse the log-operation when constructing predictions. (we will discuss more on this point later in this chapter)

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ - ' 큰' - K) Q Q @

重

(ロ) (個) (差) (差)

b: Models with Quadratics

Example: Suppose the fitted regression line for the wage equation is

$$
\widehat{\text{wage}} = 3.73 + .298 \text{exper} - .0061 \text{exper}^2
$$

(.35) (.041) (.0009)

$$
n = 526, R^2 = .093 \text{ (quite small)}
$$

- The predicted wage is a concave function of exper. [figure here]
- The marginal effect of exper on wage is

$$
\frac{\partial \text{wage}}{\partial \text{exper}} = \hat{\beta}_1 + 2\hat{\beta}_2 \text{exper} = .298 - 2 \times .0061 \text{exper}.
$$

• The first year of experience increases the wage by some \$.30, the second year by $.298 - 2(.0061)(1) = $.29 < $.30$ etc.

KO KARA KE KAEK LE HORO

Figure: Wage Maximum with Respect to Work Experience

Mincer (1974, Schooling, Experience and Earnings) assumed $log(wage) = \beta_0 + \beta_1$ educ + β_2 exper + β_3 exper² + u. [photo here]

イロト イ母ト イヨト イヨト

History of the Wage Equation

Jacob Mincer (1922-2006), Columbia, father of modern labor economics

E

イロメ イ団メ イヨメ イヨメー

Example: Effects of Pollution on Housing Prices

• The fitted regression line is

$$
log(price) = 13.39 - .902 log(nox) - .087 log(dist)
$$

(.57) (.115) (.043)
-.545 rooms + .062 rooms² - .048 stratio
(.165) (.013) (.006)

$$
n = 506, R2 = .603
$$

where

 $n\alpha x = n$ itrogen oxide in air

 $dist =$ distance from employment centers, in miles

 $stratio = student/teacher ratio$

- \bullet The predicted log (*price*) is a convex function of *rooms*. [figure here]
- The coefficient of rooms is negative. Does this mean that, at a low number of rooms, more rooms are associated with lower prices?
- The marginal effect of rooms on log (price) is

 $\frac{\partial \log(p \text{rice})}{\partial r} = \frac{\partial \text{price}}{\partial r}$ = -.545 + 2 × .062 rooms. ∂ rooms ∂ rooms イロメ イ母メ イヨメ イヨメーヨ

Figure: Calculation of the Turnaround Point

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

Other Possibilities

Using Quadratics Along with Logarithms:

$$
\begin{array}{rcl}\n\log(\text{price}) & = & \beta_0 + \beta_1 \log(\text{nox}) + \beta_2 \log(\text{nox})^2 \\
& & + \beta_3 \text{crime} + \beta_4 \text{rooms} + \beta_5 \text{rooms}^2 + \beta_6 \text{stratio} + u,\n\end{array}
$$

which implies

$$
\frac{\partial \log(\textit{price})}{\partial \log(\textit{nox})} = \frac{\% \partial \textit{price}}{\% \partial \textit{now}} = \beta_1 + 2\beta_2 \log(\textit{nox}).
$$

• Higher Order Polynomials: It is often assumed that the total cost takes the following form,

$$
cost = \beta_0 + \beta_1 quantity + \beta_2 quantity^2 + \beta_3 quantity^3 + u,
$$

which implies a U-shaped marginal cost (MC), where $\boldsymbol{\beta}_0$ is the total fixed cost. [figure here]

画

イロメ イ団メ イモメ イモメー

Figure: Quadratic MC Implies Cubic TC: q^* is the inflection point

重

イロメ イ団メ イヨメ イヨメー

c: Models with Interaction Terms

• In the model

price $= \beta_0 + \beta_1$ sqrft $+ \beta_2$ bdrms $+ \beta_3$ sqrft \cdot bdrms $+ \beta_4$ bthrms $+$ u,

sqrft \cdot bdrms is the interaction term.

• The marginal effect of bdrms on price is

$$
\frac{\partial \text{price}}{\partial \text{bdrms}} = \beta_2 + \beta_3 \text{sqrtt}.
$$

- The effect of the number of bedrooms depends on the level of square footage.
- Interaction effects complicate interpretation of parameters: β_2 is the effect of number of bedrooms, but for a square footage of zero.
- How to avoid this interpretation difficulty?

