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Definition of the Simple Regression Model

The simple linear regression (SLR) model is also called two-variable linear
regression model or bivariate linear regression model.

The SLR model is usually written as

y = β 0+β 1x +u,1

where β 0 is called the intercept (parameter) or the constant term, and β 1 is called
the slope (parameter).
- As shown in the next slide, β 1 is of main interest in econometrics.

y x u
Dependent variable Independent Variable Error Term
Explained variable Explanatory variable Disturbance
Response variable Control variable Unobservable
Predicted variable Predictor variable
Regressand Regressor

Covariate

Table: Terminology for SLR

1How to understand this equation? It means that for each individual in the population, if given the values of x
(education) and u (ability), then the value of y (wage) is determined.
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Interpretation of the SLR Model

The SLR model tries to "explain variable y in terms of variable x" or "study how y
varies with changes in x":

dy
dx
(= β 1+

∂u
∂x
).

- The total derivative dy
dx is the total effect of increasing x by one unit on y :

dy
dx = direct effect+ indirect effect

= ∂y
∂x +

∂y
∂u

∂u
∂x =

∂ (β 0+β 1x+u)
∂x +

∂ (β 0+β 1x+u)
∂u

∂u
∂x = β 1+

∂u
∂x ,

where ∂y
∂x means "by how much does y change if only x is increased by one

unit?".
- ∂ in partial derivative is the counterpart of d in derivative (e.g., dy

dx ), where d is
the first letter of "delta" (∆) which usually means a small change in mathematics.

From the definition of causal effect, the causal effect of x on y is ∂y
∂x = β 1, which is

equal to dy
dx only if ∂u

∂x = 0.

- If ∂u
∂x 6= 0, then dy

dx includes the "indirect" effect of x on y , ∂u
∂x .

In summary, dy
dx is the causal effect of x on y only if ∂u

∂x = 0.
The simple linear regression model is rarely applicable in practice but its
discussion is useful for pedagogical reasons.
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Two SLR Examples

Example (Soybean Yield and Fertilizer):

yield = β 0+β 1fertilizer +u,

where β 1 measures the effect of fertilizer on yield, holding all other factors fixed,
and u contains factors such as rainfall, land quality, presence of parasites,� � �
Example (A Simple Wage Equation):

wage = β 0+β 1educ+u,

where β 1 measures the change in hourly wage given another year of education,
holding all other factors fixed, and u contains factors such as labor force
experience, innate ability, tenure with current employer,2 work ethic,� � �

2What is the difference between tenure and experience?
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(*) When Can We Estimate a Causal Effect?

Although when ∂u
∂x = 0, dy

dx has a causal interpretation for each individual , it
hardly holds in practice.
- Technically, because we usually can observe only one pair of (x ,y) for each
individual, we cannot identify the individual causal effect which requires y values
for at least two x values.
So, we are usually interested in the average causal effect, which in our setup is
also β 1 (because the individual causal effect is β 1).
We can estimate β 1 under the (conditional) mean independence assumption:

E [ujx ] = 0.3

- The explanatory variable must not contain information about the mean of the
unobserved factors.
- Intuition: for average causal effects, we need only that the average of u (rather
than u itself) does not change as x changes.
E [ujx ] = 0 implies Cov (x ,u) = 0 [proof not required, Cov (x ,u) will be defined
later]. So in practice, we just argue why x and u are correlated to invalidate a
causal interpretation of our estimator.
Three Questions: (i) How is E [ujx ] defined? (ii) Why is E [ujx ] = c ( 6= 0) enough?
(iii) Why can the random assignments in Chapter 1 generate causal effects?

3It is called the zero conditional mean assumption in the textbook.
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[Review] Mean

For a random variable (r.v.) X , the mean (or expectation) of X , denoted as E [X ]
(or E (X )) and sometimes µX (or simply µ), is a weighted average of all possible
values of X .
For example, in the population, proportion p (e.g., 17% in US) individuals are
college graduates, and the remaining are not. Define X = 1(college graduate),
where 1(�) is the indicator function which equals 1 when the statement in the
parenthesis is true and zero otherwise.
The distribution of X is

X =
�

1,
0,

with probability p,
with probability 1�p,

so
E [X ] = 0� (1�p)+1�p = p.

For a general discrete r.v. X , P
�
X = xj

�
= pj , j = 1, � � � ,J,4 where pj � 0, and

p1+ � � �+pJ =∑J
j=1 pj = 1,

we have
E [X ] =∑J

j=1 xjpj .

4This is called the probability mass function (pmf) of X .
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Definition of the Simple Regression Model

continue

The mean of a continuous r.v. can be defined as an approximation of a discrete
r.v..

For a continuous r.v. taking values on (a,b), where a can be �∞ and b can be ∞,
[figure here]

E [X ] �
(b�a)/∆�1

∑
i=0

�
a+

�
i+ 1

2

�
∆
�

P (a+ i∆ < X � a+(i+1)∆)5

�
(b�a)/∆�1

∑
i=0

�
a+

�
i+ 1

2

�
∆
�

f
�

a+
�

i+ 1
2

�
∆
�

∆ ∆!0�!
R b
a xf (x)dx .

∑ !
R

, a+
�

i+ 1
2

�
∆! x , and ∆! dx

For example, if X � N
�

µ,σ2
�

, the normal distribution with mean µ and variance

σ2, then E [X ] = µ.

Two Useful Properties: (i) "the mean of the sum is the sum of the mean",

E
h
∑n

i=1 Xi

i
=∑n

i=1 E [Xi ] ; (Xi need not be independent)

(ii) for any constants a and b, E [a+bX ] = a+bE [X ].
5 i = 0, a+ i∆ = a, and i = b�a

∆ �1, a+(i+1)∆ = a+ b�a
∆ ∆ = b.
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Figure: Probability Density Function (pdf) of Wage: wage � exp
�
N
�
µ,σ2

��
, a= 0,b = ∞
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[Review] Conditional Mean

For two r.v.’s, Y and X , the conditional mean of Y given X = x , denoted as
E [Y jX = x ] (or E (Y jX = x)), is the mean of Y for the (slice of) individuals with
X = x .

