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Overview of Linear Models

Overview of Linear Models
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Linear Models

@ Although the relationship between two variables Y and X can be any nonlinear
function,
Y =f(X),

it is often convenient to use a linear function to model or approximate such a
relationship.

@ An equation can be fit to show the best linear relationship between two variables:

Y == BO +B1X'
where

Y is the dependent variable ,
X is the independent variable,
Bo is the Y -intercept,
B, is the slope.
@ Dependent variable: the variable we wish to explain (aka the endogenous
variable).
@ Independent variable: the variable used to explain the dependent variable (also
called the exogenous variable).
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Overview of Linear Models

[Example] Table Production

Fitted Line Plot
= —13.02 + 2.645 x

Number of Tables
w B o [} ~
o o o o o
1 1 1 1 1

N}
o
!

T T T
10 15 20 25 30
Number of Workers

Copprgn 2013 1

Figure: Linear Function and Data Points

@ B, is usually more important than f; in this example, it means that each

additional worker, X, increases the number of tables produced, Y, by 2.545.

@ Now, the management can determine if the value of the increased output is
greater than the cost of an additional worker.
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Least Squares Regression

@ The coefficients B, and 8, are usually unknown, so we use samples (or data, or

observations) to estimate them.

Estimates for coefficients B and 8, are found using a Least Squares Regression

technique.
The least-squares regression line, based on sample data, is

y =bo +biX,
where b, is the slope of the line and by is the y-intercept:
ISxSy

s%

s
blfﬂ

2

s I
=r>Y and by =Yy —b;X.
SK Sx

- syy is involved in by because both Cov (X,Y) and 8; meansure the linear
relationship between X and Y.

The details of deriving by and by will be discussed below.

Regression analysis is used to:

- Explain the impact of changes in an independent variable on the dependent
variable [last slide].

- Predict the value of a dependent variable based on the value of at least one
independent variable [next slide].
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[Example] Revisited

@ In the figure above,

Sxy = 106.93,s2 = 42.01,y = 41.2,x =21.3,

SO
sy _ 106.93
by = s2 4201 =2.545,
b = V—biXx=41.2-2545x21.3=—-13.02.

@ For 25 employees we expect to produce
y =bg+by x25=-13.02+2.545 x 25 = 50.605 ~ 51.

@ The extrapolation out of the range of X, [11,30], may not be reliable.
- For example, by = —13.02 does not mean that when x = 0 worker, we will
produce —13.02 tables because 0 is far from the range of X.
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Linear Regression Model

Linear Regression Model
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Linear Regression Population Model

@ In the example of table production, the data points (x;,y;) do not fall exactly on a
straightline.

@ This is understandable, because there are many other factors that can affect the
table production (besides the number of workers), e.g., the price of tables, the
wage of workers, the price of timber, and many unknown factors.

@ The population model for linear regression is
Y - ﬁo + le + 8,

where we use the random error term ¢ to cover all factors other than X, and
and 3, are the population model coefficients which are unknown and need to be
estimated.

@ For a random sample from the population, (x;,y;),
Yi = Bo+ Baxi + &;. [figure here]
@ We assume E [¢|]X =x] =0, so

E[Y[X =X]=Bo+B1x.
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Linear Regression Model

Y Y=+ /X +¢
Vo | ®

&;
Predicted Random Error
Value of for this X; value
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Intercept
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Linear Regression Assumptions

© The true relationship form is linear (Y is a linear function of X, plus random error).

@ The x values are fixed numbers, or they are realizations of random variable X that
are independent of the error terms, {g;}{'_;. In the later case inference is carried
out conditionally on the observed values of {x;}!_;.

© The error terms are random variables with mean 0 and variance ¢2. This uniform
variance property is called homoscedasticity:

Elg]=0andE [e?] —o2fori=1,---,n.

- The spreading of any two error terms is the same.
© The random error terms, €;, are not correlated with one another, so that
E [eigj] =0foralli #].

- A large ¢; does not help to predict other g;’s.
- This is weaker than independence of &;.
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Estimated Regression Model

@ Because 35 and 3, are unknown, we can use the data to estimate them based on
least squares.

@ Denote the estimator of 85 and 8, as by and by; then
Yi = bo +b1x; +ej,
where the residual
& = VYi—Vi
= ¥i—(bo+b1xj)

can be treated as an estimate of g (which is not observable because
& =VYi—Bo—B1Xi and (By.B1) is unknown), and y; is the predicted y; at x; which
estimates E [Y |[X = x;].

@ Note that e; # ¢; if by # B and/or by # B4:

& = Bo+B1xi +& — (bo+byx;) 1
=& —(bo—Bo) — (b1 —B1)xi.

@ In the figure below, note that e; can be either positive or negative.
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Linear Regression Model
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Example 11.2: Sales Prediction for Northern Household Goods

@ The target is to predict total sales for proposed new retail store locations (to
determine where new stores should be located).

