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Motivation for Multiple Regression

Motivation for Multiple Regression

The multiple linear regression (MLR) model is defined as

y = β 0+β 1x1+ � � �+β k xk +u,

which tries to explain variable y in terms of variables x1, � � � ,xk .

The terminology for y , (x1, � � � ,xk ) ,u,β 0, (β 1, � � � ,β k ) is the same as in the SLR
model.

Motivation:
1 Incorporate more explanatory factors into the model;
2 Explicitly hold fixed other factors that otherwise would be in u;
3 Allow for more flexible functional forms;

Motivation 1 is easy to understand, so we will provide four examples to illustrate
the other two motivations: Examples 1 and 2 for motivation 2 and Examples 3 and
4 for motivation 3.
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Motivation for Multiple Regression

Example: Wage Equation

Suppose
wage = β 0+β 1educ+β 2exper +u,

where
wage = hourly wage
educ = years of education
exper = years of labor market experience
u = all other factors affecting wage

Now, β 1 measures effect of education explicitly holding experience fixed.

If omitting exper , then E [ujeduc] 6= 0 given that educ and exper are correlated
=) bβ 1 is biased.
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Motivation for Multiple Regression

Example: Average Test Scores and Per Student Spending

Suppose
avgscore = β 0+β 1expend +β 2avginc+u,

where
avgscore = average standardized test score of school
expend = per student spending at this school
avginc = average family income of students at this school
u = all other factors affecting avgscore

Per student spending is likely to be correlated with average family income at a
given high school because of school financing.

Omitting average family income in regression would lead to biased estimate of the
effect of spending on average test scores.

In a simple regression model, effect of per student spending would partly include
the effect of family income on test scores. [intuition here, direct and indirect effects]
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Motivation for Multiple Regression

Example: Family Income and Family Consumption

Suppose
cons = β 0+β 1inc+β 2inc2+u,

where
cons = family consumption
inc = family income
inc2 = family income squared
u = all other factors affecting cons

Model has two explanatory variables: income and income squared.

Consumption is explained as a quadratic function of income.

One has to be very careful when interpreting the coefficients:

∂cons
∂ inc

= β 1+2β 2inc,

which depends on how much income is already there. [intuition here]
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Motivation for Multiple Regression

Example: CEO Salary, Sales and CEO Tenure

Suppose

log (salary) = β 0+β 1 log (sales)+β 2ceoten+β 3ceoten2+u,

where
log (salary) = log of CEO salary
log (sales) = log sales
ceoten = CEO tenure with the firm

Model assumes a constant elasticity relationship between CEO salary and the
sales of his or her firm.

Model assumes a quadratic relationship between CEO salary and his or her
tenure with the firm.

Recall that the "linear" in linear regression means linear in parameter, not "linear
in the variables".
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Mechanics and Interpretation of Ordinary Least Squares

a: Obtaining the OLS Estimates

Suppose we have a random sample f(xi1, � � � ,xik ,yi ) : i = 1, � � � ,ng, where the first
subscript of xij , i , refers to the observation number, and the second subscript j ,
j = 1, � � � ,k , refers to different independent variables.
Define the residuals at arbitrary β � (β 0,β 1, � � � ,β k ) asbui (β ) = yi �β 0�β 1xi1��� ��β k xik .

Minimize the sum of squared residuals:

min
β

SSR (β ) = min
β

n

∑
i=1

bui (β )
2 = min

β 0,β 1,��� ,β k

n

∑
i=1
(yi �β 0�β 1xi1��� ��β k xik )

2

=) bβ = �bβ 0,
bβ 1, � � � , bβ k

�
,

where bβ is the solution to the FOCs,

∑n
i=1

�
yi � bβ 0� bβ 1xi1��� �� bβ k xik

�
= 0,

∑n
i=1 xi1

�
yi � bβ 0� bβ 1xi1��� �� bβ k xik

�
= 0,

...

∑n
i=1 xik

�
yi � bβ 0� bβ 1xi1��� �� bβ k xik

�
= 0,

(1)

which can be carried out through standard econometric softwares.
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Mechanics and Interpretation of Ordinary Least Squares

b: Interpreting the OLS Regression Equation

In the MLR model, y = β 0+β 1x1+ � � �+β k xk +u, so

β j =
∂y
∂xj

means "by how much does the dependent variable change if the j-th independent
variable is increased by one unit, holding all other independent variables and
the error term constant".

The multiple linear regression model manages to hold the values of other
explanatory variables fixed even if, in reality, they are correlated with the
explanatory variable under consideration.

This is the usual "ceteris paribus“-interpretation.

It has still to be assumed that unobserved factors do not change if the explanatory
variables are changed.
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Mechanics and Interpretation of Ordinary Least Squares

Example: Determinants of College GPA

The fitted regression is

\colGPA= 1.29+ .453hsGPA+ .0094ACT ,

where
colGPA= grade point average at college
hsGPA= high school grade point average
ACT = achievement test score1

Holding ACT fixed, another point on high school GPA is associated with another
.453 points college GPA.

Or: If we compare two students with the same ACT, but the hsGPA of student A is
one point higher, we predict student A to have a colGPA that is .453 higher than
that of student B.