For example, if Y is the hourly wage, X = 1(college graduate), then

E [Y jX = 1] =
Z

yf (y jX = 1)dy

is the average wage for college graduates, where f (y jX = 1) is the density of
wage among college graduates.

The conditional mean E [Y jX = x ] can be any function of x .
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Definition of the Simple Regression Model

continue

One Useful Property: E [g(X )Y jX = x ] = g(x)E [Y jX = x ] for any function g(�),
i.e., conditioning on X means X can be treated as a constant.
- g(x) is similar to b in the second property of mean.

The two properties of mean can still apply to conditional mean:
- (i) "the conditional mean of the sum is the sum of the conditional mean",

E
h
∑n

i=1 Yi

���X = x
i
=∑n

i=1 E [Yi jX = x ] ;

- (ii) for any constants a and b, E [a+bY jX = x ] = a+bE [Y jX = x ].
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Definition of the Simple Regression Model

Conditional Mean Independence

Although E [ujx ] can be any function of x , conditional mean independence
restricts it to be the constant zero.

E [ujx ] = 0 means for whatever value x takes, the mean of u given the specific x
value is zero.

The zero in E [ujx ] = 0 is just a normalization. If E [ujx ] = c 6= 0, then redefine
u� = u�c, and β

�
0 = β 0+ c. Now,

y = β 0+β 1x +u = (β 0+c)+β 1x +(u�c)� β
�
0+β 1x +u�,

where E [u�jx ] = E [u�cjx ] = E [ujx ]�c = c�c = 0, and � means "defined as".

So the key here is that E [ujx ] is a constant, not depending on x .
- The constant must be E [u] because if the mean of u for each slice of x is c, the
mean of u for the entire population must be c.
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E [ujx ] = c and Causal Interpretation: Return to Schooling

Recall the wage equation

wage = β 0+β 1educ+u.

Suppose, for simplicity, educ = 1(college graduate), and u represents the innate
ability. Then, dwage

deduc should be replaced by E [wagejeduc = 1]�E [wagejeduc = 0].
If

E [ujeduc = 1] = c = E [ujeduc = 0] ,

then

E [wagejeduc = 1]�E [wagejeduc = 0] (we can estimate)

= E [β 0+β 1educ+ujeduc = 1]�E [β 0+β 1educ+ujeduc = 0]

= (β 0+β 1)+E [ujeduc = 1]�β 0�E [ujeduc = 0]

= (β 0+β 1)�β 0 = β 1 (the target causal effect).

- Although u is not equal for each individual, averagely, its mean within each group
of education level is equal. This is what "all other relevant factors are balanced" in
random assignment of x of Chapter 1 means. [If educ is independent of u, then
E [ujeduc] = E [u] = c for whatever value of educ.]
The conditional mean independence assumption is unlikely to hold here because
individuals with more education will also be more intelligent on average.
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Definition of the Simple Regression Model

Causality and Correlation: Polio and Ice-cream

“By 1910, frequent epidemics became regular events throughout the developed
world, primarily in cities during the summer months. At its peak in the 1940s and
1950s, polio would paralyze or kill over half a million people worldwide every year.”

- From Wiki

Folk legends: (i) A pretty woman causes death? (inauspicious or unlucky?)
(ii) Old age causes death of my children? (bad omen or natural phenomenon?)

Donald Trump: More tests, more infections.
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Population Regression Function (PRF)

Similar as in the return-to-schooling example, the conditional mean independence
assumption implies that

E [y jx ] = E [β 0+β 1x +ujx ]
= β 0+β 1x +E [ujx ]
= β 0+β 1x .

This means that the average value of the dependent variable can be expressed as
a linear function of the explanatory variable although in general E [y jx ] can be any
function of x .

The PRF is unknown . It is a theoretical relationship assuming a linear model and
conditional mean independence.

We need to estimate the PRF.
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E [y jx ] As a Linear Function of x
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Deriving the Ordinary Least Squares Estimates
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A Random Sample

In order to estimate the regression model we need data.
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Figure: Scatterplot of Savings and Income for 15 Families, and the Population Regression
E [savingsjincome] = β 0+β 1income
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Ordinary Least Squares (OLS) Estimation

The OLS estimates of β = (β 0,β 1) try to fit as good as possible a regression line
through the data points:

Figure: bui (β ) for Three Possible β Values β
1,β 2 and β

3: n = 10
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What Does "As Good As Possible" Mean?

Define residuals at arbitrary β as

bui (β ) = yi �β 0�β 1xi .

Minimize the sum of squared residuals [figure here]:

min
β 0,β 1

SSR (β ) � min
β 0,β 1

n

∑
i=1

bui (β )
2 = min

β 0,β 1

n

∑
i=1
(yi �β 0�β 1xi )

2

=) bβ = �bβ 0,
bβ 1

�
,

where bβ is the solution to the first order conditions (FOCs) for the OLS estimates.

It turns out that

bβ 1 =
∑n

i=1 (xi �x) (yi �y)

∑n
i=1 (xi �x)2

and bβ 0 = y �xbβ 1,

where x = 1
n ∑n

i=1 xi is the sample mean of x , and y is similarly defined.

