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Plan of This Lecture

Overview of Linear Models

Linear Regression Model

Least Squares Coefficient Estimators

The Explanatory Power of a Linear Regression Equation

Statistical Inference: Hypothesis Tests and Confidence Intervals

Prediction

Correlation Analysis

Beta Measure of Financial Risk (tutorial)

Graphical Analysis

Multiple Linear Regression (Chapter 12)
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Overview of Linear Models

Linear Models

Although the relationship between two variables Y and X can be any nonlinear
function,

Y = f (X ) ,

it is often convenient to use a linear function to model or approximate such a
relationship.
An equation can be fit to show the best linear relationship between two variables:

Y = β 0+β 1X ,

where

Y is the dependent variable ,

X is the independent variable,

β 0 is the Y -intercept,

β 1 is the slope.

Dependent variable: the variable we wish to explain (aka the endogenous
variable).
Independent variable: the variable used to explain the dependent variable (also
called the exogenous variable).
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Overview of Linear Models

[Example] Table Production

Figure: Linear Function and Data Points

β 1 is usually more important than β 0; in this example, it means that each
additional worker, X , increases the number of tables produced, Y , by 2.545.

Now, the management can determine if the value of the increased output is
greater than the cost of an additional worker.
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Overview of Linear Models

Least Squares Regression

The coefficients β 0 and β 1 are usually unknown, so we use samples (or data, or
observations) to estimate them.
Estimates for coefficients β 0 and β 1 are found using a Least Squares Regression
technique.
The least-squares regression line, based on sample data, is

ŷ = b0+b1x ,

where b1 is the slope of the line and b0 is the y -intercept:

b1 =
sxy

s2
x
=

rsx sy

s2
x

= r
sy

sx
, and b0 = ȳ �b1x̄ .

- sxy is involved in b1 because both Cov (X ,Y ) and β 1 meansure the linear
relationship between X and Y .
The details of deriving b0 and b1 will be discussed below.
Regression analysis is used to:
- Explain the impact of changes in an independent variable on the dependent
variable [last slide].
- Predict the value of a dependent variable based on the value of at least one
independent variable [next slide].
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Overview of Linear Models

[Example] Revisited

In the figure above,

sxy = 106.93,s2
x = 42.01, ȳ = 41.2, x̄ = 21.3,

so

b1 =
sxy

s2
x
=

106.93
42.01

= 2.545,

b0 = ȳ �b1x̄ = 41.2�2.545�21.3= �13.02.

For 25 employees we expect to produce

ŷ = b0+b1�25= �13.02+2.545�25= 50.605� 51.

The extrapolation out of the range of X , [11,30], may not be reliable.
- For example, b0 = �13.02 does not mean that when x = 0 worker, we will
produce �13.02 tables because 0 is far from the range of X .
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Linear Regression Model

Linear Regression Model
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Linear Regression Model

Linear Regression Population Model

In the example of table production, the data points (xi ,yi ) do not fall exactly on a
straightline.

This is understandable, because there are many other factors that can affect the
table production (besides the number of workers), e.g., the price of tables, the
wage of workers, the price of timber, and many unknown factors.

The population model for linear regression is

Y = β 0+β 1X + ε,

where we use the random error term ε to cover all factors other than X , and β 0
and β 1 are the population model coefficients which are unknown and need to be
estimated.

For a random sample from the population, (xi ,yi ),

yi = β 0+β 1xi + ε i . [figure here]

We assume E [εjX = x ] = 0, so

E [Y jX = x ] = β 0+β 1x .
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Linear Regression Model
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Linear Regression Model

Linear Regression Assumptions

1 The true relationship form is linear (Y is a linear function of X , plus random error).
2 The x values are fixed numbers, or they are realizations of random variable X that

are independent of the error terms, fε ign
i=1. In the later case inference is carried

out conditionally on the observed values of fxign
i=1.

3 The error terms are random variables with mean 0 and variance σ2. This uniform
variance property is called homoscedasticity:

E [ε i ] = 0 and E
h
ε

2
i

i
= σ

2 for i = 1, � � � ,n.

- The spreading of any two error terms is the same.
4 The random error terms, ε i , are not correlated with one another, so that

E
�
ε i ε j

�
= 0 for all i 6= j.

- A large ε i does not help to predict other ε i ’s.
- This is weaker than independence of ε i .
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Linear Regression Model

Estimated Regression Model

Because β 0 and β 1 are unknown, we can use the data to estimate them based on
least squares.

Denote the estimator of β 0 and β 1 as b0 and b1; then

yi = b0+b1xi +ei ,

where the residual

ei = yi � ŷi

= yi � (b0+b1xi )

can be treated as an estimate of ε i (which is not observable because
ε i = yi �β 0�β 1xi and (β 0,β 1) is unknown), and ŷi is the predicted yi at xi which
estimates E [Y jX = xi ].