Holding high school GPA fixed, another 10 points on ACT are associated with less
than one-tenth point on college GPA.

1An achievement test is a test of developed skill or knowledge. The most common type of achievement test is
a standardized test developed to measure skills and knowledge learned in a given grade level such as SAT,
usually through planned instruction, such as training or classroom instruction. Achievement tests are often
contrasted with tests that measure aptitude, a more general and stable cognitive trait.
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Mechanics and Interpretation of Ordinary Least Squares

f: A "Partialling Out“ Interpretation of Multiple Regression

One can show that the estimated coefficient of an explanatory variable in a
multiple regression can be obtained in two steps:

1 Regress the explanatory variable on all other explanatory variables.
2 Regress y on the residuals from this regression

Mathematically, suppose we regress y on the constant 1, x1 and x2 (denoted as
y � 1,x1,x2), and want to get bβ 1.

1 xi1 � 1,xi2 =) bri1
2 yi � 1,xi2 =) briy (no need) [Assignment II, Problem 1(i)]
3 yi

�
or briy

�
�bri1 =) bβ 1 =

∑n
i=1bri1yi

∑n
i=1br2

i1

In Step 3, the constant regressor is not required since the mean of bri1 is equal to
zero from Step 1. If the constant regressor is added in, the formula of bβ 1 is the
same:

bβ 1 =
∑n

i=1

�bri1�br1

�
yi

∑n
i=1

�bri1�br1

�2 =
∑n

i=1bri1yi

∑n
i=1br2

i1

since br1 =
1
n ∑n

i=1bri1 = 0.
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Mechanics and Interpretation of Ordinary Least Squares

(*) A Formal Derivation of the bβ 1 Formula (Appendix 3A.2)

From Step 1, xi1 = bxi1+bri1 with bxi1 = bγ0+bγ1xi2, ∑n
i=1bri1 = 0, ∑n

i=1 xi2bri1 = 0 and
∑n

i=1 bxi1bri1 = 0 (recall from the SLR).
Recall that the FOCs of OLS when k = 2 are

∑n
i=1

�
yi � bβ 0� bβ 1xi1� bβ 2xi2

�
= 0,

∑n
i=1 xi1

�
yi � bβ 0� bβ 1xi1� bβ 2xi2

�
= 0,

∑n
i=1 xi2

�
yi � bβ 0� bβ 1xi1� bβ 2xi2

�
= 0.

From the second FOC,

∑n
i=1 (bγ0+bγ1xi2+bri1)�yi � bβ 0� bβ 1xi1� bβ 2xi2

�
= bγ0 ∑n

i=1
bui +bγ1 ∑n

i=1 xi2bui +∑n
i=1
bri1�yi � bβ 0� bβ 1xi1� bβ 2xi2

�
= �bβ 0 ∑n

i=1
bri1� bβ 2 ∑n

i=1 xi2bri1+∑n
i=1
bri1 hyi � bβ 1 (bxi1+bri1)i

= ∑n
i=1
bri1�yi � bβ 1bri1�= 0,

where bui � yi � bβ 0� bβ 1xi1� bβ 2xi2, the second equality is from the first and third
FOCs, and the third equality is from the properties of bri1 above.
Solving the last equality, ∑n

i=1bri1yi =
bβ 1 ∑n

i=1br2
i1, we get the bβ 1 formula.
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Mechanics and Interpretation of Ordinary Least Squares

Why does This Procedure Work?

This procedure is usually called the FWL theorem [photo here] and was proposed
in the following two papers:
- Frisch, R. And F. Waugh, 1933, Partial Time Regressions as Compared with
Individual Trends, Econometrica, 1, 387-401.
- Lovell, M.C., 1963, Seasonal Adjustment of Economic Time Series, Journal of
the American Statistical Association, 58, 993-1010.

The residuals from the first regression is the part of the explanatory variable that is
uncorrelated with the other explanatory variables.

The slope coefficient of the second regression therefore represents the isolated
(or pure ) effect of the explanatory variable on the dependent variable.

Recall that in the SLR, bβ 1 =
∑n

i=1 (xi �x)yi

∑n
i=1 (xi �x)2

,

so in the MLR, we replace xi �x by bri1. Actually, xi �x is the residual in the
regression of xi on all other explanatory variables,2 where x is the coefficient of
the only regressor 1.

2In the SLR, all other explanatory variables include only the constant 1.
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Mechanics and Interpretation of Ordinary Least Squares

History of FWL

R. Frisch (1895-1973), Oslo, 1969NP F.V. Waugh (1898-1974), USDA

M.C. Lovell (1930-), Wesleyan
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Mechanics and Interpretation of Ordinary Least Squares

(**) The Moment Conditions for OLS

The least squares estimator (LSE) can be interpreted as a MoM estimator.

(1) are the sample counterparts of the population moment conditions

E [u] = 0,

E
�
xju
�
= 0,

where
u = y �β 0�β 1x1��� ��β k xk

and β j , j = 0,1, � � � ,k , is the true value of the coefficient of xj .

From the FWL theorem, if we define eu as ey �β 1ex1��� ��β kexk ,3 then these
moment conditions can be rewritten as

E [u] = 0,

E
�exjeu� = 0,

where ey = y �E [y ] and exj = xj �E
�
xj
�
, j = 1,2,3, are the demeaned y and xj ’s.

