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(**) The Kruskal-Wallis Test
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Comparison of Several Population Means

Comparison of Several Population Means
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Comparison of Several Population Means

Comparison of Several Population Means

In Lecture 6, we tested whether two means are equal; sometimes we need to test

whether more than two means are equal.

In the two-level case, say, we want to compare the fuel consumption for two types

of cars, A-cares and B-cars, we can either let each driver drive both types of cars

(matched pair) or randomly assign drivers to drive each type of cars (independent

samples).

If there are more than two types of cars, how to test whether their mean fuel

consumptions are equal?
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Comparison of Several Population Means

continue

The mean fuel consumptions for the three types of cars are 20.9, 23.2 and 22.9,

respectively, which are different, but do such differences arise by chance or not?

Figure: Two Sets of Sample Fuel-Consumption Data on Three Types of Cars

Although the sample means in part (a) and part (b) are equal, part (a) suggests

different population means while part (b) suggests the same population mean.

The key point is the variability around the sample means vs. the variability among

the sample means. If the former is small compared with the latter, then we doubt

the population means are equal.
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One-Way ANOVA

One-Way ANOVA
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One-Way ANOVA

The Setup of One-Way ANOVA

Population

1 2 · · · K

x11 x21 · · · xK 1

x12 x22 · · · xK 2

...
...

. . .
...

x1n1
x2n2

· · · xKnK

Table 15.2: Independent (not paired) Random Samples from K Populations

In the K populations of Table 15.2, we assume each population has the same

variance.

H0: µ1 = µ2 = · · ·= µK vs. H1: µk 6= µ l for at least one pair (k , l), where µ i is the

population mean of population i .

x̄i =
∑

ni
j=1 xij

ni
is the sample mean of group i .

x =
∑

K
i=1 ∑

ni
j=1 xij

n = ∑
K
i=1 ni x̄i

n is the common mean of all groups, where n = ∑
K
i=1 ni is

the total number of observations.

- In the example above, n1 = n2 = 7, n3 = 6, n = 20, K = 3, and x = 22.3.
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One-Way ANOVA

Sum of Squares

From the example above, an appropriate test should be based on assessment of

two types of variabilities: within-groups variablity and between-groups variability.

From Lecture 1, we know variability is well measured by the sum of squared

deviations of the observations about the sample mean.

As a result, we define the sum of squares within group i as

SSi =∑
ni

j=1

(
xij − x̄i

)2
,

the sum of squares within (all K ) groups as

SSW =∑
K

i=1 ∑
ni

j=1

(
xij − x̄i

)2
=∑

K

i=1
SSi ,

the sum of squares between groups as

SSG =∑
K

i=1
ni

(
x̄i −x

)2
,

and the total sum of squares as

SST =∑
K

i=1 ∑
ni

j=1

(
xij −x

)2
,

where in SSG, a weight ni is imposed on group i , i.e., larger groups are given

larger weights.
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One-Way ANOVA

Sum of Squares Decomposition

It turns out that

SST = SSW +SSG.

Figure: Sum of Squares Decomposition for One-Way ANOVA
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One-Way ANOVA

Justification of Sum of Squares Decomposition

Note that

SST =
K

∑
i=1

ni

∑
j=1

(
xij −x

)2

=
K

∑
i=1

ni

∑
j=1

(
xij − x̄i + x̄i −x

)2

=
K

∑
i=1

ni

∑
j=1

(
xij − x̄i

)2
+

K

∑
i=1

ni

∑
j=1

(
x̄i −x

)2
+2

K

∑
i=1

(
x̄i −x

) ni

∑
j=1

(
xij − x̄i

)
=

K

∑
i=1

ni

∑
j=1

(
xij − x̄i

)2
+

K

∑
i=1

ni

(
x̄i −x

)2

= SSW +SSG,

where ∑
ni

j=1

(
xij − x̄i

)
= 0 in the second-to-last equality.
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One-Way ANOVA

Testing Procedure

The basic idea is that under H0, both SSW and SSG can be used to estimate the

common population variance.

Like s2 = 1
n−1 ∑

n
i=1 (xi − x̄)2 is an unbiased estimator of σ2, we need to adjust the

dfs for SSW and SSG. The df of SSW is n−K because there are n summands

and K estimated parameters (µ1, · · · ,µK ), and the df of SSW is K −1 because

there are K summands and one estimate parameter (the common µ).