Note that ei 6= ε i if b0 6= β 0 and/or b1 6= β 1:

ei = β 0+β 1xi + ε i � (b0+b1xi )
= ε i � (b0�β 0)� (b1�β 1)xi .

(1)

In the figure below, note that ei can be either positive or negative.
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Linear Regression Model
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Linear Regression Model

Example 11.2: Sales Prediction for Northern Household Goods

The target is to predict total sales for proposed new retail store locations (to
determine where new stores should be located).
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Linear Regression Model

∆x = 1=) ∆ŷ = 0.3815; ŷ when x = 55000 is 559+0.3815�55000= $21542.
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Least Squares Coefficient Estimators

Least Squares Coefficient Estimators
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Least Squares Coefficient Estimators

History of "Ordinary" Least Squares (OLS)

The least-squares method is usually credited to Gauss (1809), but it was first
published as an appendix to Legendre (1805) which is on the paths of comets.
Nevertheless, Gauss claimed that he had been using the method since 1795 at
the age of 18.

C.F. Gauss (1777-1855), Göttingen A.-M. Legendre (1752-1833), Éole Normale
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Least Squares Coefficient Estimators

OLS Estimation

The OLS estimates of β = (β 0,β 1) try to fit as good as possible a regression line
through the data points:

Figure: ei (β ) for Three Possible β Values β
1,β 2 and β

3: n = 10

Ping Yu (HKU) Simple Linear Regression 18 / 74



Least Squares Coefficient Estimators

What Does "As Good As Possible" Mean?

Define residuals at arbitrary β as

ei (β ) = yi �β 0�β 1xi .

Minimize the sum of squared errors [figure here]:

min
β 0,β 1

SSE (β ) � min
β 0,β 1

n

∑
i=1

ei (β )
2 = min

β 0,β 1

n

∑
i=1
(yi �β 0�β 1xi )

2

=) b = (b0,b1) ,

where b is the solution to the first order conditions (FOCs) for the OLS estimates.

It turns out that

b1 =
∑n

i=1 (xi �x) (yi �y)

∑n
i=1 (xi �x)2

b0 = y �xb1.
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Least Squares Coefficient Estimators

Figure: Objective Functions of OLS Estimation
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Least Squares Coefficient Estimators

(*) FOCs for Minimization

To minimize SSE (β ), necessary conditions are

∂SSE (b)
∂β 0

: =
∂SSE (β )

∂β 0

����
β=b

= 0,

∂SSE (b)
∂β 1

: =
∂SSE (β )

∂β 1

����
β=b

= 0,

where ∂SSE(β )
∂β 1

���
β=b

= lim∆!0
SSE(b0,b1+∆)�SSE(b0,b1)

∆ , and ∂SSE(β )
∂β 0

���
β=b

is

similarly defined.

Since SSE (β ) is convex, i.e., it is like a bowl, these necessary conditions are also
sufficient.

Recall that dx2

dx = 2x and d(ax+b)
dx = a, so by the chain rule,

∂ (yi �β 0�β 1xi )
2

∂β 0
= 2 (yi �β 0�β 1xi )

∂ (yi �β 0�β 1xi )

∂β 0
= �2 (yi �β 0�β 1xi ) ,

∂ (yi �β 0�β 1xi )
2

∂β 1
= 2 (yi �β 0�β 1xi )

∂ (yi �β 0�β 1xi )

∂β 1
= �2xi (yi �β 0�β 1xi ) .
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Least Squares Coefficient Estimators

(*) Derivation of OLS Estimates

As a result, the FOCs are

�2∑n
i=1 (yi �b0�b1xi ) = 0,

�2∑n
i=1 xi (yi �b0�b1xi ) = 0,

?1
()

1
n ∑n

i=1 (yi �b0�b1xi ) = 0,
1
n ∑n

i=1 xi (yi �b0�b1xi ) = 0.

From the first equation,

y = b0+ xb1 =) b0 = y �xb1.

Substituting b0 into the second equation, we have

1
n ∑n

i=1 xi [yi � (y �xb1)�b1xi ] = 0
=) 1

n ∑n
i=1 xi (yi �y)� 1

n ∑n
i=1 xi (xi �x)b1 = 0

=) 1
n ∑n

i=1 xi (yi �y) = b1
1
n ∑n

i=1 xi (xi �x)

=) b1 =
∑n

i=1 xi (yi�y)
∑n

i=1 xi (xi�x)
?
= ∑n

i=1(xi�x)(yi�y)

∑n
i=1(xi�x)2

=
1

n�1 ∑n
i=1(xi�x)(yi�y)

1
n�1 ∑n

i=1(xi�x)2
=

sxy

s2
x
= r sy

sx
,

1First devide the constant �2 and then multiply the constant 1
n .
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Least Squares Coefficient Estimators

(*) More Details

The second equality of b1 is because

n

∑
i=1

xi (yi �y)�
n

∑
i=1
(xi �x) (yi �y) =

n

∑
i=1
[xi � (xi �x)] (yi �y) =

n

∑
i=1

x (yi �y)

= x
n

∑
i=1
(yi �y)

?2
= x (ny �ny) = 0,

n

∑
i=1

xi (xi �x)�
n

∑
i=1
(xi �x)2 =

n

∑
i=1

x (xi �x) = 0.