- Note that E
�exjeu�= Cov

�
xj ,eu�= Cov

�
xj ,u

�
.

3Actually, eu = u. Why? u�eu = E [y ]�β 0�β 1E [x1]��� ��β k E [xk ] = 0 because E [u] = 0.
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Mechanics and Interpretation of Ordinary Least Squares

e: Properties of OLS on Any Sample of Data

Fitted values and residuals:

byi =
bβ 0+

bβ 1xi1+ � � �+ bβ k xik and bui = bui

�bβ�= yi �byi

Algebraic properties of OLS regression:

(i) ∑n
i=1 bui = 0: deviations from the fitted regression "plane" sum up to

zero.

- y = bβ 0+ x1
bβ 1+ � � �+ xk

bβ k : sample averages of y and of the
regressors lie on the fitted regression plane.

(ii) ∑n
i=1 xijbui = 0, j = 1, � � � ,k : correlations between deviations and

regressors are zero.

These properties are corollaries of the FOCs for the OLS estimates.
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Mechanics and Interpretation of Ordinary Least Squares

h: Goodness-of-Fit

Decomposition of total variation:

SST = SSE +SSR.

R-squared:

R2 =
SSE
SST

= 1� SSR
SST

.

Alternative expression for R-squared [proof not required]:

R2 =

�
∑n

i=1 (yi �y)
�byi �by��2

�
∑n

i=1 (yi �y)2
��

∑n
i=1

�byi �by�2
�

=
dCov (y ,by)2dVar (y)dVar (by) =[Corr (y ,by)2 ,

i.e., R-squared is equal to the squared correlation coefficient between the actual
and the predicted value of the dependent variable.

Because [Corr (y ,by) 2 [�1,1], R2 2 [0,1]. (when will R2 = 0 and when will
R2 = 1?)
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Mechanics and Interpretation of Ordinary Least Squares

[Review] Correlation

One useful property of covariance: For any constants a1,b1,a2 and b2,

Cov (a1+b1X ,a2+b2Y ) = b1b2Cov(X ,Y ).

From this property, the covariance depends on units of measurement.4 For
example, the covariance between education and earnings depends on whether
earnings are measured in dollars or thousands of dollars, or whether education is
measured in months or years.

The population correlation coefficient [photo here] between X and Y , sometimes
denoted as ρXY , is free of units:

Corr (X ,Y ) =
Cov (X ,Y )

sd (X )sd (Y )
=

σXY

σX σY
.5

Because σX and σY are positive, Cov(X ,Y ) and Corr (X ,Y ) always have the
same sign, and Corr (X ,Y ) = 0 if, and only if, Cov(X ,Y ) = 0.

Like Cov (X ,Y ), Corr (X ,Y ) is also a measure of linear dependence.
4The unit of Cov (X ,Y ) = E [(X �E [X ]) (Y �E [Y ])] is the product of the units of X and Y .
5Corr (a1+b1X ,a2+b2Y ) =

Cov(a1+b1X ,a2+b2Y)q
Var(a1+b1X)

q
Var(a2+b2Y)

=
b1b2Cov(X ,Y )q

b2
1Var (X )

q
b2

2Var(X2)
=

b1b2Cov(X ,Y )

jb1b2jsd(X )sd(Y )
=

sign(b1b2)Corr (X ,Y ), where sign(x) = 1 if x > 0, sign(x) = �1 if x < 0 and sign(x) = 0 if x = 0.
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Mechanics and Interpretation of Ordinary Least Squares

Karl Pearson (1857-1936), UCL

Karl Pearson (1857-1936) is the inventor of the correlation coefficient, so the correlation
coefficient is also called the Pearson correlation coefficient. He is also the inventor of the
method of moments as discussed in Chapter 2.

The sample correlation, [Corr (X ,Y ) =
dCov(X ,Y )qdVar (X )

qdVar (Y )
=

∑n
i=1(Xi�X)(Yi�Y)q

∑n
i=1(Xi�X)

2
q

∑n
i=1(Yi�Y)

2
, is

the MoM estimator of Corr (X ,Y ).
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Mechanics and Interpretation of Ordinary Least Squares

(*) R-Squared Cannot Decrease When One More Regressor Is Added

why? Recall that when there are k regressors,

SSRk = min
β 0,β 1,��� ,β k

n

∑
i=1
(yi �β 0�β 1xi1��� ��β k xik )

2 .

When one more regressor is added to the regression,

SSRk+1 = min
β 0,β 1,��� ,β k ,β k+1

n

∑
i=1

�
yi �β 0�β 1xi1��� ��β k xik �β k+1xi,k+1

�2
.

Treat SSRk+1 as a function of β k+1, i.e., for each value of β k+1, we minimize the
objective function of SSRk+1 with respect to (β 0,β 1, � � � ,β k ). Denote the resulting
function as SSRk+1

�
β k+1

�
.

Obviously, when β k+1 = 0, the two objective functions of SSRk and SSRk+1 are
the same. So SSRk+1 (0) = SSRk .