イロン イ団ン イヨン イヨン 一番

Reparametrization of Interaction Effects

o The model

$$
y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + u
$$

can be reparametrized as

$$
y = \alpha_0 + \delta_1 x_1 + \delta_2 x_2 + \beta_3 (x_1 - \mu_1) (x_2 - \mu_2) + u,
$$

where $\mu_1 = E[x_1]$ and $\mu_2 = E[x_2]$ are population means of x_1 and x_2 , and can be replaced by their sample means.

What is the relationship between $\left(\widehat a_0, \widehat\delta_1, \widehat\delta_2 \right)$ and $\left(\widehat\beta_0, \widehat\beta_1, \widehat\beta_2 \right)$? (Exercise)

Now,

$$
\frac{\partial y}{\partial x_2} = \delta_2 + \beta_3 (x_1 - \mu_1).
$$

i.e., δ_2 is the effect of x_2 if all other variables take on their mean values.

• Advantages of reparametrization:

- It is easy to interpret all parameters.
- Standard errors for partial effects at the mean values are available.
- If necessary, interaction may be centered at other interesting values.

KO KARA KE KAEK LE HORO

More on Goodness-of-Fit and Selection of Regressors

◆ ロ ▶ → 何

メモドメモド

a: Adjusted R-Squared

- General remarks on R-squared:
	- A high R-squared does not imply that there is a causal interpretation.
	- A low R-squared does not preclude precise estimation of partial effects.
- **Recall that**

$$
R^2 = 1 - \frac{\text{SSR}/n}{\text{SST}/n} = 1 - \frac{\tilde{\sigma}_u^2}{\tilde{\sigma}_y^2},
$$

so R² is estimating the population R-squared

$$
\rho^2=1-\frac{\sigma_u^2}{\sigma_y^2},
$$

the proportion of the variation in y in the population explained by the independent variables.

Adjusted R-Squared:

$$
\overline{R}^2 = 1 - \frac{\text{SSR}/\left(n - k - 1\right)}{\text{SST}/\left(n - 1\right)} = 1 - \frac{\hat{\sigma}_u^2}{\hat{\sigma}_y^2},
$$

is sometimes also called R-bar squared [photo here], where $\hat{\sigma}_{u}^{2}$ and $\hat{\sigma}_{y}^{2}$ are unbiased estimators [of](#page-25-0) $\sigma_{\mathcal{U}}^2$ and $\sigma_{\mathcal{Y}}^2$ due to the correc[tion](#page-23-0) of [dfs](#page-24-0)[.](#page-25-0) $\mathcal{A} \cong \mathcal{B} \times \mathcal{A} \cong \mathcal{B} \times \mathcal{B}$

Henri Theil (1924-2000)¹, Chicago and Florida

¹He is a Dutch econometrician. Two other Dutch econometricians, Jan Tinbergen (1903-1994) and Tjalling Koopmans (1910-1985) won the Nobel Prize in economics in 1969 and 1[975](#page-24-0), [re](#page-26-0)[sp](#page-24-0)[ect](#page-25-0)[iv](#page-26-0)[el](#page-22-0)[y.](#page-23-0) ÷. $2Q$

continue

- $\overline{\mathsf{R}}^2$ takes into account degrees of freedom of the numerator and denominator, so is generally a better measure of goodness-of-fit.
- $\overline{\mathsf{R}}^2$ imposes a penalty for adding new regressors: $k \uparrow \Longrightarrow \overline{\mathsf{R}}^2 \downarrow$
- $\overline{\mathsf{R}}^2$ increases if and only if the t statistic of a newly added regressor is greater than one in absolute value. [proof not required]
	- Compared with $y = \beta_0 + \beta_1 x_1 + u$, the regression $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$ has a larger $\overline{\mathcal{R}}^2$ if and only if

$$
\left| t_{\widehat{\beta}_2} \right| > 1.
$$

Relationship between R^2 and \overline{R}^2 : by

$$
1 - R^{2} = \frac{SSR}{SST} = \frac{n - k - 1}{n - 1} \frac{SSR/(n - k - 1)}{SST/(n - 1)} = \frac{n - k - 1}{n - 1} \left(1 - \overline{R}^{2}\right),
$$

we have

$$
\overline{R}^2 = 1 - \left(1 - R^2\right) \frac{n-1}{n-k-1} < R^2
$$

unless $k = 0$ or $R^2 = 1$. [figure here]

Note that \overline{R}^2 even gets negative if $R^2 < \frac{k}{n-1}$.