In modern times, bβ can be easily obtained through standard econometric
softwares.
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Figure: Objective Functions of OLS Estimation
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Derivation of OLS Estimates

The FOCs are6

�2∑n
i=1

�
yi � bβ 0� bβ 1xi

�
= 0,

�2∑n
i=1 xi

�
yi � bβ 0� bβ 1xi

�
= 0,

?7
()

1
n ∑n

i=1

�
yi � bβ 0� bβ 1xi

�
= 0,

1
n ∑n

i=1 xi

�
yi � bβ 0� bβ 1xi

�
= 0.

From the first equation,

y = bβ 0+ xbβ 1 =) bβ 0 = y �xbβ 1.

Substituting bβ 0 into the second equation, we have

1
n ∑n

i=1 xi

h
yi �

�
y �xbβ 1

�
� bβ 1xi

i
= 0) 1

n ∑n
i=1 xi (yi �y)� 1

n ∑n
i=1 xi (xi �x) bβ 1 = 0

=) 1
n ∑n

i=1 xi (yi �y) = bβ 1
1
n ∑n

i=1 xi (xi �x) .
6Recall that dx2

dx = 2x and d(ax+b)
dx = a, so by the chain rule,

d(yi�β0�β1xi )
2

dβ0
= 2 (yi �β 0�β 1xi )

d(yi�β0�β1xi )
dβ0

= �2 (yi �β 0�β 1xi ), and

d(yi�β0�β1xi )
2

dβ1
= 2 (yi �β 0�β 1xi )

d(yi�β0�β1xi )
dβ1

= �2xi (yi �β 0�β 1xi ).
7First devide the constant �2 and then multiply the constant 1

n .
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continue

So bβ 1 =
∑n

i=1 xi (yi �y)

∑n
i=1 xi (xi �x)

=
∑n

i=1 (xi �x) (yi �y)

∑n
i=1 (xi �x)2

,

where

n

∑
i=1

xi (yi �y)�
n

∑
i=1
(xi �x) (yi �y) =

n

∑
i=1
[xi � (xi �x)] (yi �y) =

n

∑
i=1

x (yi �y)

= x
n

∑
i=1
(yi �y)

?8
= x (ny �ny) = 0,

n

∑
i=1

xi (xi �x)�
n

∑
i=1
(xi �x)2 =

n

∑
i=1

x (xi �x) = 0.

- Summing the product of two demeaned terms need only demean one of them.

Alternative Expression for bβ 1:

bβ 1 =
1
n ∑n

i=1 (xi �x) (yi �y)
1
n ∑n

i=1 (xi �x)2
=
dCov (x ,y)dVar (x)

.

8y = 1
n ∑n

i=1 yi , so ∑n
i=1 yi = ny .
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Deriving the Ordinary Least Squares Estimates

[Review] Covariance and Variance

The population covariance between two r.v.’s X and Y , sometimes denoted as
σXY , is defined as

Cov (X ,Y ) = E [(X �µX ) (Y �µY )] .

Intuition: [figure here]
- If X > µX and Y > µY , then (X �µX ) (Y �µY )> 0, which is also true when
X < µX and Y < µY . While if X > µX and Y < µY , or vice versa, then
(X �µX ) (Y �µY )< 0.
- If σXY > 0, then, on average, when X is above/below its mean, Y is also
above/below its mean. If σXY < 0, then, on average, when X is above/below its
mean, Y is below/above its mean.

A positive covariance indicates that two r.v.’s move in the same direction, while a
negative covariance indicates they move in opposite directions.
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Deriving the Ordinary Least Squares Estimates

Positive Covariance Negative Covariance

Zero Covariance Zero Covariance (Quadratic)

Figure: Positive, Negative an Zero Covariance

Ping Yu (HKU) SLR 26 / 78



Deriving the Ordinary Least Squares Estimates

continue

Alternative Expressions of Cov (X ,Y ):

Cov (X ,Y ) = E [XY �µX Y �µY X + µX µY ]

= E [XY ]�µX µY �µY µX + µX µY

= E [XY ]�µX µY

= E [(X �µX )Y ] = E [X (Y �µY )] ,

where the last two equalities indicate that demeaning one of X and Y is enough.

Covariance measures the amount of linear dependence9 between two r.v.’s.

- If E [X ] = 0 and E
h
X3
i
= 0, then Cov(X ,X2) = E

h
X3
i
�E [X ]E

h
X2
i
= 0

although X and X2 are quadratically related. [Figure here]

Var (X ) = Cov (X ,X ) = E
h
(X �µX )

2
i
= E

h
X2
i
�µ2

X is the covariance of X with

itself, denoted as σ2
X or simply σ2. (we will discuss more on it later)

- The definition of Var (X ) implies E
h
X2
i
= Var (X )+E [X ]2, the second moment

is the variance plus the first moment squared.

9This is why dCov(x ,y) appears in bβ 1 which measures the linear relationship between y and x .
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[Review] Method of Moments

The method of moments (MoM) was put forward by Karl Pearson (1857-1936) in
1894. The basic idea is to

replace E [�] by
1
n

n

∑
i=1
�

So the MoM estimator is often called the sample analog or sample counterpart.
For example, E [X ] can be estimated by the sample mean

X =
1
n

n

∑
i=1

Xi .

Cov (X ,Y ) can be estimated by the sample covariance

dCov (X ,Y ) =
1
n

n

∑
i=1

�
Xi �X

��
Yi �Y

�
.

- Recall that demeaning one of X and Y is enough!10

Var (X ) can be estimated by the sample variance

dVar (X ) =
1
n

n

∑
i=1

�
Xi �X

�2
.