However, in SSRk+1, we search for the optimal β k+1, so SSRk+1 < SSRk unless

the optimal β k+1 (i.e., bβ k+1) is zero. [figure here]

Because SST is the same in the two regressions, SSRk+1 < SSRk implies
R2

k+1 > R2
k .
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Mechanics and Interpretation of Ordinary Least Squares

0

Figure: SSRk+1 As a Function of β k+1
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Mechanics and Interpretation of Ordinary Least Squares

Example: Explaining Arrest Records

The fitted regression line is

\narr86 = .712� .150pcnv � .034ptime86� .104qemp86

n = 2,725,R2 = .0413 (quite small, not unusual)

where
narr86= number of times arrested during 1986
pcnv = proportion (not percentage) of prior arrests that led to conviction
ptime86= months spent in prison during 1986
qemp86= the number of quarters employed in 1986

pcnv : +0.5=)�0.075, i.e., �7.5 arrests per 100 men.

ptime86 : +12 =)�.034�12= �0.408 arrests for a given man.

qemp86 : +1=)�.104, i.e., �10.4 arrests per 100 men - economic policies are
effective.
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Mechanics and Interpretation of Ordinary Least Squares

continue

An additional explanatory variable is added:

\narr86 = .707� .151pcnv + .0074avgsen� .037ptime86� .103qemp86

n = 2,725,R2 = .0422 (increases only slightly)

where
avgsen = average sentence length in prior convictions (zero for most people)

Average prior sentence increases number of arrests (anti-intuitive but bβ 2 t 0).

Limited additional explanatory power as R-squared increases by little (why?bβ 2 t 0).

General remark on R-squared: even if R-squared is small (as in the given
example), regression may still provide good estimates (i.e., s.e.’s are small) of
ceteris paribus effects.

- why? Recall in the SLR model, dVar
�bβ 1

�
= bσ2

SSTx
. R2 = 1� eσ2bσ2

y
is small means

that eσ2 is large (or bσ2 is large), but SSTx can still be large to make dVar
�bβ 1

�
(or

se
�bβ 1

�
) small.
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The Expected Value of the OLS Estimators

The Expected Value of the OLS Estimators
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The Expected Value of the OLS Estimators

Standard Assumptions for the MLR Model

Assumption MLR.1 (Linear in Parameters):

y = β 0+β 1x1+ � � �+β k xk +u.

- In the population, the relationship between y and x is linear.
- The "linear" in linear regression means "linear in parameter".

Assumption MLR.2 (Random Sampling): The data f(xi1, � � � ,xik ,yi ) : i = 1, � � � ,ng
is a random sample drawn from the population, i.e., each data point follows the
population equation,

yi = β 0+β 1xi1+ � � �+β k xik +ui .
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The Expected Value of the OLS Estimators

continue

Assumption MLR.3 (No Perfect Collinearity): In the sample (and therefore in the
population), none of the independent variables is constant and there are no exact
relationships among the independent variables.

Remarks:
- The assumption only rules out perfect collinearity/correlation between
explanatory variables; imperfect correlation6 is allowed.
- If an explanatory variable is a perfect linear combination of other explanatory
variables it is redundant and may be eliminated.
- Constant variables are also ruled out (collinear with the regressor 1).

This is an extension of ∑n
i=1 (xi �x)2 > 0 in the SLR model. (why?)

6This is referred to as multicollinearity in the later discussion.
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The Expected Value of the OLS Estimators

Example for Perfect Collinearity

Small Sample:
avgscore = β 0+β 1expend +β 2avginc+u,

- In a small sample, avginc may accidentally be an exact multiple of expend ; it will
not be possible to disentangle their separate effects because there is exact
covariation (why? we cannot move one while fixing another).

Relationships Between Regressors:

voteA= β 0+β 1shareA+β 2shareB+u,

- Either shareA or shareB will have to be dropped from the regression because
there is an exact linear relationship between them: shareA+ shareB = 1.
- Another related example is the so-called dummy variable trap, which will be
discussed in Chapter 7.
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The Expected Value of the OLS Estimators

Standard Assumptions for the MLR Model (continue)

Assumption MLR.4 (Zero Conditional Mean):

E [ui jxi1, � � � ,xik ] = 0.

- The value of the explanatory variables must contain no information about the
mean of the unobserved factors.

In a multiple regression model, the zero conditional mean assumption is much
more likely to hold because fewer things end up in the error.

Example: Reconsider

avgscore = β 0+β 1expend +β 2avginc+u.

If avginc was not included in the regression, it would end up in the error term; it
would then be hard to defend that expend is uncorrelated with the error.
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The Expected Value of the OLS Estimators

Discussion of the Zero Conditional Mean Assumption

Explanatory variables that are correlated with the error term are called
endogenous; endogeneity is a violation of assumption MLR.4.

Explanatory variables that are uncorrelated with the error term are called
exogenous; MLR.4 holds if all explanatory variables are exogenous.

Exogeneity is the key assumption for a causal interpretation of the regression, and
for unbiasedness of the OLS estimators.

Theorem 3.1 (Unbiasedness of OLS): Under assumptions MLR.1-MLR.4,

E
hbβ j

i
= β j , j = 0,1, � � � ,k ,

for any values of β j .