Table 11.1 Data on Disposable Income per Household (X) and Retail Sales per
Household (Y)

Rerai Store INcoME (X)  RETAILL SALES (Y)  RETAIL STORE  INCOME (X)  RETAIL SALES (Y)
1 $55,641 $21,886 12 $57,850 $22,301
2 $55,681 $21,934 13 $57,975 $22,518
3 $55,637 $21,699 14 $57,992 $22,580
4 $55,825 $21,901 113 $58,240 $22,618
B $55,772 $21,812 16 $58414 $22,890
6 $55,890 $21,714 17 $58,561 $23,112
7 $56,068 $21,932 18 $59,066 $23,315
8 $56,299 $22,086 19 $58,596 $22,865
9 $56,825 $22,265 20 $58,631 $22,788
10 $57,205 $22,551 21 $58,758 $22,949

11 $57,562 $22,736 122} $59,037 $23,149
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Linear Regression Model

Retail Sales and Disposable Income
Y Retail Sales = 559 + 0.3815 X Income

23500

23000

22500

Y Retail Sales

22000

21500 T T T T T T T T
55500 56000 56500 57000 57500 58000 58500 59000 59500

X Income

Copyright ©2013 Pesrion Education, publshing s Prentice Hall

@ Ax =1 = Ay = 0.3815; ¥y when x = 55000 is 559 4 0.3815 x 55000 = $21542.
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Least Squares Coefficient Estimators

Least Squares Coefficient Estimators
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Least Squares Coefficient Estimators

History of "Ordinary" Least Squares (OLS)

@ The least-squares method is usually credited to Gauss (1809), but it was first
published as an appendix to Legendre (1805) which is on the paths of comets.

Nevertheless, Gauss claimed that he had been using the method since 1795 at
the age of 18.

C.F. Gauss (1777-1855), Géttingen  A.-M. Legendre (1752-1833), Eole Normale
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Least Squares Coefficient Estimators

OLS Estimation

@ The OLS estimates of § = (B, 81) try to fit as good as possible a regression line
through the data points:

® F+ i

orl) = n— B - Bhar <0

: u(ﬁ‘)=m*/»‘*\%*5%u<°' e10(6%) =y — B — Flzio > 0
P @ ™ z

Figure: e; (B) for Three Possible g Values B g% and g3 n=10
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What Does "As Good As Possible" Mean?

@ Define residuals at arbitrary § as

ei (B) =Yi—Bo—Baixi.
@ Minimize the sum of squared errors [figure here]:
n n

. _ . (B2 — mi B _ )2
ﬁTESSE(B) = ﬁTEi;e'(B) Bﬂ;ﬁ%()ﬁ Bo—B1xi)

— b= (bo,bl),

where b is the solution to the first order conditions (FOCs) for the OLS estimates.
@ [t turns out that

YL 6 =X) (Yi—Y)
by = . N
Sitg (X —X)
bo = ¥-xby.
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Least Squares Coefficient Estimators

SSE(B)
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Figure: Objective Functions of OLS Estimation
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(*) FOCs for Minimization

@ To minimize SSE (), necessary conditions are

JSSE(b) . JSSE ([5)‘ .
9Bo ' Bo lp=p
JSSE(b) . 9SSE (ﬁ)‘ o
9B ' B1 g
where asggfﬁ) ‘ﬁ:b _ limyy_ SSECLs+8)-SSE(boby) g asgBEO(m L

similarly defined.
@ Since SSE (B) is convex, i.e., itis like a bowl, these necessary conditions are also

sufficient.
@ Recall that % =2x and W = &, so by the chain rule,
. — i 2 i - i
W Z(yi—ﬁo—ﬁlxi)%goﬁlx'):_z(yi_ﬁo_ﬁlxi)v
. — : 2 i - i
W = Z(yi—ﬁo—ﬁlxi)%glﬁl)(l):_zxi(yi_ﬁo_ﬁlxi)'
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Least Squares Coefficient Estimators

(*) Derivation of OLS Estimates

@ As a result, the FOCs are

*ZnZinA (Vi —bp —b1x) =
_2Zi:lxl ( bo—b]_X )

@ From the first equation,

)72 b() +Yb1 — bo :Vfibl.

@ Substituting by into the second equation, we have

X lyi— (V—fbl) byxi] =0
:%zin:lxi (Yi V)_nZ 1 Xi (XI_X)bl
= 23X (Yi—Y) = ban 1Xi (X —X) )
_ Z. X-Y) 2 S i-X)(%i—Y) _ axy
== S = T e S

LFirst devide the constant —2 and then multiply the constant %

= = Sxy = s—y
% 1(6—%)? s s
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(*) More Details

@ The second equality of by is because

_ixu(y.—y)—nl(xi—x>(yi‘y) - -i[xi_(Xi_X)](y'_y)_il)((yl_y)
= X3 0i-y) Ex(ny—ny) =0,
i=1
S0 oot = rnnmo
i1 i=1 =

- Summing the product of two demeaned terms need only demean one of them.
@ Alternative Expression for b :

by = SLi(x=X)y; & (X —X)

S (6 =%)? &y (x5 -X)

2yiy

i.e., by is linear in y;'s, which will be used in deriving Var (by).

2g=13n v, so3yl,y=ny.
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Fitted Values and Residuals

@ Yy =by+bix=(y—Xby)+byx =y +by(x—X) or
y -y =bi(x—X),

i.e., the fitted line always passes through the point (X,y).
@ The fitted or predicted values

¥i = bg +bix; =y + by (xi —X).

@ The residuals e; satisfy the two FOCs.
@ 5!, e = 0: it must be the case that some residuals are positive and others are
negative, so the fitted regression line must lie in the middle of the data points.