Test Statistic:

f =
MSG

MSW
:=

SSG/ (K −1)

SSW / (n−K )
,

which follows the FK−1,n−K distribution under H0 and (i) the population variances

are equal; (ii) the population distributions are normal. (i.e., xij ∼ N
(

µ i ,σ
2
)

)

- MSW = SSW / (n−K ) is called the within-groups mean square and is an

unbiased estimator of σ2 regardless whether H0 holds or not, and

MSG = SSG/ (K −1) is called the between-groups mean square and is an

unbiased estimator of σ2 only under H0. [see Appendices 2 and 3 of Chapter 15

for detailed analyses]
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One-Way ANOVA

continue

Why? Recall that
(n−1)s2

σ2 ∼ χ2
n−1 from Lecture 5. Similarly,

(K −1)MSG

σ2
∼ χ

2
K−1,

(n−K )MSW

σ2
∼ χ

2
n−K ,

and these two chi-square distributions are independent. From the definition of the

F distribution, we have

(K−1)MSG

σ2 / (K −1)

(n−K )MSW

σ2 / (n−K )
=

MSG

MSW
∼ FK−1,n−K .

Decision Rule: reject H0 if f > FK−1,n−K ,α . [why? Under H1, E [MSG] > σ2]

The p-value is P (F > f ), where F ∼ FK−1,n−K .
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One-Way ANOVA

Example Continued

The test can be conveniently summarized in a one-way anova table:

In the example above, the one-way anova table is as follows:

Because F2,17,0.01 = 6.112 and 15.05> 6.112, we reject H0 at the 1% level.
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One-Way ANOVA

(**) Multiple Comparisons Between Subgroup Means

If we reject H0, a natural question followed is that which subgroup means are

different from others. Specifically, we want a minimal interval that could be used to

decide if any two subgroup means are different in a statistical sense.

In the two-level case, we know when |x̄ − ȳ | is larger than a critical value, called a

minimum significant difference (MSD), we can conclude that µx 6= µy in a

statistical sense, e.g., if σ2
x = σ2

y , then

MSD = tα/2sp

√
1

nx
+

1

ny
.

This MSD does not work for the K > 2 case because there are CK
2 comparisons of

sample means such that the probability of error α would no longer hold.

Intuitively, the correct MSD should be increasing in K , i.e., a larger MSD is

required than the two-level case when K > 2.
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One-Way ANOVA

continue

We use a procedure proposed by John Tukey to deal with this

multiple-comparisons question:

MSD (K ) = Q
sp√

n
,

where the factor Q depends on α,K and n−K (df of SSW) and is listed in

Appendix Table 13, and sp is the pooled standard deviation, i.e., sp =
√

MSW .

- Q is also decreasing in n−K and α besides increasing in K .
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One-Way ANOVA

Population Model for One-Way ANOVA

Let Xij be the r.v. corresponding to the j th observation from the i th population, and

decompose Xij as

Xij = µ i + ε ij ,

where the error ε ij
iid∼ N

(
0,σ2

)
.

Let µ be the overall mean of the K combined populations, and Gi := µ i −µ; then

Xi = µ+Gi + ε ij ,

i.e., an observation is made up of the sum of an overall mean µ, a group-specific

term Gi , and a random error ε ij , [figure here] and H0 can be equivalently stated as

H0 : G1 = · · ·= GK = 0.

SSW is also called the error sum of squares because it can be used to estimate

the "error" variance σ2.
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One-Way ANOVA

Figure: Illustration of the Population Model for the One-Way ANOVA
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The Kruskal-Wallis Test

(**) The Kruskal-Wallis Test
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The Kruskal-Wallis Test

The Kruskal-Wallis H Test

This Kruskal-Wallis H test is a nonparametric counterpart of the one-way ANOVA

where normality is not assumed; it is also an extension of the Mann-Whitney test

in Lecture 8 to the K > 2 case.

The null is that all subgroups have the same distribution which will reduce to the

same median when all other aspects of the K distributions except the central

location are the same.

Like the Mann-Whitney test, we pool all samples and rank them in ascending

order with the rank of xij being rij , and define

Ri =
ni

∑
j=1

rij , i = 1, · · · ,K ,

as the sum of the ranks for subgroup i .