- Summing the product of two demeaned terms need only demean one of them.

Alternative Expression for b1:

b1 =
∑n

i=1 (xi �x)yi

∑n
i=1 (xi �x)2

=
n

∑
i=1

(xi �x)

∑n
j=1

�
xj �x

�2 yi ,

i.e., b1 is linear in yi ’s, which will be used in deriving Var (b1).

2y = 1
n ∑n

i=1 yi , so ∑n
i=1 yi = ny .
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Least Squares Coefficient Estimators

Fitted Values and Residuals

by = b0+b1x = (y �xb1)+b1x = y +b1 (x �x) or

by �y = b1 (x �x) ,

i.e., the fitted line always passes through the point (x ,y).

The fitted or predicted values

ŷi = b0+b1xi = y +b1 (xi �x) .

The residuals ei satisfy the two FOCs.

∑n
i=1 ei = 0: it must be the case that some residuals are positive and others are

negative, so the fitted regression line must lie in the middle of the data points.

∑n
i=1 xiei = 0:

sxe =
1

n�1

n

∑
i=1
(xi �x) (ei �e) =

1
n�1

n

∑
i=1

xi (ei �e) =
1

n�1

n

∑
i=1

xiei = 0.

where the second equality is because we need only demean one of x and e, and
the second to last equality is because e = 0.
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Least Squares Coefficient Estimators

Computer Computation of Regression Coefficients

The coefficients b0 and b1 and other regression results in this chapter, will be
found using a computer.
- Hand calculations are tedious.
- Statistical routines are built into Excel.
- Other statistical analysis software like Stata or R can be used.

b0 is the estimated average value of y when the value of x is zero (if x = 0 is in the
range of observed x values).

b1 is the estimated change in the average value of y as a result of a one-unit
change in x .

The tutor will show you how to use Excel to produce b0 and b1 and other statistics.
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The Explanatory Power of a Linear Regression Equation

The Explanatory Power of a Linear Regression
Equation
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The Explanatory Power of a Linear Regression Equation

Measures of Variation

How well does the explanatory variable explain the dependent variable?
Measures of Variation:

SST : =
n

∑
i=1
(yi �y)2 ,

SSR : =
n

∑
i=1
(byi �y)2 ,

SSE : =
n

∑
i=1
(yi �byi )

2
=

n

∑
i=1

e2
i = SSE (b) ,

where
SST = sum of squares total, represents total variation in dependent variable,
SSR = sum of squares regression, represents variation explained by

regression,
SSE = sum of squares error, represents variation not explained by regression.

We show below that
SST = SSR+SSE ,

i.e.,

total sample variability= explained variability+unexplained variability.

Ping Yu (HKU) Simple Linear Regression 27 / 74



The Explanatory Power of a Linear Regression Equation

Figure: Partitioning of Variability
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The Explanatory Power of a Linear Regression Equation

Analysis of Variance

First,
yi � ȳ = (ŷi � ȳ)+ (yi � ŷi ) ,

i.e.,

observed deviation from mean= predicted deviation from mean+ residual.

Squaring each side of this equation and summing over all n points, we have

n

∑
i=1
(yi � ȳ)2 =

n

∑
i=1
(ŷi � ȳ)2+

n

∑
i=1
(yi � ŷi )

2+2
n

∑
i=1
(ŷi � ȳ) (yi � ŷi ) .

It can be shown that ∑n
i=1 (ŷi � ȳ) (yi � ŷi ) = 0, (or sŷe = 0) [exercise] so

SST = SSR+SSE .

Recall that byi �y = b1 (xi �x), so

SSR =
n

∑
i=1
(ŷi � ȳ)2 = b2

1

n

∑
i=1
(xi �x)2 = b2

1SST x .

- A larger jb1j and/or more variations in xi [intuition here: check how byi varies with
xi ] induces a larger SSR [or a smaller SSE because SST is fixed].
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The Explanatory Power of a Linear Regression Equation

Example 11.2: Continued

Besides SST = SSR+SSE , note also that ∑n
i=1 ei = 0 such that ȳ = ŷ + ē = ŷ .

Ping Yu (HKU) Simple Linear Regression 30 / 74



The Explanatory Power of a Linear Regression Equation

Coefficient of Determination, R2

The R-squared of the regression, also called the coefficient of determination, is
defined as

R2 =
SSR
SST

=
SST �SSE

SST
= 1� SSE

SST
.

R2 measures the fraction of the total variation that is explained by the regression.