@5 xe =0:

o — 1
xe—n_1i

(xi —X)(ej—€) =

M3

where the second equality is because we need only demean one of x and e, and
the second to last equality is because € = 0.
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Computer Computation of Regression Coefficients

@ The coefficients by and by and other regression results in this chapter, will be
found using a computer.
- Hand calculations are tedious.
- Statistical routines are built into Excel.
- Other statistical analysis software like Stata or R can be used.

@ bg is the estimated average value of y when the value of x is zero (if x =0 is in the
range of observed x values).

@ b, is the estimated change in the average value of y as a result of a one-unit
change in x.

@ The tutor will show you how to use Excel to produce by and b, and other statistics.
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The Explanatory Power of a Linear Regression Equation

The Explanatory Power of a Linear Regression
Equation
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The Explanatory Power of a Linear Regression Equation

Measures of Variation

@ How well does the explanatory variable explain the dependent variable?
@ Measures of Variation:

SST = % vi—v)%,
i=1

SSR : = i % —9)%,
i=1

SSE i =3 (yi—%i)° = e2 =SSE (b),
i=1 i=1

where
SST = sum of squares total, represents total variation in dependent variable,

SSR = sum of squares regression, represents variation explained by

regression,
SSE = sum of squares error, represents variation not explained by regression.

@ We show below that
SST =SSR + SSE,

ie.,
total sample variability = explained variability + unexplained variability.
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The Explanatory Power of a Linear Regression Equation

Y

/j:b0+ b,x
& =Y Y SSE

SST¢y,— ¥

RIfF——————————

Copyright 2013 Pearson Education, publishing as Prentice Hall

Figure: Partitioning of Variability
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Analysis of Variance

@ First,

Yi—y=0i-Y)+i-%).
i.e.,
observed deviation from mean = predicted deviation from mean + residual.

@ Squaring each side of this equation and summing over all n points, we have

A

i =Y) (i =¥i)-

IN%E
—
<

|
<i
N
N
Il

I%E
—
<>

|
<i
—
N
+

I%E
—
<

|
<>
e
+
N
e

@ Itcan be shown that 3", (i —y) (i —¥i) = 0, (or sye = 0) [exercise] so
SST =SSR+ SSE.

@ Recall that y; —y = by (x; —X), SO

n
SSR=Y (5i-y)° =bZ 3 (x—x)* =biSSTy.

i=1 i

Mo

- A larger |by | and/or more variations in x; [intuition here: check how y; varies with
Xj] induces a larger SSR [or a smaller SSE because SST is fixed].
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Example 11.2: Continued

Table 11.2 Actual and Predicted Values for Retail Sales per Household and Residuals from Its Linear Regression

on Income per Househol

RETAIL
STORE

1
2
3
4
5

INCOME
X)

55,772
55,890
56,068
56,299
56,825

57,850
57,975
57,992

58,240
58414
58,561
59,066
58,596

58,631

59,037

ReTai
SaLEs
)
21,88
21,934
21,69
21,901
21,812
21,714
21,932
2,08

22,265

22618
22,890
23112
2315
22,865

22,949

23,149

PREDICTED
RETAIL SALES

21,787
21,803
21,786
21,858
21,837
21,882
21,950
22,039

23,083

Sum of squared values

RESIDUAL
%
131
87
43
2
168
18

2
167
216
329
160

36,127

OBSERVED
DEVIATION FROM
THE MEAN

550
502
737
535

624

182
454
676
879
429
352
513
713

5,397,565

PREDICTED
DEVIATION FROM
THE MEAN

649

343
409
465
658
479
492
541
647
4961438

e Besides SST = SSR + SSE, note also that 37" ;

Ping Yu (HK
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Coefficient of Determination, R?

@ The R-squared of the regression, also called the coefficient of determination, is
defined as
SSR SST -SSE 1 SSE

SST  SST =~ SsT'
@ RZ measures the fraction of the total variation that is explained by the regression.
@ 0 <RZ< 1. When R2 = 0? When R2 = 17 [figure here]
- R2 tries to explain variation not level; a constant cannot explain variation (but
explains only level), so RZ = 0 if only the constant contributes to the regression,
i.e., by =0 sothat SSR = 0 and x cannot explain the variation of y [note that now
bo =y =¥l
- (*) R? is defined only if there is an intercept; we need to use the constant to
absorb the level of y, and then use x; to explain the variation of y;:

SSR = ZI 1 y| zl =1 b0+Xb1_7)
Zi:l 7—Xb1+Xib1—7 :b%Zizl

@ In Example 11.2, R? = 2:352:438 — 91.9% — percent explained variability.

RZ =

Ping Yu (HKU) Simple Linear Regression 31/74



The Explanatory Power of a Linear Regression Equation

R:=0 Ri=1
4 : . . . 2 : . . .
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Figure: Data Patterns for RZ=0and R2 =1

Ping Yu (H Simple Linear Regression 32/74



Global Interpretations of R?

@ Global interpretations of R2 that apply to all regression equations are dangerous.

@ For example, state that a model is good because its R? is above a particular value.
- For time series, R2 is 0.8 or above; for cross-section in the level of cities, states
and firms, R2 is in the [0.4,0.6] range; for cross-section in the level of individuals,
R? is often only in the [0.1,0.2] range.

@ For another example, in the figure of the next slide, for both datasets, n = 25, and
SSE = 17.89 [imply the same fitting], but SST; = 5,201.05 and SST, = 68.22
such that

17.89 17.89
2_q_ —0O9 ek 2
Ri=1 5’201_05—0997>0738 1 68.22 =R5.