Unbiasedness is an average property in repeated samples; in a given sample, the
estimates may still be far away from the true values.
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The Expected Value of the OLS Estimators

a: Including Irrelevant Variables in a Regression Model

Suppose
y = β 0+β 1x1+β 2x2+β 3x3+u,

where β 3 = 0, i.e., x3 is irrelevant to y .

No problem because E
hbβ 3

i
= β 3 = 0.

However, including irrelevant variables may increase sampling variance bβ 1 and bβ 2.
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The Expected Value of the OLS Estimators

b: Omitted Variable Bias: the Simple Case

Suppose the true model is

y = β 0+β 1x1+β 2x2+u,

i.e., the true model contains both x1 and x2 (β 1 6= 0,β 2 6= 0), while the estimated
model is

y = α0+α1x1+w ,

i.e., x2 is omitted.
If x1 and x2 are correlated, assume a linear regression relationship between them:

x2 = δ 0+ δ 1x1+ v .

Then

y = β 0+β 1x1+β 2 (δ 0+ δ 1x1+ v)+u

= β 0+β 2δ 0+(β 1+β 2δ 1)x1+(u+β 2v) .

If y is only regressed on x1, the estimated intercept is β 0+β 2δ 0 = α0 and the
estimated slope is β 1+β 2δ 1 = α1.
why? The new error term w = u+β 2v satisfies the zero conditional mean
assumption: E [u+β 2v jx1] = E [ujx1]+β 2E [v jx1] = 0.
That is, all estimated coefficients will be biased.
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The Expected Value of the OLS Estimators

Figure: Chain of Omitted Variable Bias: Direct and Indirect Effects of x1 on y
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The Expected Value of the OLS Estimators

Example: Omitting Ability in a Wage Equation

Suppose the true wage equation is

wage = β 0+β 1educ+β 2abil+u, where β 2 > 0,

and the estimated equation is

wage = α0+α1educ+w .

Suppose
abil = δ 0+ δ 1educ+ v , where δ 1 > 0,

when
wage = β 0+β 2δ 0+(β 1+β 2δ 1)educ+(u+β 2v) .

The return to education β 1 will be overestimated because β 2δ 1 > 0. It will look as
if people with many years of education earn very high wages, but this is partly due
to the fact that people with more education are also more able on average.

When is there no omitted variable bias? If the omitted variable is irrelevant
(β 2 = 0) or uncorrelated (δ 1 = 0).
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The Expected Value of the OLS Estimators

c: Omitted Variable Bias: More General Cases

Suppose the true model is

y = β 0+β 1x1+β 2x2+β 3x3+u,

i.e., the true model contains x1, x2 and x3 (β j 6= 0, j = 1,2,3), while the estimated
model is

y = α0+α1x1+α2x2+w ,

i.e., x3 is omitted.

No general statements possible about direction of bias.

Analysis of β 1 is as in simple case if x2 is uncorrelated with other regressors (x1
and x3). [see the next two slides for details]

Example: Omitting ability in the following wage equation,

wage = β 0+β 1educ+β 2exper +β 3abil+u,

if exper is approximately uncorrelated with educ and abil , then the direction of the
omitted variable bias can be as analyzed in the simple two variable case.
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The Expected Value of the OLS Estimators

(**) Appendix 3A.4

Long regression: y � 1,x1, � � � ,xk =) bβ j , j = 0,1, � � � ,k .

Short regression: y � 1,x1, � � � ,xk�1 =) eβ j , j = 0,1, � � � ,k �1.

xk regression: xk � 1,x1, � � � ,xk�1 =) eδ j , j = 0,1, � � � ,k �1.

Plugging the xk regression to the long regression and collecting terms to haveeβ j =
bβ j +

bβ k
eδ j , j = 0,1, � � � ,k �1.

E
heβ j jXk�1

i
= E

hbβ j jXk�1

i
+E

hbβ k
eδ j jXk�1

i
= β j +β k δ j , where Xk�1 collects

(xi1, � � � ,xi,k�1), i = 1, � � � ,n.

E
hbβ j jXk�1

i
(�)
= E

h
E
hbβ j jXk

i
jXk�1

i
(1)
= β j , and E

hbβ k
eδ j jXk�1

i
(�)
=

E
h
E
hbβ k

eδ j jXk

i
jXk�1

i
(2)
= E

heδ jE
hbβ k jXk

i
jXk�1

i
(1)
= β k E

heδ j jXk�1

i
(1)
= β k δ j .

- (*) is due to the law of iterated expectations (LIE): For random variables Y ,X ,Z ,
E [Y jX ] = E [E [Y jX ,Z ] jX ].
- (1) is due to the unbiasedness of bβ j ,

bβ k and eδ j .

- (2) is because eδ j is a function of Xk .eβ j is unbiased only if β k = 0 or δ j = 0.
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(**) The k = 3 Case

When k = 3,E
heβ 1jX2

i
= β 1+β 3δ 1, so if δ 1, the coefficient of x1 in the regression

x3 � 1,x1,x2, is the same as the coefficient of x1 in the regression x3 � 1,x1, then
we are done.