Also define

r̄i =
Ri

ni

and

r =
1

n

K

∑
i=1

ni

∑
j=1

rij ,

which are the counterparts of x̄i and x .
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The Kruskal-Wallis Test

continue

The test statistic is

H = (n−1)
∑

K
i=1 ni

(
r̄i − r

)2

∑
K
i=1 ∑

ni

j=1

(
rij − r

)2
:= (n−1)

SSG

SST
.

- Since SST = SSG+SSW , H is an increasing function of SSG and a large H will

induce rejection of H0,

Where there are no ties, it is not hard to show that the denominator of H is equal

to
(n−1)n(n+1)

2
and r = n+1

2
, which implies the W on Page 663:

H =
12

n (n+1)

K

∑
i=1

R2
i

ni
−3 (n+1) .

Under H0, SST
n−1
→ σ2 and SSG

σ2 → χ2
K−1, where σ2 is the variance of rij , so H

approximately follow the χ2
K−1 distribution. As a result, the decision rule is to reject

H0 if H > χ2
K−1,α .

(**) The counterpart of MSD is Dunn’s test which can be used to detect which of

the sample pairs are different.
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The Kruskal-Wallis Test

Example Continued

R1 = 32,R2 = 101.5 and R3 = 76.5, so

H =
12

20×21

[
322

7
+

101.52

7
+

76.52

6

]
−3×21= 11.10.

Since χ2
2,0.01 = 9.210, we reject H0 at the 1% level, same conclusion as the

one-way ANOVA.
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Two-Way ANOVA: One Observation per Cell, Randomized Blocks

Two-Way ANOVA: One Observation per Cell,
Randomized Blocks

Ping Yu (HKU) ANOVA 22 / 39



Two-Way ANOVA: One Observation per Cell, Randomized Blocks

Example Continued

If we can isolate other factors from ε ij , e.g., driver habits, then we can reduce the

variance of the error term and improve the test power.

The data in Table 15.7 are like matched pairs in Lecture 6, where the additional

variable, drivers (or driver ages), is called a block variable and the experiment is

said to be arranged in six blocks.

This kind of design is called a randomized blocks design because a driver is

randomly selected from each (randomized) age class to drive each type of car

(i.e., 18 drivers are randomly drawn but belong to only 6 classes).
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Two-Way ANOVA: One Observation per Cell, Randomized Blocks

The Setup of Two-Way ANOVA

HG
0

: K group means {µ i}
K
i=1 are the same or HB

0 : H block means
{

µ j

}H

j=1
are the

same vs. H1: negation of H0

x̄i · =
∑

H
j=1 xij

H
is the sample mean of group i (estimator of µ i = E

[
Xij |group i

]
).

x̄·j =
∑

K
i=1 xij

K
is the sample mean of block j (estimator of µ j = E

[
Xij |block j

]
).

x =
∑

K
i=1 ∑

H
j=1 xij

n = ∑
K
i=1 x̄i ·
K

=
∑

H
j=1 x̄·j
H

is the common mean of all groups (estimator of

the "overall" mean µ = E
[
Xij

]
), where n = HK is the total number of observations.

- In the example above, K = 3,H = 6,n = 18, x̄1· =
148.2

6
= 24.7, x̄·1 =

75
3
= 25,

etc. and x = 24.6.
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Two-Way ANOVA: One Observation per Cell, Randomized Blocks

Population Model for Two-Way ANOVA

Let Xij be the r.v. corresponding to the observation for the i th group and j th block,

and decompose Xij as

Xij = µ+Gi +Bj + ε ij ,

where Gi = µ i −µ, Bj = µ j −µ, and the error ε ij
iid∼ N

(
0,σ2

)
.

Rewrite this as

Xij −µ = Gi +Bj + ε ij ,

where µ,Gi and Bj are estimated by x , x̄i ·−x and x̄·j −x , respectively, so(
xij −x

)
−
(

x̄i ·−x
)
−
(

x̄·j −x
)
= xij − x̄i ·− x̄·j + x ,

which implies

xij −x =
(

x̄i ·−x
)
+
(

x̄·j −x
)
+
(

xij − x̄i ·− x̄·j + x
)
,

where the last term is an estimator of ε ij .