10You can use other formulas of Cov(X ,Y ) to get the same estimator, e.g., Cov(X ,Y ) = E [XY ]�µX µY , sodCov (X ,Y ) = XY �X �Y .
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OLS Calculation: A Cooked Numerical Example

yi xi yi �y xi �x (xi �x) (yi �y) xi (yi �y) (xi �x)2 xi (xi �x)
4 1 �3 �3 9 �3 9 �3
5 4 �2 0 0 �8 0 0
7 5 0 1 0 0 1 5

12 6 5 2 10 30 4 12
∑4

i=1 28 16 0 0 19 19 14 14
1
4 ∑4

i=1 7 4 0 0 4.75> 0 4.75 3.5 3.5

Table: Components of OLS Calculation: n = 4

bβ 1 =
∑4

i=1 xi (yi�y)
∑4

i=1 xi (xi�x)
= ∑4

i=1(xi�x)(yi�y)

∑4
i=1(xi�x)2

= 19
14 =

1
4 ∑4

i=1(xi�x)(yi�y)
1
4 ∑4

i=1(xi�x)2
= 4.75

3.5 = 1.357.

bβ 0 = y �xbβ 1 = 7�4�1.357= 1.571.
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Deriving the Ordinary Least Squares Estimates

History of Ordinary Least Squares

The least-squares method is usually credited to Gauss (1809), but it was first
published as an appendix to Legendre (1805) which is on the paths of comets.
Nevertheless, Gauss claimed that he had been using the method since 1795 at
the age of 18.

C.F. Gauss (1777-1855), Göttingen A.-M. Legendre (1752-1833), Éole Normale
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Deriving the Ordinary Least Squares Estimates

CEO Salary and Return on Equity

We will provide three empirical examples of OLS estimation.

Suppose the SLR model is

salary = β 0+β 1roe+u,

where salary is the CEO salary in thousands of dollars, and roe is the return on
equity of the CEO’s firm in percentage.

The fitted regression is

\salary = 963.191+18.501roe,

where bβ 1 = 18.501> 0, which means that if the return on equity increases by 1
percent, then salary is predicted to change by $18,501. [figure here]

Even if roe = 0, the predicted salary of CEO is $963,191.

Causal Interpretation of bβ 1? Think about what factors are included in u (e.g.,
market share, sales, tenure, character of the CEO, etc.) and check whether
Cov (x ,u) = 0.
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Ping Yu (HKU) SLR 32 / 78



Deriving the Ordinary Least Squares Estimates

Wage and Education

Suppose the SLR model is

wage = β 0+β 1educ+u,

where wage is the hourly wage in dollars, and educ is years of education.

The fitted regression is
\wage = �0.90+0.54educ,

where bβ 1 = 0.54> 0, which means that in the sample, one more year of education
was associated with an increase in hourly wage by $0.54 (which is quite large!
e.g., four years college would increase the wage by $0.54�4= $2.16 per hour,
which implies an increase of $2.16�40�52� $4,500 per year).bβ 0 = �0.90 means when educ = 0, wage is negative. Does this make sense?
[figure here]

Do you think the return to education is constant? (see slide 51 below)

Causal Interpretation of bβ 1? No.
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0 2 4 6 8 10 12 14 16 18

0
­0.9

5

10

15

20

25

Figure: \wage = �0.90+0.54educ: only two people have educ = 0
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Voting Outcomes and Campaign Expenditures (Two Parties)

Suppose the SLR model is

voteA= β 0+β 1shareA+u,

where voteA is the percentage of vote for candidate A, and shareA is the
percentage of total campaign expenditures spent by candidate A.

The fitted regression is

\voteA= 26.81+0.464shareA,

where bβ 1 = 0.464> 0, which means if candidate A’s share of spending increases
by one percentage point, he or she receives 0.464 (about one half) percentage
points more of the total vote.

If candidate A does not spend any on campaign, then he or she will receive about
26.81% of the total vote. If shareA= 50, then \voteA is roughly 50.

Causal Interpretation of bβ 1? Maybe OK - u includes the quality of the candidates,
dollar amounts (not percentage) spent by A and B, etc.

Ping Yu (HKU) SLR 35 / 78



Properties of OLS on Any Sample of Data

Properties of OLS on Any Sample of Data
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Properties of OLS on Any Sample of Data

a: Fitted Values and Residuals

byi =
bβ 0+

bβ 1xi =
�

y �xbβ 1

�
+ bβ 1xi = y + bβ 1 (xi �x) is called the fitted or predicted

value at xi .bui � bui

�bβ�= yi � bβ 0� bβ 1xi = yi �byi is called the residual, which is the deviation

of yi from the fitted regression line.11[figure here]by = bβ 0+
bβ 1x is called the OLS regression line or sample regression function

(SRF).

11bui is different from ui = yi �β 0�β 1xi . The later is unobservable while the former is a by-product of OLS
estimation.
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Figure: Fitted Values and Residuals

Ping Yu (HKU) SLR 38 / 78



Properties of OLS on Any Sample of Data

b: Algebraic Properties of OLS Statistics

Check the figure above to understand the following properties.

The key is the two FOCs, and all other results are corollaries.

∑n
i=1 bui = 0: it must be the case that some residuals are positive and others are

negative, so the fitted regression line must lie in the middle of the data points.

- This property implies y
?
= by + bu = by , where ? is because yi = byi + bui .

- This FOC is equivalent to y = bβ 0+ xbβ 1: The fitted regression line passes
through (x ,y).

∑n
i=1 xibui = 0:

dCov (x ,bu) = 1
n

n

∑
i=1
(xi �x)

�bui �bu�= 1
n

n

∑
i=1

xi

�bui �bu�= 1
n

n

∑
i=1

xibui = 0.

where the second equality is because we need only demean one of x and bu, and
the second to last equality is because bu = 0.
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Properties of OLS on Any Sample of Data

continue

These two properties are the sample analogs of E [u] = 0 and Cov (x ,u) = 0
which are implied by E [ujx ] = 0 [proof not required].

These two properties imply

n

∑
i=1

byibui =
n

∑
i=1

�bβ 0+
bβ 1xi

�bui =
bβ 0

n

∑
i=1

bui +
bβ 1

n

∑
i=1

xibui = 0.