0� R2 � 1. When R2 = 0? When R2 = 1? [figure here]
- R2 tries to explain variation not level; a constant cannot explain variation (but
explains only level), so R2 = 0 if only the constant contributes to the regression,
i.e., b1 = 0 so that SSR = 0 and x cannot explain the variation of y [note that now
b0 = ȳ = ŷi ].
- (*) R2 is defined only if there is an intercept; we need to use the constant to
absorb the level of y , and then use xi to explain the variation of yi :

SSR = ∑n
i=1 (byi �y)2 =∑n

i=1 (b0+ xib1�y)2

= ∑n
i=1 (y �xb1+ xib1�y)2 = b2

1 ∑n
i=1 (xi �x)2 .

In Example 11.2, R2 = 4,961,438
5,397,565 = 91.9% – percent explained variability.
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The Explanatory Power of a Linear Regression Equation
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Figure: Data Patterns for R2 = 0 and R2 = 1
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The Explanatory Power of a Linear Regression Equation

Global Interpretations of R2

Global interpretations of R2 that apply to all regression equations are dangerous.

For example, state that a model is good because its R2 is above a particular value.
- For time series, R2 is 0.8 or above; for cross-section in the level of cities, states
and firms, R2 is in the [0.4,0.6] range; for cross-section in the level of individuals,
R2 is often only in the [0.1,0.2] range.

For another example, in the figure of the next slide, for both datasets, n = 25, and
SSE = 17.89 [imply the same fitting], but SST1 = 5,201.05 and SST2 = 68.22
such that

R2
1 = 1� 17.89

5,201.05
= 0.997> 0.738= 1� 17.89

68.22
= R2

2 .

- R2 = 1� SSE
SST . For two regression models, only if their SST ’s are the same, i.e.,

they try to explain the same set of yi ’s, a larger R2 implies a better fitting.

Why the notation R2? R2 = r2, where r is the sample correlation between y and
x . [exercise]
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The Explanatory Power of a Linear Regression Equation

Note the two different vertical axis intervals.
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The Explanatory Power of a Linear Regression Equation

Estimation of Model Error Variance

Recall that Var (ε) = σ2. An unbiased estimator of this population model error
variance is

σ̂
2 = s2

e =
SSE
n�2

=
∑n

i=1 e2
i

n�2
. [see below]

The degree of freedom (df) of feign
i=1 is n�2 because these n values must satisfy

two constraints – the two FOCs, so lose two df.
- There are two FOCs because we are estimating two parameters, β 0 and β 1.

If there is no xi , i.e., we regress yi on a constant 1,

yi = β 0+ ε i ,Var (ε) = σ
2
y ,

there is only one parameter.

The minimizer of ∑n
i=1 (yi �β 0)

2 is b0 = ȳ (why? b1 = 0) b0 = ȳ ), so

SSE = ∑n
i=1 e2

i = ∑n
i=1 (yi � ȳ)2, and

σ̂
2
y =

∑n
i=1 (yi � ȳ)2

n�1
= s2

y ,

where the df of feign
i=1 is n�1 because fei = yi � ȳgn

i=1 satisfy only one
constraint ∑n

i=1 ei = 0).
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The Explanatory Power of a Linear Regression Equation

df(y1� ȳ ,y2� ȳ )= n�1= 1

0

0

Figure: Although dim(ey) = 2, df(ey) = 1, where ey = (ey1,ey2) = (y1� ȳ ,y2� ȳ)
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Statistical Inference: Hypothesis Tests and Confidence Intervals

Statistical Inference: Hypothesis Tests and
Confidence Intervals
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Statistical Inference: Hypothesis Tests and Confidence Intervals

Unbiasedness of b1

Recall that b1 = ∑n
i=1 aiyi , where ai =

(xi�x)

∑n
j=1(xj�x)2

are fixed constants because xi ’s

are fixed.

Because yi = β 0+β 1xi + ε i , E [ε i ] = 0, and xi is fixed, we have E [yi ] = β 0+β 1xi .

Because b1 is a linear function of yi ,

E [b1] =
n

∑
i=1

aiE [yi ] =
n

∑
i=1

ai (β 0+β 1xi )

= β 0

n

∑
i=1

(xi �x)

∑n
j=1

�
xj �x

�2 +β 1

n

∑
i=1

(xi �x)xi

∑n
j=1

�
xj �x

�2
= β 0

∑n
i=1 (xi �x)

∑n
j=1

�
xj �x

�2 +β 1
∑n

i=1 (xi �x)xi

∑n
j=1

�
xj �x

�2
= β 1,

where the last equality is because ∑n
i=1 (xi �x) = 0 and

∑n
i=1 (xi �x)xi = ∑n

i=1 (xi �x)2.
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Statistical Inference: Hypothesis Tests and Confidence Intervals

Variance of b1

Because yi = β 0+β 1xi + ε i , and xi is fixed, Var (yi ) = Var (ε i ) = σ2.
Because Cov

�
yi ,yj

�
= Cov

�
ε i ,ε j

�
= E

�
ε i ε j

�
= 0 if i 6= j ,

σ
2
b1

= Var (b1) =
n

∑
i=1

a2
i Var (yi ) =

n

∑
i=1

a2
i σ

2 = σ
2

n

∑
i=1

0@ (xi �x)

∑n
j=1

�
xj �x

�2
1A2

= σ
2 ∑n

i=1 (xi �x)2�
∑n

j=1

�
xj �x

�2�2 =
σ2

∑n
i=1 (xi �x)2

=
σ2

SSTx
=

σ2

(n�1)s2
x
.