-RZ2=1- 225 For two regression models, only if their SST'’s are the same, i.e.,

they try to explain the same set of y;'s, a larger R? implies a better fitting.

@ Why the notation R2? R2 = r2, where r is the sample correlation between y and
X. [exercise]
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The Explanatory Power of a Linear Regression Equation

Regression Model with High R Squared Regression Model with Low R Squared
Y1 =10.3558 + 1.99676 X Y2 =10.3558 + 1.96759 X
§=0881993 R-59=99.7%  R-Sqladj) =99.6% §=0.881993 R-S9=73.8%  R-Sqladj) =72.6%

60

50 -

40

Y1

30 +

20 +

@ Note the two different vertical axis intervals.
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Estimation of Model Error Variance

Recall that Var (£) = 6. An unbiased estimator of this population model error

variance is 5
SSE S e

~ 2 i=1"i

=S¢ = —— = =——_—. [see below

o e~ h_2 5 [ ]

The degree of freedom (df) of {e; }{L, is n — 2 because these n values must satisfy

two constraints — the two FOCs, so lose two df.

- There are two FOCs because we are estimating two parameters, B, and 8.

If there is no ¥, i.e., we regress y; on a constant 1,

yi = Bo+&i,Var (¢) = o2,

there is only one parameter.
The minimizer of 37, (y; — Bo)? is by =y (Why? by =0 = by = ¥), S0
SSE =37, e? =31, (vi—y)% and

SLi-9)?

~2
o, = :S'

where the df of {g;}{'_; is n— 1 because {e; =y; —y}{'_; satisfy only one
constraint 3, e; = 0).
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dfty, —y.y2—y)=n-1=1

H1+92=0

n
Figure: Although dim(y) =2, df(y) = 1, where y = (Y1,Y2) = (Y1 —V.Y2—¥)
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Statistical Inference: Hypothesis Tests and Confidence Intervals

Statistical Inference: Hypothesis Tests and
Confidence Intervals
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Unbiasedness of by

(X'ix)z are fixed constants because Xx;'s

@ Recall thatb; = 3! , ayj, where a; = ST 04—%)
1=

are fixed.
@ Becausey; = o+ B1Xi + &, E [gj] =0, and x; is fixed, we have E [y;] = g+ B1Xi-
@ Because b, is a linear function of y;,

Elb) = YaEl) :i 2 (Bo +Brx)

G
o

(Xi —

= ﬁo - 5 1

'zl ZJ 1 (XJ X) |zl Z, 1( )

Sty (X —X) Z. 1 (X —X) X
Bo +

3 (% -%)° ijl( | —X)?

= ﬁl,

where the last equality is because 37! ; (xi —x) =0 and
S (i —X)x =31 (xi — %)%
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Statistical Inference: Hypothesis Tests and Confidence Intervals
Variance of by

@ Becausey; = Bo+ 1% + &, and x; is fixed, Var (y;) = Var (&) = 62.
@ Because Cov (y;,yj) = Cov (g, &) =E [gig]] = 0ifi #],

2
n =
2 2.2 (Xi —X)
op, = Var(by)= ZaVar Yi) Zaafc Z —
i=1 =1\ 2k, 05 —X)
72
g2 2 (i mX) o? _o? o2

(ZJ 1 (% X)Z)Z S (6 —%)? T SSTe (n-1)s¢’

- Smaller 62, larger s§ and larger n imply smaller 7 . [figure here]

- Recall that a larger s implies a larger R? [SSR = b# (n — 1) sZ], indicating a
stronger relationship, so smaller-variance estimators of §; imply a better
regression model.

@ Because E [sg] =0?,

is an unbiased estimator of Gtzn'
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Statistical Inference: Hypothesis Tests and Confidence Intervals

Ping Yu (H
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(**) Proof of The Unbiasedness of s2

@ For our purpose, we need to derive the formula of 37! ; ei2.

@ Averaging (1) we have 0 =& =€ — (bg — Bg) — (by — B1)X, and subtracting this
from (1) we have e; = (& —€) — (b; — B1) (Xj —X). Therefore,

ef

(e —€)%+ (by — By)?

= (xi —X)? =2 (b1 — By)

(xi —X) (& —€).

M=
M=
-
&M=

@ First, from Lecture 5,
n =\ 2
E[ST, (-8 =(n-1)02

@ Second, since by — 1 =3 ; (xi —X) (&j —€) /SSTx [see the next slide], the third
term can be written as —2(b; — 8;)?SSTy, so the sum of the second and third
terms is —(by — B1)%SSTx.

@ Finally, since E[(by — 8;)?] = 62/SSTx, the expected value of —(b; — ;)?SSTx
is —o2; we lose this extra 62 due to the unknown 3.

@ Putting these three terms together gives

n
E[S1 ef]=(n-1)c*~0®=(n-2)c
so that E[s2] = o2.
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(*) Why by — B, = S, (i —X) (& —€) /SST?