- We have decomposed the deviation of xij from x into the group effect x̄i ·−x , the

block effect x̄·j −x , and the random error due to chance variability or experimental

error.
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Two-Way ANOVA: One Observation per Cell, Randomized Blocks

Sum of Squares Decomposition

By similar arguments as in one-way ANOVA, we can show

SST = SSG+SSB+SSE ,

where

SST = ∑
K

i=1 ∑
H

j=1

(
xij −x

)2
is the total sum of squares,

SSG = H ∑
K

i=1

(
x̄i ·−x

)2
is the between-groups sum of squares

SSB = K ∑
H

j=1

(
x̄·j −x

)2
is the between-blocks sum of squares,

SSE = ∑
K

i=1 ∑
H

j=1

(
xij − x̄i ·− x̄·j + x

)2
is the error sum of squares.

The analysis is called two-way ANOVA because the data are categorized in two

ways, accordingly to groups and blocks.

In one-way ANOVA, xij −x =
(

x̄i −x
)
+
(
xij − x̄i

)
, so SST = SSG+SSE , where

SSE is termed as SSW , and ni in SSG need not be the same so cannot be taken

out of the summation.

Ping Yu (HKU) ANOVA 26 / 39



Two-Way ANOVA: One Observation per Cell, Randomized Blocks

continue

Compared with one-way ANOVA, the extra component arises because we can

extract from the data about differences among blocks.
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Two-Way ANOVA: One Observation per Cell, Randomized Blocks

Testing Procedure

The basic idea is the same as in one-way ANOVA.

Note: the df of SSE is (n−1)− (K −1)− (H−1) = (K −1) (H−1).

Test Statistic: If ε ij
iid∼ N

(
0,σ2

)
, then

f G =
MSG

MSE
:=

SSG/ (K −1)

SSE/ (K −1) (H−1)

will follow the FK−1,(K−1)(H−1) distribution under HG
0

, and

f B =
MSB

MSE
:=

SSB/ (H−1)

SSE/ (K −1) (H−1)

will follow the FH−1,(K−1)(H−1) distribution under HB
0 .
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Two-Way ANOVA: One Observation per Cell, Randomized Blocks

continue

Decision Rule: reject HG
0

if f G > FK−1,(K−1)(H−1),α and reject HB
0 if

f B > FH−1,(K−1)(H−1),α .

The p-value in testing HG
0

is P
(

F G > f G
)

and in testing HB
0 is P

(
F B > f B

)
, where

F G ∼ FK−1,(K−1)(H−1) and F B ∼ FH−1,(K−1)(H−1).

In the example above, the two-way anova table is as follows:

Because both p values are less than 1%, we reject both HG
0

and HB
0 at the 1%

level, where note that K = 3,H = 6 so (K −1) (H−1) = 10.
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Two-Way ANOVA: One Observation per Cell, Randomized Blocks

More Comments

This two-way ANOVA is often called one-way ANOVA with block effects.

Usually, i indexes the treatments, j indexes the blocks, and we are mainly

interested in whether the treatment effects are equal, i.e., HG
0

, given that the block

effects are different by construction.

ε ij is assumed to be independent across i , but need not be independent across i

in general.

Anyway, Corr
(
ε ij ,ε i ′ j

)
should be the same for any pair of (i, i ′). In this case, we

need to be sure the order in which treatments are administered to subjects is

ranomized in order to assume equal correlation.

- Of course, the same
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Two-Way ANOVA: More Than One Observation per Cell

Two-Way ANOVA: More Than One Observation
per Cell

Ping Yu (HKU) ANOVA 31 / 39



Two-Way ANOVA: More Than One Observation per Cell

Example Continued

If there are more than one observation for each group and block (or each cell), i.e.,

each type of care are driven by more than one drivers from each age class, we

have two advantages: (i) more data mean more precise estimation and thus

higher power; (ii) allow the isolation of a further source of variability – the

interaction between groups and blocks.
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Two-Way ANOVA: More Than One Observation per Cell

More on Interaction

The interactions occur when differences in block (group) effects are not distributed

uniformly across groups (blocks).

Mathematically, this means that µ ij −µ i 6= µ j −µ for some i and j , where µ ij is the

population mean in the ij th cell, and µ i , µ j and µ are defined similarly as in the last

section.

Note that µ j =
∑

K
i=1 µ ij

K
and µ = ∑

K
i=1 µ i

K
, so µ j −µ =

∑
K
i=1(µ ij−µ i)

K
.

µ ij −µ i 6= µ j −µ for some i and j implies there exist j, i and i ′ such that(
µ ij −µ i

)
−
(

µ j −µ

)
> 0>

(
µ i ′ j −µ i

)
−
(

µ j −µ

)
.