- Smaller σ2, larger s2
x and larger n imply smaller σ2

b1
. [figure here]

- Recall that a larger s2
x implies a larger R2 [SSR = b2

1 (n�1)s2
x ], indicating a

stronger relationship, so smaller-variance estimators of β 1 imply a better
regression model.

Because E
h
s2

e

i
= σ2,

s2
b1
=

s2
e

SSTx
=

s2
e

(n�1)s2
x

is an unbiased estimator of σ2
b1

.
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Statistical Inference: Hypothesis Tests and Confidence Intervals
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Statistical Inference: Hypothesis Tests and Confidence Intervals

(**) Proof of The Unbiasedness of s2
e

For our purpose, we need to derive the formula of ∑n
i=1 e2

i .
Averaging (1) we have 0= e = ε� (b0�β 0)� (b1�β 1)x , and subtracting this
from (1) we have ei = (ε i � ε)� (b1�β 1) (xi �x). Therefore,

n

∑
i=1

e2
i =

n

∑
i=1
(ε i � ε)2+(b1�β 1)

2
n

∑
i=1
(xi �x)2�2 (b1�β 1)

n

∑
i=1
(xi �x) (ε i � ε) .

First, from Lecture 5,

E
h
∑n

i=1 (ε i � ε)2
i
= (n�1)σ

2.

Second, since b1�β 1 = ∑n
i=1 (xi �x) (ε i � ε)/SSTx [see the next slide], the third

term can be written as �2(b1�β 1)
2SSTx , so the sum of the second and third

terms is �(b1�β 1)
2SSTx .

Finally, since E [(b1�β 1)
2] = σ2/SSTx , the expected value of �(b1�β 1)

2SSTx
is �σ2; we lose this extra σ2 due to the unknown β 1.
Putting these three terms together gives

E [∑n
i=1 e2

i ] = (n�1)σ
2�σ

2 = (n�2)σ
2,

so that E [s2
e ] = σ2.
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Statistical Inference: Hypothesis Tests and Confidence Intervals

(**) Why b1�β 1 = ∑n
i=1 (xi �x) (ε i � ε)/SSTx?

Note that

b1�β 1 =
∑n

i=1 (xi � x̄)yi

SSTx
� ∑n

i=1 (xi � x̄)xi β 1

SSTx

=
∑n

i=1 (xi � x̄) (yi �xi β 1)

SSTx

=
∑n

i=1 (xi � x̄) (β 0+ ε i )

SSTx

= β 0
∑n

i=1 (xi � x̄)
SSTx

+
∑n

i=1 (xi � x̄)ε i

SSTx

=
∑n

i=1 (xi � x̄) (ε i � ε̄)

SSTx
,

where the first equality is because ∑n
i=1 (xi �x)xi = ∑n

i=1 (xi �x)2, the third
equality is because yi = β 0+ xi β 1+ ε i , and the last equality is because
∑n

i=1 (xi �x) = 0 and ∑n
i=1 (xi � x̄)ε i = ∑n

i=1 (xi � x̄) (ε i � ε̄).
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Distributions of b1 and b0

If ε i � N
�

0,σ2
�

, then yi � N
�

β 0+β 1xi ,σ
2
�

, and yi and yj are independent, so

b1 � N
�

β 1,σ
2
b1

�
because b1 is normally distributed (as a linear function of independent yi ’s) and a
normal distribution is determined by its mean and variance.
b0 is less important than b1, but it can be shown that it is also linear in yi ,
unbiased to β 0, and has variance

σ
2
b0
=

 
1
n
+

x̄2

(n�1)s2
x

!
σ

2, [exercise�]

so

s2
b0
=

 
1
n
+

x̄2

(n�1)s2
x

!
s2

e

is an unbiased estimator of σ2
b0

.

If ε i � N
�

0,σ2
�

,

b0 � N
�

β 0,σ
2
b0

�
.
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Inference about β 1: t Test

t test for a population slope: is there a linear relationship between X and Y ?

Data: f(xi ,yi )gn
i=1, where yi � N

�
β 0+β 1xi ,σ

2
�

or equivalently, ε i � N
�

0,σ2
�

.