@ Note that
by — B i (X —X)yi _Z{Ll(xi—i)xiﬁl
17 F1 SSTy SSTy
S (i —X) (i —xiB1)
h SSTy
St (i —X) (Bo + &)
SSTy
_ SiLi(i—%X) 3L (X —X)¢
= Po SSTy + SSTy
S (i —X) (g —&)

SSTx

where the first equality is because 5", (x; —X)x = 3, (x —X)?, the third
equality is because y; = By +X;B1 + €, and the last equality is because
Yy (xi—X)=0and 3, (xi —X)& = 3L, (X —X) (& —&).
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Distributions of by and bg

@ Ifg ~N (0,02), theny; ~N (ﬁo +ﬁ1xi,62>, and y; and y; are independent, so

by ~N (ﬁlvffﬁl)

because b, is normally distributed (as a linear function of independent y;’s) and a
normal distribution is determined by its mean and variance.

@ by is less important than by, but it can be shown that it is also linear in y;,
unbiased to By, and has variance

2 1 X2 2 :
Oy ==t 730" [exercise*]
" \n T (n-1)sE

SO

is an unbiased estimator of crgo.
@ Ifg ~N (O,cz),
bo ~ N (BO’GE)()) .
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Inference about ,: t Test

t test for a population slope: is there a linear relationship between X and Y ?

Data: {(x;,yi)}{,, where y; ~ N (B0+[31xl, ) or equivalently, & ~ N (0 c )

@ Null and Alternative Hypotheses:
Ho : B4 =0 (no linear relationship)
H; : B4 #0 (linear relationship does exist)
@ Test Statistic:
by By _b1-0_ by

t= ~ ty_» under Hg.

Sb1 Sb1 Sb1

(]

Decision Rule: reject Hg if [t| > t,_5 4 /2, Where a rule of thumb for t,_5 /5 is 2
which corresponds to @ = 0.05 and n —2 = 60 and provides a close approximation
when n > 30.

If y; is not normally distributed, but n is large, then t ~ N (0, 1) under Hq by the CLT.
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Statistical Inference: Hypothesis Tests and Confidence Intervals
More on the t Test

@ In Example 11.2, by =0.38152, and s, = 0.02529, so

b;  0.38152
or the p-value is P (|T| > 15.08) ~ 0, where T ~t,_» = tyq.
@ In conclusion, there is a strong (positive) relationship between retail sales and
disposable income.
@ Parallel to Lecture 6, we can consider the following three groups of hypotheses:
(i) Ho: By = [)'i*or Ho: B < ﬁ”{*vs. Hy: B> [3’{*;
(i) Ho: By = ﬁl*or Ho: By > B1 vs. Hy: B1<B1;
(i) Ho : By = B1 vs. Hy 'ﬁl # B1.
@ The decision rules are (|) ﬁl > th_2 o, (ii) bl ﬁl < —th_2 q; (iii)
b1 ﬁl

>ty 2 a/2-
- When €; is not normally distributed, but n is large, then the critical values change
t0 zg, —Zq and z, /5.
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Confidence Interval for 8,

@ From Lecture 7, the (1—a) Cl for B4 is
* by - 1
{ﬁ1| 1 ﬁl

Sb1
@ In Example 11.2, n = 22,b; = 0.3815, and sp, = 0.0253. If 1 — a = 99%,
tn—2,oc/2 =S t20,0_005 = 2.845, so the 99% Cl is

0.3815—2.845 x 0.0253 < 1 < 0.3815+ 2.845 x 0.0253

< tn—2,a/2} = [b1 —th_2.0/25h, .01 +th_2,.0/25p,] -

or
0.3095 < B < 0.4535.
nEt !I‘:‘-LII.I::E:.:;IIHI.“I [RE]

Lt e [}
0EEr [ERH LE

N L
0.3 CERT 526

Figure: 90%, 95%, and 99% ClI for 8 in the Retail Sales Example

@ 0 ¢ any of these Cls, so there is indeed a significant (positive) relationship
between Y and X.
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Hypothesis Test for 3, Using the F Distribution

@ An alternative test of Hy : B; =0 vs. Hy : B; # 0 is based on the variation
decomposition, SST = SSR + SSE.

@ Under Hg, both SSR and SSE can provide an unbiased estimate of 62.

@ Specifically, the mean square for regression,

MSR = SSTR =SSR,

and the mean square for error,

SSE 2
MSE = —— =
S — Se
are unbiased to 62, where the df of SSR is 1 because it refers to the single slope
coefficient.
@ We have shown that E [sg] = o2 regardless of B, = 0 or not, but why
E [SSR] = 6%?

o Recall that SSR = b2 57, (x; —X)? = b2SSTy. If B, =0,
E [b%] = E[(by— $1)?] = 0?/SSTx,
so E [SSR] = 62.
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Statistical Inference: Hypothesis Tests and Confidence Intervals

continue

@ In Lecture 6, we introduce the F distribution as the ratio of independent estimates
of the common variance.
@ It can be shown that SSR and SSE are indeed independent [proof not required],

SO
MSR  SSR

f=—=—"_"~F
MSE Sg 1,n-2

under Hy.
@ IfB; #0,E [bﬂ = Var (by) + 2 such that E [SSR] = 62 + B2SSTy > 62, so the
decision rule is
Reject HO if f > Fl,n—Z,(x-
@ In Example 11.2, from Table 11.2,

MSE = % = 21,806 and MSR = 4,961,438,

SO
MSR 4,961,438

MSE =~ 21,806
or the p-value is P (F > f) ~ 0, where F ~Fy ,_».
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Relationship with the t Test

@ Recall that . .
chi-square variable/1

F =
Ln=2 " independent chi-square variable/ (n — 2)’
and
- standard normal variable
n-2 \/independent chi-square variable/ (n —2)’
so

_ 42 _ 2 3
Fl,n—Z = tn72 and Fl,n—Z,a = tn_2'a/2.