- This means dCov (by ,bu) = n�1 ∑n
i=1 byi

�bui �bu�= n�1 ∑n
i=1 byibui = 0.
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The Cooked Numerical Example Revisited

yi xi byi bui xibui byibui
4 1 2.929 1.071 1.071 3.138
5 4 7.000 �2.000 �8.000 �14.000
7 5 8.357 �1.357 �6.785 �11.342

12 6 9.714 2.286 13.714 22.204
Sum: ∑4

i=1 28 16 28 0 0 0
Mean: 1

4 ∑4
i=1 7 4 7 0 0 0

Table: Check Algebraic Properties of OLS Statistics:byi =
bβ 0+

bβ 1xi and bui = yi �byi

y = bβ 0+ xbβ 1: 7= 1.571+4�1.357.
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c: Measures of Variation

How well does the explanatory variable explain the dependent variable?

Measures of Variation:

SST �
n

∑
i=1
(yi �y)2 ,

SSE �
n

∑
i=1

�byi �by�2 ?
=

n

∑
i=1
(byi �y)2 ,

SSR �
n

∑
i=1

�bui �bu�2 ?
=

n

∑
i=1

bu2
i = SSR

�bβ� ,
where

SST = total sum of squares, represents total variation in dependent variable,
SSE = explained sum of squares, represents variation explained by regression,
SSR = residual sum of squares, represents variation not explained by

regression.

It can be shown that
SST = SSE +SSR.
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(*) Decomposition of Total Variation

Note that

SST =
n

∑
i=1
(yi �y)2

=
n

∑
i=1
[(yi �byi )+ (byi �y)]2

=
n

∑
i=1
[bui +(byi �y)]2

=
n

∑
i=1

bu2
i +2

n

∑
i=1

bui (byi �y)+
n

∑
i=1
(byi �y)2

= SSR+2
n

∑
i=1

bui (byi �y)+SSE

= SSR+SSE ,

where the last equality is because ∑n
i=1 buibyi = 0 and ∑n

i=1 buiy = y ∑n
i=1 bui = 0.
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Properties of OLS on Any Sample of Data

Goodness-of-Fit

The R-squared of the regression, also called the coefficient of determination, is
defined as

R2 =
SSE
SST

=
SST �SSR

SST
= 1� SSR

SST
.

R-squared measures the fraction of the total variation that is explained by the
regression.
0� R2 � 1. When R2 = 0? When R2 = 1? [figure here]
- R2 tries to explain variation not level; a constant cannot explain variation (but
explains only level), so R2 = 0 if only the constant contributes to the regression: ifbβ 1 = 0, then bβ 0 = y �xbβ 1 = y , so

SSR =
n

∑
i=1

�
yi � bβ 0�xi

bβ 1

�2
=

n

∑
i=1
(yi �y)2 = SST .

- R2 is defined only if there is an intercept;12 we need to use the constant to
absorb the level of y , and then use xi to measure the variation of yi :

SSE = ∑n
i=1 (byi �y)2 =∑n

i=1

�bβ 0+ xi
bβ 1�y

�2

= ∑n
i=1

�
y �xbβ 1+ xi

bβ 1�y
�2
= bβ 2

1 ∑n
i=1 (xi �x)2 = bβ 2

1SST x .

12See Assignment I, Problem 5(i), for rigorous justification.
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Figure: Data Patterns for R2 = 0 and R2 = 1

Caution: A high R-squared does not necessarily mean that the regression has a
causal interpretation! [check the following two examples]
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Properties of OLS on Any Sample of Data

Two Examples of R-Squared

CEO Salary and Return on Equity:

\salary = 963.191+18.501roe,

n = 209,R2 = 0.0132.13

- The regression explains only 1.3% of the total variation in salaries.

Voting Outcomes and Campaign Expenditures:

\voteA = 26.81+0.464shareA,

n = 173,R2 = 0.856.

- The regression explains 85.6% of the total variation in election outcomes.

13It is quite standard to have a low R2 for cross-sectional data because a lot of heterogeneities are contained
in u.
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Units of Measurement and Functional Form
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Units of Measurement and Functional Form

b: Incorporating Nonlinearities in Simple Regression

The effects of changing units of measurement on OLS statistics will be discussed
in Chapter 6.

Regression of log wages on years of education:

log (wage) = β 0+β 1educ+u,

where log (�) denotes the natural logarithm. [figure here]

This is often called semi-log or log-linear regression model.

This changes the interpretation of the regression coefficient:

β 1 =
∂ log (wage)

∂educ
=

1
wage

� ∂wage
∂educ

=
∂wage/wage

∂educ
,

where ∂wage/wage is the proportional change of wage. [see the next slide for
math review]

Or,

100β 1 =
100 �∂wage/wage

∂educ
=
%∆wage

∆educ
,

where %∆ is read as "percentage change of", and ∆ is read as "change of".
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[Review] Derivative of Logarithmic Functions

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
­2
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1
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Figure: log(x) : x > 0; wage > 0

Recall that
d logx

dx
=

1
x

or d logx =
dx
x
.

The derivative gets smaller and smaller as x gets larger and larger: lim
x!0

d logx
dx = ∞,

d logx
dx

���
x=1

= 1, lim
x!∞

d logx
dx = 0.
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Units of Measurement and Functional Form

A Log Wage Equation

The fitted regression line is

\log (wage) = 0.584+0.083educ,

n = 526,R2 = 0.186,

which implies
\wage t e0.584+0.083educ .

The wage increases by 8.3% for every additional year of education (= return to
education).