Null and Alternative Hypotheses:

H0 : β 1 = 0 (no linear relationship)

H1 : β 1 6= 0 (linear relationship does exist)

Test Statistic:

t =
b1�β 1

sb1

=
b1�0

sb1

=
b1

sb1

� tn�2 under H0.

Decision Rule: reject H0 if jt j> tn�2,α/2, where a rule of thumb for tn�2,α/2 is 2
which corresponds to α = 0.05 and n�2= 60 and provides a close approximation
when n > 30.

If yi is not normally distributed, but n is large, then t �N (0,1) under H0 by the CLT.
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More on the t Test

In Example 11.2, b1 = 0.38152, and sb1
= 0.02529, so

t =
b1

sb1

=
0.38152
0.02529

= 15.08> 2,

or the p-value is P (jT j> 15.08)� 0, where T � tn�2 = t20.

In conclusion, there is a strong (positive) relationship between retail sales and
disposable income.

Parallel to Lecture 6, we can consider the following three groups of hypotheses:
(i) H0 : β 1 = β

�
1 or H0 : β 1 � β

�
1 vs. H1 : β 1 > β

�
1;

(ii) H0 : β 1 = β
�
1 or H0 : β 1 � β

�
1 vs. H1 : β 1 < β

�
1;

(iii) H0 : β 1 = β
�
1 vs. H1 : β 1 6= β

�
1.

The decision rules are (i) b1�β
�
1

sb1
> tn�2,α ; (ii) b1�β

�
1

sb1
<�tn�2,α ; (iii)��� b1�β

�
1

sb1

���> tn�2,α/2.

- When ε i is not normally distributed, but n is large, then the critical values change
to zα ,�zα and zα/2.
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Confidence Interval for β 1

From Lecture 7, the (1�α) CI for β 1 is�
β
�
1j
����b1�β

�
1

sb1

����� tn�2,α/2

�
=
�
b1� tn�2,α/2sb1

,b1+ tn�2,α/2sb1

�
.

In Example 11.2, n = 22,b1 = 0.3815, and sb1
= 0.0253. If 1�α = 99%,

tn�2,α/2 = t20,0.005 = 2.845, so the 99% CI is

0.3815�2.845�0.0253< β 1 < 0.3815+2.845�0.0253

or
0.3095< β 1 < 0.4535.

Figure: 90%,95%, and 99% CI for β in the Retail Sales Example

0 /2 any of these CIs, so there is indeed a significant (positive) relationship
between Y and X .
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Hypothesis Test for β 1 Using the F Distribution

An alternative test of H0 : β 1 = 0 vs. H1 : β 1 6= 0 is based on the variation
decomposition, SST = SSR+SSE .
Under H0, both SSR and SSE can provide an unbiased estimate of σ2.
Specifically, the mean square for regression,

MSR =
SSR

1
= SSR,

and the mean square for error,

MSE =
SSE
n�2

= s2
e

are unbiased to σ2, where the df of SSR is 1 because it refers to the single slope
coefficient.
We have shown that E

h
s2

e

i
= σ2 regardless of β 1 = 0 or not, but why

E [SSR] = σ2?

Recall that SSR = b2
1 ∑n

i=1 (xi �x)2 = b2
1SSTx . If β 1 = 0,

E
h
b2

1

i
= E [(b1�β 1)

2] = σ
2/SSTx ,

so E [SSR] = σ2.
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Statistical Inference: Hypothesis Tests and Confidence Intervals

continue

In Lecture 6, we introduce the F distribution as the ratio of independent estimates
of the common variance.

It can be shown that SSR and SSE are indeed independent [proof not required],
so

f =
MSR
MSE

=
SSR

s2
e
� F1,n�2

under H0.

If β 1 6= 0, E
h
b2

1

i
= Var (b1)+β

2
1 such that E [SSR] = σ2+β

2
1SSTx > σ2, so the

decision rule is
Reject H0 if f � F1,n�2,α .

In Example 11.2, from Table 11.2,

MSE =
636,127

20
= 21,806 and MSR = 4,961,438,

so

f =
MSR
MSE

=
4,961,438

21,806
= 227.52> 8.10= F1,20,0.01,

or the p-value is P (F > f )� 0, where F � F1,n�2.
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Relationship with the t Test

Recall that

F1,n�2 =
chi-square variable/1

independent chi-square variable/(n�2)
,

and

tn�2 =
standard normal variablep

independent chi-square variable/(n�2)
,

so
F1,n�2 = t2

n�2 and F1,n�2,α = t2
n�2,α/2.

3

- Rule of thumb: F1,n�2,0.05 = 22 = 4 if n�2= 60, and is less than 4 if n�2> 60.
Also,

f =
MSR
MSE

=
b2

1SSTx

s2
e

=

0@ b1q
s2

e/SSTx

1A2

= t2,

so the decisions based on f and t are exactly the same.
- Why? f > F1,n�2,α , t2 > t2

n�2,α/2 , jt j> tn�2,α/2.