Does 0@ E [x3�δ 0�δ 1x1�δ 2x2]
E [ex1 (ex3�δ 1ex1�δ 2ex2)]
E [ex2 (ex3�δ 1ex1�δ 2ex2)]

1A= 0 (2)

imply �
E [x3�δ 0�δ 1x1]
E [ex1 (ex3�δ 1ex1)]

�
= 0 (3)

for the same δ 0 and δ 1 if Cov (x2,x1) = E [ex2ex1] = E [ex2ex3] = Cov (x2,x3) = 0?
where exj = xj �E

�
xj
�
, j = 1,2,3, is the demeaned xj , and the second and third

equations in (2) and the second equation in (3) are from the FWL theorem.

E [ex2ex1] = 0 is enough to guarantee the same δ 1 from the second equation of (2),
but for the same δ 0, we further need E [ex2ex3] = 0 to make sure δ 2 = 0 from the
third equation of (2).
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The Variance of the OLS Estimators
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The Variance of the OLS Estimators

Standard Assumptions for the MLR Model (continue)

Assumption MLR.5 (Homoskedasticity): Var (ui jxi1, � � � ,xik ) = σ2.
- The value of the explanatory variables must contain no information about the
variance of the unobserved factors.

Short Hand Notation: Var (ui jx i ) = σ2, where x i = (xi1, � � � ,xik ), i.e., all
explanatory variables are collected in a random vector.

Example: In the wage equation

wage = β 0+β 1educ+β 2exper +β 3tenure+u,

the homoskedasticity assumption

Var (ui jeduci ,experi , tenurei ) = σ
2

may also be hard to justify in many cases.
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Sampling Variances of the OLS Slope Estimators

Theorem 3.2 (Sampling Variances of the OLS Slope Estimators): Under
assumptions MLR.1-MLR.5,

Var
�bβ j

�
=

σ2

SSTj

�
1�R2

j

� , j = 1, � � � ,k ,

where σ2 is the variance of error term, SSTj = ∑n
i=1

�
xij �x j

�2 is the total sample
variation in explanatory variable xj , and R2

j is the R-squared from a regression of
explanatory variable xj on all other independent variables (including a constant),
i.e., the R2 in the regression

xj � 1,x1, � � � ,xj�1,xj+1, � � � ,xk . (4)

Note that
SSTj

�
1�R2

j

�
= SSRj =∑n

i=1
br2
ij ,

where brij is the residual in the regression (4).

Compared with the SLR case where Var
�bβ 1

�
= σ2

SSTx
= σ2

∑n
i=1(xi�x)2

, the MLR case

replaces xi �x by brij .
Ping Yu (HKU) MLR: Estimation 40 / 58
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a: The Components of OLS Variances

(i) The error variance, σ2:

A high error variance increases the sampling variance because there is more
"noise" in the equation.

A large error variance necessarily makes estimates imprecise.

The error variance does not decrease with sample size.

(ii) The total sample variation in the explanatory variable xj , SSTj :

More sample variation leads to more precise estimates.

Total sample variation automatically increases with the sample size.
- For any n+1 values fxi : i = 1, � � � ,n+1g,

∑n
i=1 (xi �xn)

2 �∑n
i=1 (xi �xn+1)

2 �∑n+1
i=1 (xi �xn+1)

2

unless xn+1 = xn, where the first inequality is from Assignment I.4(i).

- SSTj = n
h

1
n ∑n

i=1

�
xij �x j

�2i
= n �dVar

�
xj
�
, where dVar

�
xj
�

tends to be stable.

Increasing the sample size n is thus a way to get more precise estimates.

These two components are similar as in the SLR model.
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continue

(iii) The linear relationships among the independent variables, R2
j :

In the regression of xj on all other independent variables (including a constant),
the R-squared will be the higher the better xj can be linearly explained by the other
independent variables.

Sampling variance of bβ j will be the higher the better explanatory variable xj can be
linearly explained by other independent variables.

The problem of almost linearly dependent explanatory variables is called
multicollinearity (i.e., R2

j ! 1 for some j).

If R2
j = 1, i.e., there is perfect collinearity between xj and other regressors, then β j

cannot be identified. This is why Var
�bβ j

�
= ∞ now.

Multicollinearity plays a similar role as the sample size n in Var
�bβ j

�
: both work to

increase Var
�bβ j

�
. Arthur Goldberger [photo here] coined the term

micronumerosity, which he defines as the “problem of small sample size.”

Like perfect collinearity, multicollinearity is a small-sample problem. As larger and
larger data sets are available nowadays, i.e., n is much larger than k , it is seldom a
problem in current econometric practice.
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History of Micronumerosity

Arthur S. Goldberger (1930-2009),
Wisconsin, 1958MichiganPhD
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The Variance of the OLS Estimators

An Example for Multicollinearity

Consider the following MLR model,

avgscore = β 0+β 1teacherexp+β 2matexp+β 3othexp+ � � � ,

where
avgscore = average standardized test score of school
teacherexp = expenditures for teachers
matexp = expenditures for instructional materials
othexp = other expenditures

The different expenditure categories will be strongly correlated because if a school
has a lot of resources it will spend a lot on everything.

It will be hard to estimate the differential effects of different expenditure categories
because all expenditures are either high or low. For precise estimates of the
differential effects, one would need information about situations where expenditure
categories change differentially.

As a consequence, sampling variance of the estimated effects will be large.
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The Variance of the OLS Estimators

Discussion of the Multicollinearity Problem

In the above example, it would probably be better to lump all expenditure
categories together because effects cannot be disentangled.