- Rule of thumb: F1 n_20.05 = 22 =4ifn—-2=60, and is less than 4 if n — 2 > 60.

@ Also,
2

MSR  b2SSTy by 2

2 - 1
MSE S8 \/s2/SSTy

so the decisions based on f and t are exactly the same.
-Why? f >F1pn g4 ©t2>1t2 5 0 & [t >th_2a/2-

@ (*) The F test can be applied only to the two-sided test, and the null ; =0
although extensions are possible.

Sa=P(Fin2>Fin24) =P(t2,>Fin2a) =P (2] > VFin24) 50 /Fin 24 =th-2,as2, O

— 12
Fin-2a = tn 2,0/2"
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Prediction
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Point Prediction

@ The regression equation can be used to predict a value for y, given a particular x.

@ Given X =Xn11, Yn+1 = Bo+ B1Xn+1 +€ny1, and
E [Yn+1/Xnt1] == E [Yn1/X =Xn11] = Bo+ B1Xnt1-

@ We can predict either a single outcome y,,,; or its average value E [y, 1[Xn+1],
where yp 1 is more uncertain than E [y, 1|Xn, 1] because it contains an extra
term en,1. [figure here]

@ For both targets, our point predictions are ¥, .1 =bg+biXn11.

- This is obvious for E [yn11]Xnt1]-
- For yn41, because €, is not correlated with x,, .1 and we know only that
E [ens1] = 0 so the best prediction of €, 1 is its mean zero.
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Retail Sales and Disposable Income
Pred Retail Sales = 559 + 0.3815 X Income
23200

23000
22800
22600
22400

Pred Retail Sales

22200

22000

21800 T T T T T T T T
55500 56000 56500 57000 57500 58000 58500 59000 59500

X Income

Predict y,1 1

Pred Hatnll Sales

Hadail Snlss arad IHspoeahle Income
Frod Frsil Sl = 5621 ZARIEE o n

R
ERCI -
exdlin -
2200 -
ZE00D -

=IERD ) . . .
A LGDCE ST LDl el LUICH SR BTN ML
¥ Ircoma

Predict E [y 1 1]

@ Y1 is more uncertain than E [y, 1 [Xn11]-
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Simple Linear Regression

52/74



Interval Prediction
@ Often, we want to construct interval predictions for y, 1 and E [y 1/Xn+1], which

should be different for these two targets since the former is more uncertain than
the latter.

@ The interval for the former is called a prediction interval (PI) because we are
predicting the value for a single point (i.e., the value of a r.v.), while the latter is
called a confidence interval (Cl) because it is the interval for the expected value.

@ Suppose the standard regression assumptions hold, and & ~ N (0, 62>, then
E [{(bo +b1Xni1) —E [Yn+1\xn+1]}2]

E [{(bo—Bo) +Xn+1 (b1 —B1)}

E [(bo — Bo)?| + X2 1E (b1~ B1)*| +2%n+1E [(Bo — Bo) (b1 — By)]

_ (1, % 2,2 O X 2

= <ﬁ+ SST, > " Xni1 55T, T (*ﬁ) °

— |:1+(X”+1_)_()2

2
n SSTy

where Cov (bg,by) = 7%62, [exercise*] (intuition?)
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continue

@ and
E [{(bo +b1Xnt1) — yn+l}2]
= E[{(Bo+b1xns1) ~E Yneapina))?] +E [€3,4]

1 (Xn+17)_()2

14+ = 2
+ n + SSTyx

o,

where the cross term does not appear because (bg +biXn+1) — E [Yn+1]Xn+1] is linear in
{&}.;, while &, is uncorrelated with {&;}_,.
- (*) Specifically, because

n ) Xj —X
blfﬁl = Z ;& with aj = %,
i=1 31 (5 —X)
and similarly
n
bo—Bo =3 cig;
i=1

for some constants c;, we have

(bo +b1Xn11) — E [Ynia[Xnia]

(bo —Bo) +Xnt1 (b1 —B1)

n

n n
= D CiEi+Xni1 ) A& = Z Ci +aiXn11) &i-
i=1 i=1
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continue

@ We can show [proof not required] that

(bo +b1Xns1) —E [Yni1lXnta]

> tn72x
1, (Xnp1—X)
7+ s,
(bo +b1Xnt1) —Ynt1 ;
n—-2-

1 Xn *)_()2
14 5+ g

@ As aresult, the (1 — «) prediction interval for y, 4 is

N 1, (Xnt1—%)°
Yn+1tth-2a/2-Se \/1+ n + ngsi-rxy

and the (1 — o) confidence interval for E [y, 11 [Xn11] is

X 1—
Ynt1Eth-2,a/2" Sev n;STX
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Example 11.3: Forecasting Retail Sales

@ If the disposal income per household x, ;1 = 58,000, predict the first year retail
sales y, 1 and the long-run retail sales E [y, 1(Xy+1] @and construct Pl and Cl.