(*) The F test can be applied only to the two-sided test, and the null β 1 = 0
although extensions are possible.

3α = P (F1,n�2 > F1,n�2,α ) = P
�
t2
n�2 > F1,n�2,α

�
= P

�
jtn�2j>

p
F1,n�2,α

�
, so

p
F1,n�2,α = tn�2,α/2, or

F1,n�2,α = t2
n�2,α/2.
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Prediction
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Prediction

Point Prediction

The regression equation can be used to predict a value for y , given a particular x .

Given X = xn+1, yn+1 = β 0+β 1xn+1+ εn+1, and
E [yn+1jxn+1] := E [yn+1jX = xn+1] = β 0+β 1xn+1.

We can predict either a single outcome yn+1 or its average value E [yn+1jxn+1],
where yn+1 is more uncertain than E [yn+1jxn+1] because it contains an extra
term εn+1. [figure here]

For both targets, our point predictions are ŷn+1 = b0+b1xn+1.
- This is obvious for E [yn+1jxn+1].
- For yn+1, because εn+1 is not correlated with xn+1 and we know only that
E [εn+1] = 0 so the best prediction of εn+1 is its mean zero.
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Prediction

Predict yn+1 Predict E [yn+1jxn+1]

yn+1 is more uncertain than E [yn+1jxn+1].
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Prediction

Interval Prediction

Often, we want to construct interval predictions for yn+1 and E [yn+1jxn+1], which
should be different for these two targets since the former is more uncertain than
the latter.

The interval for the former is called a prediction interval (PI) because we are
predicting the value for a single point (i.e., the value of a r.v.), while the latter is
called a confidence interval (CI) because it is the interval for the expected value.

Suppose the standard regression assumptions hold, and ε i � N
�

0,σ2
�

, then

E
h
f(b0+b1xn+1)�E [yn+1jxn+1]g2

i
= E

h
f(b0�β 0)+ xn+1 (b1�β 1)g

2
i

= E
h
(b0�β 0)

2
i
+ x2

n+1E
h
(b1�β 1)

2
i
+2xn+1E [(b0�β 0) (b1�β 1)]

=

�
1
n
+

x̄2

SSTx

�
σ

2+ x2
n+1

σ2

SSTx
+2xn+1

�
� x̄

SSTx

�
σ

2

=

"
1
n
+
(xn+1� x̄)2

SSTx

#
σ

2,

where Cov (b0,b1) = � x̄
SSTx

σ2, [exercise�] (intuition?)
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Prediction

continue

and

E
h
f(b0+b1xn+1)�yn+1g2

i
= E

h
f(b0+b1xn+1)�E [yn+1jxn+1]g2

i
+E

h
ε

2
n+1

i
=

"
1+

1
n
+
(xn+1� x̄)2

SSTx

#
σ

2,

where the cross term does not appear because (b0+b1xn+1)�E [yn+1jxn+1] is linear in
fε ign

i=1, while εn+1 is uncorrelated with fε ign
i=1.

- (*) Specifically, because

b1�β 1 =
n

∑
i=1

ai ε i with ai =
(xi �x)

∑n
j=1

�
xj �x

�2 ,
and similarly

b0�β 0 =
n

∑
i=1

ci ε i

for some constants ci , we have

(b0+b1xn+1)�E [yn+1jxn+1] = (b0�β 0)+ xn+1 (b1�β 1)

=
n

∑
i=1

ci ε i + xn+1

n

∑
i=1

ai ε i =
n

∑
i=1
(ci +ai xn+1)ε i .
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continue

We can show [proof not required] that

(b0+b1xn+1)�E [yn+1jxn+1]

se

r
1
n +

(xn+1�x̄)2

SSTx

� tn�2,

(b0+b1xn+1)�yn+1

se

r
1+ 1

n +
(xn+1�x̄)2

SSTx

� tn�2.

As a result, the (1�α) prediction interval for yn+1 is

ŷn+1� tn�2,α/2 �se

s
1+

1
n
+
(xn+1� x̄)2

SSTx
,

and the (1�α) confidence interval for E [yn+1jxn+1] is

ŷn+1� tn�2,α/2 �se

s
1
n
+
(xn+1� x̄)2

SSTx
.
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Prediction

Example 11.3: Forecasting Retail Sales

If the disposal income per household xn+1 = 58,000, predict the first year retail
sales yn+1 and the long-run retail sales E [yn+1jxn+1] and construct PI and CI.
ŷn+1 = b0+b1xn+1 = 559+0.3815�58,000= 22,686.
Since n = 22, x̄ = 57,342,SSTx = 34,084,596, and s2

e = 21,806, the standard
error for predicting yn+1 by ŷn+1 is

se

s
1+

1
n
+
(xn+1� x̄)2

SSTx
=
p

21,806

s
1+

1
22
+
(58,000�57,342)2

34,084,596
= 151.90.