That is what the following sentence in the textbook means, "drivers who achieve

better-than-average fuel consumption figures may be considerably more

successful in getting better fuel economy than other drivers when driving an α-car

than when driving a β -car".
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Two-Way ANOVA: More Than One Observation per Cell

The Setup of Two-Way ANOVA: More Than One Observation per Cell

Note: there are m observations in the ij th cell,
{

xijl

}m

l=1

HG
0

: {µ i}
K
i=1 are the same or HB

0 :
{

µ j

}H

j=1
are the same or H I

0: µ ij −µ i = µ j −µ

for all i and j (i.e., no group-block interaction) vs. H1: negation of H0.

Group means: x̄i ·· =
∑

H
j=1 ∑

m
l=1 xijl

Hm
is the sample mean of group i .

Block means: x̄·j · =
∑

K
i=1 ∑

m
l=1 xijl

Km
is the sample mean of block j .

Cell means: x ij · =
∑

m
l=1 xijl

m is the sample mean of cell (i, j).

Overall mean: x =
∑

K
i=1 ∑

H
j=1 ∑

m
l=1 xijl

n = ∑
K
i=1 x̄i ··
K

=
∑

H
j=1 x̄·j ·
H

=
∑

K
i=1 ∑

H
j=1 x ij ·

KH
is the sample

mean of all observations, where n = HKm is the total number of observations.
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Two-Way ANOVA: More Than One Observation per Cell

Population Model for Two-Way ANOVA with More Than One

Observation per Cell

Let Xijl be the r.v. corresponding to the l th observation in the ij th cell, and

decompose Xijl as

Xijl = µ+Gi +Bj +Lij + ε ijl ,

where Lij = µ ij −µ i −µ j + µ, Gi and Bj are defined similarly as in the last section,

and the error ε ijl
iid∼ N

(
0,σ2

)
.

Rewrite this as

Xijl −µ = Gi +Bj + ε ijl ;

the corresponding sample version is

xijl −x =
(

x̄i ··−x
)
+
(

x̄·j ·−x
)
+
(

x̄ij − x̄i ··− x̄·j ·+ x
)
+
(
xijl − x̄ij

)
,

where the last term is an estimator of ε ijl .

Note: the number of observations in each cell need not be the same, but the

formulae below would then be much more involved.
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Two-Way ANOVA: More Than One Observation per Cell

Sum of Squares Decomposition

By similar arguments as in two-way ANOVA with one observation per cell, we can

show

SST = SSG+SSB+SSI+SSE ,

where

The dfs of all sums of squares can be derived similarly as before.
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Two-Way ANOVA: More Than One Observation per Cell

continue

Compared with the sum of squares decomposition for the two-way ANOVA with

one observation per cell, the extra component arises because we can isolate an

interaction sum of squares.
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Two-Way ANOVA: More Than One Observation per Cell

Testing Procedure

The basic idea is the same as in two-way ANOVA with one observation per cell.

Test Statistic: If ε ijl
iid∼ N

(
0,σ2

)
, then

f G = MSG
MSE

:= SSG/(K−1)
SSE/KH(m−1)

, f B = MSB
MSE

:= SSB/(H−1)
SSE/KH(m−1)

,

f I = MSI
MSE

:= SSI/(K−1)(H−1)
SSE/KH(m−1)

will follow the FK−1,KH(m−1),FH−1,KH(m−1) and F(K−1)(H−1),KH(m−1) distributions

under HG
0

, HB
0 and H I

0, respectively.
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Two-Way ANOVA: More Than One Observation per Cell

continue

Decision Rule: reject HG
0
,HB

0 and H I
0 if f G > FK−1,KH(m−1),α , f

B > FH−1,KH(m−1),α

and f I > F(K−1)(H−1),KH(m−1),α , respectively.

The p-values in testing HG
0
,HB

0 and H I
0 are P

(
F G > f G

)
, P
(

F B > f B
)

, and

P
(

F I > f I
)

, where F G ∼ FK−1,KH(m−1), F B ∼ FH−1,KH(m−1) and

F I ∼ F(K−1)(H−1),KH(m−1).

In the example above, the two-way anova table is as follows:

Because all p values are zero, we strongly reject all nulls, especially, we conclude

that there exists an interaction effect, where note that K = 3,H = 5 and m = 3.
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