® Yn+1 =bg+bixn 1 =559+ 0.3815 x 58,000 = 22, 686.
@ Since n =22,X =57,342,SSTx = 34,084,596, and sé = 21,806, the standard
error for predicting yn 1 by Yn41 is

1 (Xpp1— (58,000 — 57,342)2
14 -4 Uil = %) o1 Tl — 151.90.
s’3\/ Tt SSTx 806y/1+5 + 34,084,596 51.90

@ Similarly, the standard error for predicting E [yn 1 [Xn+1] BY Yn+1 is

1 (Xpp1—%X)2 1 (58,000-57,342)%
se\| 5+ ST = \/21,806)/ 55 + 34 084 505~ = 3561 <151.90.

@ As aresult, the 95% PI at x,. 1 = 58,000 is
22,686 10 0.025151.90 = 22,686 + 317 = [22369, 23003],
and the 95% Cl at x,, . ; = 58,000 is
22,686 10 0.02535.61 = 22,686 + 74 = [22612,22760] C [22369, 23003].
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Comments on the Pl and CI

@ nis larger, the standard errors for the two predictions are smaller and the PI and
Cl are narrower; that is, the more information is available, the more confident we
will be about our prediction.

-n1,SSTyx = (n—1)sZ 1: (*) because

— — 1 —
S i =Xn)2 <ST (6~ Kng1)? < T (6= Xng1)?
The larger se is, the wider the CI [because o and f; can be estimated less
precisely] and PI [further, Var (e,,1) is larger].

The larger s? is, the narrower the Pl and Cl are [because B, and 8, can be
estimated more precisely].

© 0 ©o

The larger (X1 7)—()2 is, the wider the Pl and Cl are. [figure here]

@ X1 should be in the range of {x;}!_,; otherwise, the prediction is not reliable.
- Not only because the Pl and Cl at such an x,, 1 are wide, but because the linear
extrapolation with the same by and b; need be justified.

@ Note that when n is large, for the Cl, we need not assume &; ~ N (0, 62),
i=1,---,n+1, but for the PIl, we must assume &, 1 ~ N(O,oz).
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Prediction

Confidence
Interval for the
expected value

of y, given x,. J\’_

~

—

N
y= b0+b1an /l

Prediction Interval
for an single

observed y, given x..

X X

Figure: Pl and Cl as functions of Xp1
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Correlation Analysis

Correlation Analysis
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Testing No Correlation Between X and Y

@ Assumption: X and Y are jointly normally distributed, i.e.,

(é )~N(u,2),

2
u:(ux)andZ:( OX pGXZGY).
Hy poxoy oy
°H0:p:0.

- Hp implies B, = 0 in the regression Y = B+ X + €, where

where

B _Cov(X,Y) oy
Bo=uy —Bilx,and B, = TO() —Pa

are the population counterparts of by and by, and because X and ¢ are
uncorrelated (recall the sample counterpart sye = 0)

e~N (O,G% —ﬁ%c)z() =oy-N (O,l—pz) '
i.e., the error variance in this simple linear regression is a$ (1 —pz).
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continue

@ From Exercise 11.47,
t— bl N r
Se/+/SSTx \/(142)/“72.

- |t| is an increasing function of |r|, so the tests based on [t| and |r| are equivalent.
@ So our test statistic

(V-2
Vi-r?’
follows the t,,_, distribution under Hg.
@ IfHy : p >0, then the decision rule: reject Hg if t > t,_5 4.
@ If Hy : p <0, then the decision rule: reject Hp if t < —ty_5 4.
@ If Hy : p # 0, then the decision rule: reject Hy if [t| > t, 5 4/2.
@ Rule of Thumb: setty_5 /2 = 2, then |t| > t,_5 /2 is approximately |r| > Ln

=
-n =25, 64, and 100, the critical values are 0.4, 0.25, and 0.2, respectively.
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Example 11.4: Political Risk Score

@ We want to check whether political risk is related to inflation in 49 countries, i.e.,
Ho:p =0 vs. Hy : p > 0. The sample correlation between the political risk score
(assessed by political experts) and inflation is 0.43.

@ The test statistic

_rh-2_043/49-2
Vi-rz  1-0432

@ Sincet > ty9_5 .05 = 2.704, we reject the null at the 5% level, and conclude that

there is a positive linear relationship between inflation and experts’ judgements of
political riskiness.

t

@ The conclusion is the same based on the rule of thumb: 0.43 > \/% = 0.286.

@ Recall that correlation does not imply causality.
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Graphical Analysis

(*) Graphical Analysis
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- GraphicalAnalysis |
Extreme Points and Leverage

@ Our analysis above is valid only if the Linear Regression Assumptions hold.
@ We can use graphs to check the validity of these assumptions.

@ Extreme points are points that have X values deviating substantially from other X
values.

@ Recall that

E [{(bo +buxn11) —E Ynsabnial}] =

so the leverage

1, (=%
n ' SSTy
is key to the width of the Cl at X = x;.

- When x; is farther away from the center of x;’s, the Cl would be wider.

@ Rule of Thumb for high leverage: h; > 3p/n, where p is the number of predictors
(including the constant).
- In this lecture, p = 2, so h; > 6/n is the rot.

hi = S [0,1]
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Graphical Analysis

Example 11.6: The Effect of Extreme X Values

y2 =11.74 + 0.9145 X2

8.41488
Sq 63.2%
Sq(adj) 61.7%

100+

90 Extr_eme
points

80|

S
R-
R-

70
60 -

y2

50
401
30

20

104

0 10 20 30 40 50 60 70 80
x2

Copyrght ©2013 Pearson Education, publishing as Prentice Hall

Figure: Scatter Plot with Two Extreme X Points: Positive Slope

@ It seems that there is a significantly positive relationship: the t test rejects the null
of B, = 0 with the p value close to zero.