◆ロト→ 伊ト→ ミト→ ミトーミ

Figure: Relationship Between $\overline{\mathcal{R}}^2$ and \mathcal{R}^2

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君

b: Using Adjusted R-squared to Choose between Nonnested Models

- Models are nonnested if neither model is a special case of the other.
- For example, to incorporate diminishing return of sales to R&D, we consider two models:

rdimtens =
$$
\beta_0 + \beta_1 \log(\text{sales}) + u
$$
,
rdimtens = $\beta_0 + \beta_1 \text{sales} + \beta_2 \text{sales}^2 + u$,

where

 r dintens = R&D intensity.

- $R^2 = 0.061$ and $\overline{R}^2 = 0.030$ in model 1 and $R^2 = 0.148$ and $\overline{R}^2 = 0.090$ in model 2.
- A comparison between the R-squared of both models would be unfair to the first model because the first model contains fewer parameters.
- In the given example, even after adjusting for the difference in degrees of freedom, the quadratic model is preferred.

イロン イ団ン イヨン イヨン 一番

Comparing Models with Different Dependent Variables

- \bullet R-squared or adjusted R-squared must not be used to compare models which differ in their definition of the dependent variable.
- Example (CEO Compensation and Firm Performance):

$$
\widehat{\text{salary}} = 830.63 + .0163 \text{ sales} + 19.63 \text{roe}
$$
\n
$$
(223.90)(.0089) \qquad (11.08)
$$
\n
$$
n = 209, R^2 = .029, \overline{R}^2 = .020, \text{SST} = 391, 732, 982
$$

and

Isalary =
$$
4.36 + .275
$$
lsales + .0179roe
(0.29)(.033) (.0040)
 $n = 209, R^2 = .282, \overline{R}^2 = .275, SST = 66.72$

 \bullet There is much less variation in log(salary) that needs to be explained than in salary, so it is not fair to compare R^2 and \overline{R}^2 of the two models. (we will discuss how to compare the fitting of these two models later in this chapter)

イロン イ団ン イヨン イヨン 一番

c: Controlling for Too Many Factors in Regression Analysis

- In some cases, certain variables should not be held fixed:
	- In a regression of traffic fatalities on state beer taxes (and other factors) one should not directly control for beer consumption.
	- why? Beer taxes influence traffic fatalities only through beer consumption; if beer consumption is controlled, then the coefficient of beer taxes measures the indirect effect of beer taxes, which is hardly interesting.
	- In a regression of family health expenditures on pesticide usage among farmers one should not control for doctor visits.
	- why? Health expenditures include doctor visits, and we would like to pick up all effects of pesticide use on health expenditure.
- Different regressions may serve different purposes:
	- In a regression of house prices on house characteristics, one would include price assessments and also housing attributes if the purpose of the regression is to study the validity of assessments; one should not include price assessments if the purpose of the regression is to estimate a hedonic price model,² which measures the marginal values of various housing attributes.

 2 What consumers are seeking to acquire is not goods themselves (e.g. cars or train journeys) but the characteristics they contain (e.g., display of fashion sense, transport fro[m A](#page-29-0) t[o B](#page-31-0)[\).](#page-29-0) \Box

History of Hedonic Price Model

- Hedonic Utility: Lancaster, Kelvin J., 1966, A New Approach to Consumer Theory, Journal of Political Economy, 74, 132-157.
- Hedonic Pricing: Rosen, S., 1974, Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition, Journal of Political Economy, 82, 34-55.

Kelvin J. Lancaster (1924-1999), Columbia

Sherwin Rosen $(1938-2001)^3$, Chicago

³His student Robert H. Thaler (1945-) at the University of Chicago wo[n th](#page-30-0)e [N](#page-32-0)[ob](#page-30-0)[el](#page-31-0) [Pr](#page-32-0)[iz](#page-22-0)[e](#page-23-0) [in](#page-32-0) [e](#page-33-0)[c](#page-22-0)[on](#page-23-0)[o](#page-32-0)[m](#page-33-0)[ics](#page-0-0) [in 2](#page-38-0)017. \sim

d: Adding Regressors to Reduce the Error Variance

• Recall that

$$
Var\left(\widehat{\beta}_j\right)=\frac{\sigma^2}{SST_j\left(1-R_j^2\right)}.
$$

- Adding regressors may exacerbate multicollinearity problems $(R_j^2\restriction)$.