In other cases, dropping some independent variables may reduce multicollinearity
(but this may lead to omitted variable bias).

Only the sampling variance of the variables involved in multicollinearity will be
inflated; the estimates of other effects may be very precise.

Note that multicollinearity is not a violation of MLR.3 in the strict sense.

Multicollinearity may be detected through "variance inflation factors":

VIFj =
1

1�R2
j

.

- As an (arbitrary) rule of thumb, the variance inflation factor should not be larger
than 10 (or R2

j should not be larger than 0.9). [figure here]
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Figure: Var
�bβ 1

�
as a Function of R2

1
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The Variance of the OLS Estimators

b: Variances in Misspecified Models

The choice of whether to include a particular variable in a regression can be made
by analyzing the trade-off between bias and variance.
Suppose the true model is

y = β 0+β 1x1+β 2x2+u,

the fitted regression line in model 1 isby = bβ 0+
bβ 1x1+

bβ 2x2,

and in model 2 is ey = eβ 0+
eβ 1x1.

It might be the case that the likely omitted variable bias of eβ 1 in the misspecified
model 2 is overcompensated by a smaller variance.
(*) Mean Squared Error (MSE): For a general estimator, say, bβ ,

MSE
�bβ� � E

��bβ �β

�2
�
= E

��bβ �E
hbβi+E

hbβi�β

�2
�

= E
��bβ �E

hbβi�2
�
+
�

E
hbβi�β

�2
+2

�
E
hbβi�β

�
E
hbβ �E

hbβii
= E

��bβ �E
hbβi�2

�
+
�

E
hbβi�β

�2
= Var

�bβ�+Bias
�bβ�2

.
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The Variance of the OLS Estimators

(*) Wrong Results in the Textbook

Since

Var
�eβ 1

�
=

σ2

SST1
,

Var
�bβ 1

�
=

σ2

SST1
�
1�R2

1

�
with 0� R2

1 � 1, conditional on x1 and x2, the variance in model 2 is always
smaller than that in model 1.

So there are two cases:
1 β 2 = 0=) E

hbβ 1

i
= β 1,E

heβ 1

i
= β 1,Var

�eβ 1

�
< Var

�bβ 1

�
.

2 β 2 6= 0=) E
hbβ 1

i
= β 1,E

heβ 1

i
6= β 1,Var

�eβ 1

�
< Var

�bβ 1

�
.

Actually, there are four cases, depending on the relationship between x1 and x2
(δ 1 = 0?) and whether x2 is relevant (β 2 = 0?).
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Correct Results

The key is that the two σ2’s in Var
�eβ 1

�
and Var

�bβ 1

�
are not the same unless

β 2 = 0.

β 2 = 0 (two σ2 are the same) β 2 6= 0 (σ2 in Var
�bβ 1

�
is smaller)7

R2
1 = 0 E

hbβ 1

i
= β 1 = E

heβ 1

i
E
hbβ 1

i
= β 1 = E

heβ 1

i
(δ 1 = 0) Var

�eβ 1

�
= Var

�bβ 1

�
Var

�bβ 1

�
< Var

�eβ 1

�
R2

1 6= 0 E
hbβ 1

i
= β 1 = E

heβ 1

i
E
hbβ 1

i
= β 1 6= E

heβ 1

i
(δ 1 6= 0) Var

�eβ 1

�
< Var

�bβ 1

�
undetermined

Table: Biases and Variances in Misspecified Models

R2
1 = 0 (β 2 = 0) plays two roles: (i) in mean: implies the unbiasedness of eβ 1;8 (ii)

in variance: guarantees the denominators (numerators) of Var
�eβ 1

�
and Var

�bβ 1

�
to be the same.

7why? If β 2 6= 0, then x2 can explain some "extra" variation in y beyond x1, so the remaining variation in y ,
i.e., the variance of the error term, is smaller. (Compare Var (u) and Var (w) in slide 31.)

8R2
1 = 0

Slide44 of Chapter 2
=) bγ1 = 0=) dCov (x1,x2) = 0=) bδ 1 = 0 (or δ 1 = 0 if n is large enough).
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c: Estimating the Error Variance

The unbiased estimator of σ2 is

bσ2 =
1

n�k �1

n

∑
i=1

bu2
i =

SSR
n�k �1

,

where

n�k �1 = n� (k +1)

= (number of observations)� (number of estimated parameters)

is called the degree of freedom (df).

The n estimated squared residuals
�bui : i = 1, � � � ,n

	
in the sum are not

completely independent but related through the k +1 equations that define the
first order conditions of the minimization problem.

In the SLR, k = 1. That is why bσ2 = 1
n�2 ∑n

i=1 bu2
i .

Theorem 3.3 (Unbiased Estimation of σ2): Under assumptions MLR.1-MLR.5,

E
hbσ2

i
= σ

2.
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Estimation of the Sampling Variances of the OLS Estimators

The true sampling variation of the estimated β j is

sd
�bβ j

�
=

r
Var

�bβ j

�
=

vuut σ2

SSTj

�
1�R2

j

� .
The estimated sampling variation of the estimated β j , or the standard error of bβ j , is

se
�bβ j

�
=

rdVar
�bβ j

�
=

vuut bσ2

SSTj

�
1�R2

j

� ,
i.e., we plug in bσ2 for the unknown σ2.