For example, if the current wage is $10 per hour (which implies that

educ = log(10)�0.584
0.083 ), and suppose the education is increased by one year. Then

∆wage = exp
�

0.584+0.083
�

log(10)�0.584
0.083

+1
��

�10= 0.865t 0.83,

and
∂wage/wage

∂educ
=
+$0.83/$10
+1 year

= 0.083= 8.3%.
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Units of Measurement and Functional Form

0

1.793

Figure: wage = exp (0.584+0.083educ)

When the wage level is higher, the increase in wage for one more year of eduction
is larger, but the percentage increase of wage is the same.
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Units of Measurement and Functional Form

Constant Elasticity Model

CEO Salary and Firm Sales:

log (salary) = β 0+β 1 log (sales)+u,

where sales is measured in millions of dollars.

This changes the interpretation of the regression coefficient:

β 1 =
∂ log (salary)
∂ log (sales)

=
∂salary/salary
∂sales/sales

=
%∆salary
%∆sales

= elasticity.

The log-log form postulates a constant elasticity model, whereas the semi-log form
assumes a semi-elasticity model with 100β 1 called the semi-elasticity of y with
respect to x : in the log wage equation,

elasticity=
∂ log (wage)
∂ log(educ)

=
∂ log (wage)
∂educ/educ

= β 1 �educ,

which depends on educ. The elasticity is larger for a higher education level.
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Units of Measurement and Functional Form

CEO Salary and Firm Sales

The fitted regression line is

\log (salary) = 4.822+0.257log(sales),

n = 209,R2 = 0.211,

which implies

\salary t e4.822+0.257log(sales) = e4.822sales0.257.

The salary increases by 0.257% for every 1% increase of sales.

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Figure: salary = e4.822sales0.257
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Units of Measurement and Functional Form

Summary of Functional Forms Involving Logarithms

Model Dependent Variable Independent Variable Interpretation of β 1
Level-level y x ∆y = β 1∆x

Level-log y log(x) ∆y = β 1
100%∆x

Log-level log (y) x %∆y = (100β 1)∆x
Log-log log(y) log(x) %∆y = β 1%∆x

Table: Summary of Functional Forms Involving Logarithms
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Expected Values and Variances of the OLS Estimators

Statistical Properties of OLS Estimators

The property such as ∑n
i=1 bui = 0 is satisfied by any sample of data, i.e.,

regardless of the values of f(xi ,yi ) : i = 1, � � � ,ng, this property must satisfy.

We now treat bβ 0 and bβ 1 as estimators, i.e., treat them as random variables
because they are calculated from a random sample.

Recall that bβ 1 =
∑n

i=1 (xi �x) (yi �y)

∑n
i=1 (xi �x)2

and bβ 0 = y �xbβ 1,

where the data f(xi ,yi ) : i = 1, � � � ,ng is random and depends on the particular
sample that has been drawn.

Caution: distinguish a random variable and its realization!

Question: What will the estimators estimate on average and how large is their
variability in repeated samples? i.e.,

E
hbβ 0

i
=?,E

hbβ 1

i
=? and Var

�bβ 0

�
=?,Var

�bβ 1

�
=?
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Expected Values and Variances of the OLS Estimators

Standard Assumptions for the SLR Model

Scientific approach requires assumptions! Science vs. Superstition

Assumption SLR.1 (Linear in Parameters):

y = β 0+β 1x +u.

- In the population, the relationship between y and x is linear.
- The "linear" in linear regression means "linear in parameter", e.g.,
y = β 0+β 1 log (x)+u is a linear regression.

Assumption SLR.2 (Random Sampling): The data f(xi ,yi ) : i = 1, � � � ,ng is a
random sample drawn from the population, i.e., each data point follows the
population equation,

yi = β 0+β 1xi +ui .
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Expected Values and Variances of the OLS Estimators

Discussion of Random Sampling: Wage and Education

The population consists, for example, of all workers of country A.

In the population, a linear relationship between wages (or log wages) and years of
education holds.

Draw completely randomly a worker from the population.

The wage and the years of education of the worker drawn are random because
one does not know beforehand which worker is drawn.

Throw back worker into population and repeat random draw n times.

The wages and years of education of the sampled workers are used to estimate
the linear relationship between wages and education.
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Figure: Graph of yi = β 0+β 1xi +ui .
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Expected Values and Variances of the OLS Estimators

continue

Assumption SLR.3 (Sample Variation in Explanatory Variable): ∑n
i=1 (xi �x)2 > 0.

- The values of the explanatory variables are not all the same (otherwise it would
be impossible to study how much the dependent variable changes when the
explanatory variable changes one unit - β 1). [figure here]
- Note that ∑n

i=1 (xi �x)2 is the demonimator of bβ 1. If ∑n
i=1 (xi �x)2 = 0, then bβ 1 is

not defined.

Assumption SLR.4 (Zero Conditional Mean):

E [ui jxi ] = 0.

- The value of the explanatory variable must contain no information about the
mean of the unobserved factors.

Ping Yu (HKU) SLR 60 / 78



Expected Values and Variances of the OLS Estimators

Figure: A Scatterplot of Wage Against Education When educi = 12 for All i

Ping Yu (HKU) SLR 61 / 78



Expected Values and Variances of the OLS Estimators

a: Unbiasedness of OLS

Theorem 2.1: Under assumptions SLR.1-SLR.4,

E
hbβ 0

i
= β 0 and E

hbβ 1

i
= β 1

for any values of β 0 and β 1.

How to understand unbiasedness?

The estimated coefficients may be smaller or larger, depending on the sample that
is the result of a random draw.

However, on average, they will be equal to the values that characterize the true
relationship between y and x in the population.

"On average" means if sampling was repeated, i.e., if drawing the random sample
and doing the estimation was repeated many times.

In a given sample, estimates may differ considerably from true values.
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Expected Values and Variances of the OLS Estimators

(*) Proof of Unbiasedness of OLS

Proof.