- On the other hand, adding regressors reduces the error variance $(\sigma^2 \downarrow)$.
- Variables that are uncorrelated with other regressors should be added because they reduce error variance ($\sigma^2 \downarrow$) without increasing multicollinearity ($\mathsf{R}_{\vec{j}}^2$ remains the same).
- However, such uncorrelated variables may be hard to find.
- Example (Individual Beer Consumption and Beer Prices): Including individual characteristics in a regression of beer consumption on beer prices leads to more precise estimates of the price elasticity if individual characteristics are uncorrelated with beer prices.

$$
\log (cons) = \beta_0 + \beta_1 \log (price) + \underbrace{\text{indchar}}_{\text{uncorrelated with log}(price)}
$$

(**) Prediction and Residual Analysis

重

イロメ イ団メ イモメ イモメー

c: Predicting v When $log(v)$ is the Dependent Variable

• We study only this prediction problem as promised.

a Note that

$$
log(y) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u
$$

implies

$$
y = \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k) \exp(u) = m(\mathbf{x}) \exp(u).
$$

• Under the additional assumption that u is independent of (x_1, \dots, x_k) , we have

$$
E[y|\mathbf{x}] = \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k) E[\exp(u) | \mathbf{x}]
$$

= $\exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k) E[\exp(u)]$
\equiv $m(\mathbf{x}) \alpha_0$,

where the second equality is due to the independence between u and **x**, so the predicted y is

$$
\widehat{\mathbf{y}} = \widehat{m}(\mathbf{x})\widehat{\alpha}_0
$$

where

$$
\widehat{m}(\mathbf{x}) = \exp\left(\widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \cdots + \widehat{\beta}_k x_k\right) \text{ and } \widehat{\alpha}_0 = \frac{1}{n} \sum_{i=1}^n \exp(\widehat{u}_i).
$$

E [exp (u)] > 1

• Recall that $E[u] = 0$, so

$$
E\left[\exp\left(u\right)\right]\geq \exp\left(E\left[u\right]\right)=\exp\left(0\right)=1.
$$

In the following figure, suppose u takes only two values u_1 and u_2 with probability $\frac{1}{2}$ and $\frac{1}{2}$, respectively. Since $E[u] = \frac{1}{2}(u_1 + u_2) = 0$, $u_1 = -u_2$.

Now,

$$
E[\exp(u)] = \frac{1}{2}(\exp(u_1) + \exp(u_2))
$$

\n
$$
\geq \exp\left(\frac{1}{2}(u_1 + u_2)\right)
$$

\n
$$
= \exp(E[u]) = 1,
$$

where the equality is achieved only if $u_1 = u_2 = 0$, i.e., $u = 0$.

As a result, $\widetilde{y} = \widehat{m}(\mathbf{x}) = \exp\left(\widehat{\log(y)}\right)$ under-estimates $E\left[y|\mathbf{x}\right]!$

イロメ イ母メ イヨメ イヨメーヨ

Figure: Illustration of Jensen's Inequality

K ロ X K 御 X K 重 X K 重 X …重

Comparing R-Squared of a Logged and an Unlogged Specification

• Reconsider the CEO salary problem:

$$
salign = 613.43 + .0190 sales + .0234 mktval + 12.70 ceoten
$$

(65.23) (.0100) (.0095) (5.61)

$$
n = 177, R^2 = .201
$$

and

Isalary =
$$
4.504 + .163
$$
lsales + .0109*mktval* + .0117ceoten
\n $(0.257)(.039)$ (.050) (.0053)
\n $n = 177, \tilde{R}^2 = .318$

 R^2 and \widetilde{R}^2 are the R-squareds for the predictions of the unlogged salary variable (although the second regression is originally for logged salaries). Both R-squareds can now be directly compared

イロン イ団ン イヨン イヨン 一番

About \widetilde{R}^2

• Recall that

$$
R^2 = \widehat{Corr}(y, \widehat{y})^2,
$$

where \hat{y} is the predicted value of y.

When *Isalary* is the dependent variable, the predicted value of y is $\hat{m}(\mathbf{x})\hat{\alpha}_0 = \hat{\alpha}_0\tilde{\gamma}$. • Since $\hat{\alpha}_0 > 0$,

$$
\widehat{\text{Corr}}\left(\boldsymbol{y}, \widehat{\boldsymbol{y}}\right) = \widehat{\text{Corr}}\left(\boldsymbol{y}, \widehat{\alpha}_0 \widetilde{\boldsymbol{y}}\right) = \widehat{\text{Corr}}\left(\boldsymbol{y}, \widetilde{\boldsymbol{y}}\right)
$$

invariant to $\hat{\alpha}_0$, where recall that for any $a > 0$,

$$
Corr(X, aY) = Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X) Var(Y)}}.
$$

As a result,

$$
\widetilde{R}^2 = \widehat{Corr}(y, \widetilde{y})^2.
$$

重

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...