Ping Yu (HKU) Simple Linear Regression 65/74



Graphical Analysis

Example 11.6: ONLY the Y Values for Two Extreme Points Changed

Y =53.19 - 0.4626 X

4 S 6.27612
50 . * o R-Sq 44.1%
o R-Sq(adj) 41.9%
. .
...
40+ -\
L
~ L4
.
. N
> 30 . \
204 \\
Extreme
104 points .

0O 10 20 30 40 50 60 70 80
X

Copyright £2013 Pearson Education, publishing s Prentice Hall

Figure: Scatter Plot with Two Extreme X Points: Negative Slope

@ It seems that there is a significantly negative relationship: the t test rejects the null
of B, = 0 with the p value close to zero.
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Outlier Points and Residual Analysis

@ Outlier points are points that deviate substantially in the Y direction from the
predicted value.
- Note that extreme points deviate in the X direction.

@ These points can be identified by the standardized residual
i

Se\/l—hi'

€is =

@ Rule of Thumb for outliers: |ejs| > 2.
@ Recall that ej = &j — (bg — Bg) — (b1 — B1) Xi. We can show [exercise*]

Var (ej) = 62 (1—h;),

where note that ¢; is correlated with by and b;.
@ So e is a studentized version of g;.

@ Note that h; is high, se(e;) is low!
- This is because the fitting line is pulled to the high leverage points, so the
corresponding e; tends to be small.
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Example 11.7: The Effect of Outlier Y Values

Y1 =-4.96 + 11.88 X1

9004 64.7786
91.7%

S
R-Sq
R-Sq(adj) 91.4%

800 -

700
600
500

Y1

400
300
200+
100+

0 10 20 30 40 50 60
X1

Copyright £2013 Pearson Education, publishing as rentice Hall

Figure: Scatter Plot with Anticipated Pattern

@ b; = 11.88 is significantly positive with the p value close to zero.
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Example 11.7: Two Outlier Y Values

Y1 =183.9 + 6.400 X1

900
192.721
800 -Sq 26.6%
-Sqladj) 23.7%
7004
600+
5004
-
> 400
3004
2004 .
. Outlier
1004 . points
.
o4 * o
0 10 20 30 40 50 60

X1

Copyright ©2013 Pearson Educaton, publishing s Prentice Holl

Figure: Scatter Plot with Y Outlier Points

@ b, changes to 6.4, much smaller than 11.88 (why?), and has a much larger se
(because the two e;’s are large) such that 3, is not as significant as before.
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How to Address Extreme and Outlier Points?

@ The extreme and outlier points may be generated in the normal operation of the
process. In this case, they should be kept.

@ On the other hand, the extreme x;’s may be due to unusual conditions (e.g.,
COVID made the hiring of workforce X unusually low) or recording errors, so
should be discarded.

@ Similarly, the outlier y;’s may be due to unusual conditions (e.g., COVID made the
output Y unusually low) or measurement errors.

@ In summary, you should have a good understanding of the process, and decide,
based on your model and logic, whether the extreme and outlier points should
remain or be removed.
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Multiple Linear Regression

(**) Multiple Linear Regression
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Introduction

Idea: Examine the linear relationship between 1 dependent (Y) & 2 or more
independent variables (X;).

Multiple Regression Model with K Independent Variables:
Y =Bo+B1Xs +BXo+ -+ P Xk + &, 2
where
By is the Y -intercept,
B1.---, Bk are population slopes,
¢ is the random error.
This model enables us to determine the simultaneous effect of several

independent variables on a dependent variable using the least squares principle.

Applications:

- The quantity of goods sold is a function of price, income, advertising, price of
substitute goods, and other variables.

- Salary is a function of experience, education, age, and job rank.
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Multiple Linear Regression

Least Squares Procedure

@ Like the simple linear regression case, define residuals at arbitrary  as
K
& (B)=Yi—Bo— 1 BiXi-

@ Then minimize the sum of squared errors:
_ B _ n ) _ n K 2
ﬁo?ﬁﬁ,i 188E B) = ﬁogjr}lr;i;ei (B)" = ﬁogjr}[j;i; (Yi —Bo —jzlﬁixji>
— b= (b0 {b},).
@ The FOCs are
zi“:lei = 0, (3)
zi”:lx,-iei = 0,j=1- K,

where ej =y; —bg — Zszl bjx;i with (bo, {b; }szl) being the minimizer.
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Explanatory Power, Inferences and Prediction

@ R2— SSR _ 1 _ SSE

SST SsT-
0 562=s2=_5FE = Z. 181 is an unbiased estimator of o2

) o-%l is a complicated function of n, SSTj’s, the correlations between Xj’s, and o2,
where SST; := SSTy, = (n—1)s%.

b —BF . . .
®ty = 'STJBJ ~th—k—1 under Hp : §j = BJ-*, where sgj is an unbiased estimator of o-%j.

@ This implies that the (1 —a) Cl for §; is

(o[22

Sp,
@ We can also test on multiple regression coefficients using the F statistic.

]
@ In prediction, the Pl and CI can be similarly constructed as in the simple linear
regression, usually relying on software.

< tn—K—l,a/Z} = [bj —th-Kk-1,0/25b;,. bj +th-k—1,0/25h,
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