We always condition on fxi , i = 1, � � � ,ng, i.e., the x values can be treated as fixed.
Now, the only randomness is from fui , i = 1, � � � ,ng. Note that

bβ 1�β 1 =
∑n

i=1 (xi �x)yi

∑n
i=1 (xi �x)2

�β 1

SLR.1�2
=

∑n
i=1 (xi �x) (β 0+β 1xi +ui )

∑n
i=1 (xi �x)2

�β 1

= β 0
∑n

i=1 (xi �x)

∑n
i=1 (xi �x)2

+β 1
∑n

i=1 (xi �x)xi

∑n
i=1 (xi �x)2

+
∑n

i=1 (xi �x)ui

∑n
i=1 (xi �x)2

�β 1

=
∑n

i=1 (xi �x)ui

∑n
i=1 (xi �x)2

,

where the last equality is because

n

∑
i=1
(xi �x) = 0 and

n

∑
i=1
(xi �x)xi =

n

∑
i=1
(xi �x)2

SLR.3
> 0.
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Proof continue

Now,

E
hbβ 1

i
�β 1 = E

"
∑n

i=1 (xi �x)ui

∑n
i=1 (xi �x)2

#
(ii)
=

E
�
∑n

i=1 (xi �x)ui
�

∑n
i=1 (xi �x)2

(i)
=

∑n
i=1 E [(xi �x)ui ]

∑n
i=1 (xi �x)2

(ii)
=

∑n
i=1 (xi �x)E [ui ]

∑n
i=1 (xi �x)2

14 SLR.2�4
= 0.

Further, since y = β 0+β 1x +u,

E
hbβ 0

i
= E

h
y �xbβ 1

i
= E

h
β 0�

�bβ 1�β 1

�
x +u

i
= β 0�xE

hbβ 1�β 1

i
+E [u] = β 0,

where the last equality is because bβ 1 is unbiased, and E [u] = 1
n ∑n

i=1 E [ui ] = 0 by
Assumptions SLR.2 and SLR.4. �

The key assumption for unbiasedness is Assumption SLR.4.

14E [ui jx1, � � � ,xn ]
SLR.2
= E [ui jxi ]

SLR.4
= 0.

Ping Yu (HKU) SLR 64 / 78



Expected Values and Variances of the OLS Estimators

b: Variances of the OLS Estimators

Unbiasedness is not the only desirable property of the OLS estimator. [intuition
here: gunfire][figure here]

Depending on the sample, the estimates will be nearer or farther away from the
true population values.

How far can we expect our estimates to be away from the true population values
on average (= sampling variability)?

Sampling variability is measured by the estimator’s variances. [see the next slides
for review of variance]
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Figure: Random Variables with the Same Mean BUT Different Distributions
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[Review] Variance

Recall that Var (X ) = E
h
(X �E [X ])2

i
measures how spreading the distribution of

a r.v. X is [figure above].

For example, consider two random variables X and Y with [figure here]

P (X = �2) = P (X = 2) = 1/2 and P (Y = �1) = P (Y = 1) = 1/2.

- Obviously, X is more spreading than Y (i.e., more probabilities on large values)
although both have the mean zero.
- If we check their variances, then indeed,

Var (X ) =
1
2
(�2)2+

1
2

22 = 4 > 1=
1
2
(�1)2+

1
2

12 = Var (Y ) .

The standard deviation of a r.v., denoted as sd(X ), is simply the square root of the
variance:

sd (X ) =
q

Var (X ).

The name "standard deviation" came from Karl Pearson.
- Variance measures the expected squared "deviation" from the mean and has the
unit of the squared unit of X .
- By taking

p
� in sd(X ), we get back to the "standard" (original) unit of X .

Ping Yu (HKU) SLR 67 / 78



Expected Values and Variances of the OLS Estimators

continue

If X = 1(college graduate), then Var (X ) = p (1�p)2+(1�p)(0�p)2 = p(1�p).
[intuition here]

If X � N
�

µ,σ2
�

, then Var (X ) = σ2.

Two Useful Properties: (i) for independent r.v.’s, "the variance of the sum is the
sum of the variances",

Var
�
∑n

i=1 Xi

�
=∑n

i=1 Var (Xi ) ;

(ii) for any constants a and b, Var (a+bX ) = b2Var (X ).

- Var (a+bX ) = E
h
(a+bX �a�bE [X ])2

i
= b2E

h
(X �E [X ])2

i
= b2Var (X ) .

These two properties imply

Var (x) = Var

 
1
n

n

∑
i=1

xi

!
(ii)
=

1
n2 Var

 
n

∑
i=1

xi

!
SLR.2+(i)
=

1
n2

n

∑
i=1

Var (xi )
SLR.2
=

nVar (x)
n2 =

Var (x)
n

,

which decreases with n and increases with Var (x).
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[Review] Conditional Variance

As the conditional mean, the conditional variance of Y given X = x , denoted as
Var (Y jX = x), is the variance of Y for the (slice of) individuals with X = x .
Rigorously,

Var (Y jX = x) = E
h
(Y �E [Y jX = x ])2 jX = x

i
.

Apply the second property of variance to the conditional variance to have

Var (yi jxi ) = Var (yi �β 0�β 1xi jxi ) = Var (ui jxi ) ,

where as mentioned in the conditional mean, conditional on xi , β 0+β 1xi can be
treated as a constant like a in (ii).

Although E [yi jxi ] = β 0+β 1xi is linear in xi (Assumption SLR1, 2 and 4),
Var (yi jxi ) is assumed not to depend on xi (Assumption SLR.5 below).
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Homoskedasticity

Assumption SLR.5 (Homoskedasticity): Var (ui jxi ) = σ2.
- The value of the explanatory variable must contain no information about the
variability of the unobserved factors.
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Heteroskedasticity

When Var (ui jxi ) depends on xi , the error term is said to exhibit heteroskedasticity.