Note that these formulas are only valid under assumptions MLR.1-MLR.5 (in
particular, there has to be homoskedasticity).
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Efficiency of OLS: The Gauss-Markov Theorem
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Efficiency of OLS: The Gauss-Markov Theorem

Efficiency of OLS

Under assumptions MLR.1-MLR.5, OLS is unbiased.
However, under these assumptions there may be many other estimators that are
unbiased.
Which one is the unbiased estimator with the smallest variance?
In order to answer this question one usually limits oneself to linear estimators, i.e.,
estimators linear in the dependent variable:

eβ j =
n

∑
i=1

wijyi ,

where wij may be an arbitrary function of the sample values of all the explanatory
variables.
The OLS estimator can be shown to be of this form. For example, in the SLR,

bβ 1 =
∑n

i=1 (xi �x)yi

∑n
i=1 (xi �x)2

=
n

∑
i=1

xi �x

∑n
i=1 (xi �x)2

yi ,

i.e.,

wi1 =
xi �x

∑n
i=1 (xi �x)2

=
xi �x
SSTx

is a complicated function of fxi : i = 1, � � � ,ng. (How about bβ j in MLR?)
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The Gauss-Markov Theorem

Theorem 3.4 (The Gauss-Markov Theorem): [photo here] Under assumptions
MLR.1-MLR.5, the OLS estimators are the best linear unbiased estimators
(BLUEs) of the regression coefficients, i.e.,

Var
�bβ j

�
� Var

�eβ j

�
for all eβ j = ∑n

i=1 wijyi for which E
heβ j

i
= β j , j = 0,1, � � � ,k .

OLS is only the best estimator if MLR.1-MLR.5 hold; if there is heteroskedasticity
for example, there are better estimators (see Chapter 8).

The key assumption for the Gauss-Markov theorem is Assumption MLR.5.

Due to the Gauss-Markov Theorem, assumptions MLR.1-MLR.5 are collectively
known as the Gauss-Markov assumption.
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History of the Gauss-Markov Theorem

Carl Friedrich Gauss (1777-1855), Göttingen Andrey Markov (1856-1922), St. Petersburg
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Efficiency of OLS: The Gauss-Markov Theorem

The Gauss-Markov Theorem

Theorem 3.4 (The Gauss-Markov Theorem): [photo here] Under assumptions
MLR.1-MLR.5, the OLS estimators are the best linear unbiased estimators
(BLUEs) of the regression coefficients, i.e.,

Var
�bβ j

�
� Var

�eβ j

�
for all eβ j = ∑n

i=1 wijyi for which E
heβ j

i
= β j , j = 0,1, � � � ,k .

OLS is only the best estimator if MLR.1-MLR.5 hold; if there is heteroskedasticity
for example, there are better estimators (see Chapter 8).

The key assumption for the Gauss-Markov theorem is Assumption MLR.5.

Due to the Gauss-Markov Theorem, assumptions MLR.1-MLR.5 are collectively
known as the Gauss-Markov assumption.
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(**) Proof of The Gauss-Markov Theorem

Proof.

WLOG, let j = 1. Plugging yi in eβ 1 to have

eβ 1 = β 0

n

∑
i=1

wi1+β 1

n

∑
i=1

wi1xi1+ � � �+β k

n

∑
i=1

wi1xik +
n

∑
i=1

wi1ui .

Since the wi1 are functions of xij ,

E
heβ 1jX

i
= β 0

n

∑
i=1

wi1+β 1

n

∑
i=1

wi1xi1+ � � �+β k

n

∑
i=1

wi1xik +
n

∑
i=1

wi1E [ui jX]

= β 0

n

∑
i=1

wi1+β 1

n

∑
i=1

wi1xi1+ � � �+β k

n

∑
i=1

wi1xik ,

where X collects x i , i = 1, � � � ,n, and E [ui jX] = E [ui jx i ] = 0. Therefore, for

E
heβ 1jX

i
= β 1 for any values of the parameters, we must have

n

∑
i=1

wi1 = 0,
n

∑
i=1

wi1xi1 = 1,
n

∑
i=1

wi1xij = 0, j = 2, � � � ,k . (5)
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Proof continue

Now, let bri1 be the residuals from the regression of xi1 on 1,xi2, � � � ,xik . Then, from (5),
it follows that

n

∑
i=1

wi1bri1 = 1 (6)

because xi1 = bxi1+bri1 and ∑n
i=1 wi1bxi1 = 0. Now, consider the difference between

Var
�eβ 1jX

�
and Var

�bβ 1jX
�

:

σ
2

n

∑
i=1

w2
i1�

σ2

∑n
i=1br2

i1

(6)
= σ

2

"
n

∑
i=1

w2
i1�

�
∑n

i=1 wi1bri1�2
∑n

i=1br2
i1

#

= σ
2

n

∑
i=1

 
wi1�

∑n
i=1 wi1bri1
∑n

i=1br2
i1

!2

� 0,

where the last equality can be verified by direct calculation, and the term in the last
parenthesis is the redisual of wi1 regressed on bri1 without intercept. �
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