Figure: An Example for Heteroskedasticity: Wage and Education
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Variances of OLS Estimators

Theorem 2.2: Under assumptions SLR.1-SLR.5,

Var
�bβ 1

�
=

σ2

∑n
i=1 (xi �x)2

=
σ2

SSTx
,

Var
�bβ 0

�
=

σ2n�1 ∑n
i=1 x2

i

∑n
i=1 (xi �x)2

=
σ2n�1 ∑n

i=1 x2
i

SSTx
.

The sampling variability of the estimated regression coefficients will be the higher
the larger the variability of the unobserved factors, and the lower, the higher the
variation in the explanatory variable (SSTx = n �dVar (x)). [figure here]
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Figure: Relative Difficulty in Identifying β 1
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(*) Proof of Theorem 2.2

Proof.

Var
�bβ 1

�
is more important, so we concentrate on it here. As in the proof of Theorem

2.1, we condition on fxi , i = 1, � � � ,ng.

Var
�bβ 1

�
(ii)15

= Var
�bβ 1�β 1

�
= Var

�
∑n

i=1(xi�x)ui

∑n
i=1(xi�x)2

�
(ii)
=

Var (∑n
i=1(xi�x)ui )
SST 2

x

SLR.2+(i)
= ∑n

i=1 Var ((xi�x)ui )
SST 2

x
(ii)
= ∑n

i=1(xi�x)2Var (ui )
SST 2

x

16 SLR.2+5
= ∑n

i=1(xi�x)2σ2

SST 2
x

= σ2SSTx
SST 2

x
= σ2

SSTx
.

�
The key assumption to get this simple formula of Var

�bβ 1

�
is Assumption SLR.5.

The only unknown component of Var
�bβ 1

�
and Var

�bβ 0

�
is σ2 which is estimated

below.

15Also because E
hbβ 1

i
= β 1 and we want to "center" bβ 1 at zero.

16Var (ui jx1, � � � ,xn)
SLR.2
= Var (ui jxi )

SLR.5
= σ2.
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c: Estimating the Error Variance (assuming homoskedasticity)

Var (ui jxi ) = σ2 SLR.4+5
= Var (ui ) [proof not required].

- The variance of u does not depend on x , i.e., is equal to the unconditional
variance.

The sample analog of Var (ui ) is

eσ2 =
1
n

n

∑
i=1

�bui �bu�2
=

1
n

n

∑
i=1

bu2
i =

SSR
n
.

- Note that

bui = β 0+β 1xi +ui � bβ 0� bβ 1xi = ui �
�bβ 0�β 0

�
�
�bβ 1�β 1

�
xi , (1)

so
E [bui �ui ] = �E

hbβ 0�β 0

i
�E

hbβ 1�β 1

i
xi = 0.

This is why we can use bui to substitute ui in the genuine sample analog of
Var (ui ), say, 1

n ∑n
i=1 (ui �u)2.

One could estimate the variance of the errors by calculating the variance of the
residuals in the sample; unfortunately this estimate would be biased .
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Unbiased Estimator of σ2

An unbiased estimate of the error variance can be obtained by subtracting the
number of estimated regression coefficients from the number of observations:

bσ2 =
1

n�2

n

∑
i=1

bu2
i =

SSR
n�2

.

where n�2 is called the degree of freedom of
�bui
	n

i=1.

Effectively, only n�2 residuals are used since the other two residuals can be
derived from these n�2 residuals by solving the two FOCs.

Theorem 2.3 (Unbiased Estimation of σ2): Under assumptions SLR.1-SLR.5,

E
hbσ2

i
= σ

2.
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(**) Proof of The Unbiasedness of bσ2

Proof.

For our purpose, we need to derive the formula of ∑n
i=1 bu2

i . First, averaging (1) we have

0= bu = u�
�bβ 0�β 0

�
�
�bβ 1�β 1

�
x , and subtracting this from (1) we havebui = (ui �u)�

�bβ 1�β 1

�
(xi �x). Therefore,

n

∑
i=1

bu2
i =

n

∑
i=1
(ui �u)2+

�bβ 1�β 1

�2 n

∑
i=1
(xi �x)2�2

�bβ 1�β 1

� n

∑
i=1
(xi �x) (ui �u) .

First,

E
h
∑n

i=1 (ui �u)2
i
= E

h
∑n

i=1 u2
i

i
�nE

h
u2
i
= nσ

2�n
nσ2

n2 = (n�1)σ
2,

where E [u2] = E [
�
∑n

i=1 ui
�2
]/n2 E [ui uj ]=0 if i 6=j

= E [∑n
i=1 u2

i ]/n2 = nσ2/n2. Second, since

E [(bβ 1�β
2
1)] = σ2/SSTx , the expected value of the second term is σ2. Finally, sincebβ 1�β 1 = ∑n

i=1 (xi �x) (ui �u)/SSTx , the third term can be written as

�2(bβ 1�β 1)
2SSTx whose expectation is �2σ2. Putting these three terms together

gives E [∑n
i=1 bu2

i ] = (n�1)σ2+σ2�2σ2 = (n�2)σ2 so that E [bσ2] = σ2. �
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SER and SE

bσ =pbσ2 is called the standard error of the regression (SER).

The estimated standard deviations of the regression coefficients are called
standard errors. They measure how precisely the regression coefficients are
estimated:

se
�bβ 1

�
=

rdVar
�bβ 1

�
=

s bσ2

SSTx
=

bσp
SSTx

,

se
�bβ 0

�
=

rdVar
�bβ 0

�
=

sbσ2n�1 ∑n
i=1 x2

i
SSTx

=
bσq

SSTx /n�1 ∑n
i=1 x2

i

,

i.e., we plug in bσ2 for the unknown σ2.
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