Similarly, the standard error for predicting E [yn+1jxn+1] by ŷn+1 is

se

s
1
n
+
(xn+1� x̄)2

SSTx
=
p

21,806

s
1

22
+
(58,000�57,342)2

34,084,596
= 35.61< 151.90.

As a result, the 95% PI at xn+1 = 58,000 is

22,686� t20,0.025151.90= 22,686�317= [22369,23003],

and the 95% CI at xn+1 = 58,000 is

22,686� t20,0.02535.61= 22,686�74= [22612,22760] � [22369,23003].
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Comments on the PI and CI

1 n is larger, the standard errors for the two predictions are smaller and the PI and
CI are narrower; that is, the more information is available, the more confident we
will be about our prediction.
- n ",SSTx = (n�1)s2

x ": (*) because

∑n
i=1 (xi �xn)

2 �∑n
i=1 (xi �xn+1)

2 �∑n+1
i=1 (xi �xn+1)

2 .

2 The larger se is, the wider the CI [because β 0 and β 1 can be estimated less
precisely] and PI [further, Var (εn+1) is larger].

3 The larger s2
x is, the narrower the PI and CI are [because β 0 and β 1 can be

estimated more precisely].

4 The larger (xn+1� x̄)2 is, the wider the PI and CI are. [figure here]

xn+1 should be in the range of fxign
i=1; otherwise, the prediction is not reliable.

- Not only because the PI and CI at such an xn+1 are wide, but because the linear
extrapolation with the same b0 and b1 need be justified.

Note that when n is large, for the CI, we need not assume ε i � N(0,σ2),
i = 1, � � � ,n+1, but for the PI, we must assume εn+1 � N(0,σ2).
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Figure: PI and CI as functions of xn+1
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Correlation Analysis
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Correlation Analysis

Testing No Correlation Between X and Y

Assumption: X and Y are jointly normally distributed, i.e.,�
X
Y

�
� N (µ,Σ) ,

where

µ =

�
µX
µY

�
and Σ =

�
σ2

X ρσX σY
ρσX σY σ2

Y

�
.

H0 : ρ = 0.
- H0 implies β 1 = 0 in the regression Y = β 0+β 1X + ε, where

β 0 = µY �β 1µX , and β 1 =
Cov (X ,Y )

Var (X )
= ρ

σY

σX

are the population counterparts of b0 and b1, and because X and ε are
uncorrelated (recall the sample counterpart sxe = 0)

ε � N
�

0,σ2
Y �β

2
1σ

2
X

�
= σY �N

�
0,1�ρ

2
�
,

i.e., the error variance in this simple linear regression is σ2
Y

�
1�ρ2

�
.
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Correlation Analysis

continue

From Exercise 11.47,

t =
b1

se/
p

SSTx
=

rq�
1� r2

�
/n�2

.

- jt j is an increasing function of jr j, so the tests based on jt j and jr j are equivalent.

So our test statistic

t =
r
p

n�2p
1� r2

,

follows the tn�2 distribution under H0.

If H1 : ρ > 0, then the decision rule: reject H0 if t > tn�2,α .

If H1 : ρ < 0, then the decision rule: reject H0 if t <�tn�2,α .

If H1 : ρ 6= 0, then the decision rule: reject H0 if jt j> tn�2,α/2.

Rule of Thumb: set tn�2,α/2 = 2, then jt j> tn�2,α/2 is approximately jr j> 2p
n

.
- n = 25, 64, and 100, the critical values are 0.4, 0.25, and 0.2, respectively.
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Correlation Analysis

Example 11.4: Political Risk Score

We want to check whether political risk is related to inflation in 49 countries, i.e.,
H0 : ρ = 0 vs. H1 : ρ > 0. The sample correlation between the political risk score
(assessed by political experts) and inflation is 0.43.

The test statistic

t =
r
p

n�2p
1� r2

=
0.43

p
49�2p

1�0.432
= 3.265.

Since t > t49�2,0.05 = 2.704, we reject the null at the 5% level, and conclude that
there is a positive linear relationship between inflation and experts’ judgements of
political riskiness.

The conclusion is the same based on the rule of thumb: 0.43> 2p
49
= 0.286.

Recall that correlation does not imply causality.
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(*) Graphical Analysis
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Graphical Analysis

Extreme Points and Leverage

Our analysis above is valid only if the Linear Regression Assumptions hold.

We can use graphs to check the validity of these assumptions.

Extreme points are points that have X values deviating substantially from other X
values.

Recall that

E
h
f(b0+b1xn+1)�E [yn+1jxn+1]g2

i
=

"
1
n
+
(xn+1� x̄)2

SSTx

#
σ

2,

so the leverage

hi =
1
n
+
(xi � x̄)2

SSTx
2 [0,1]

is key to the width of the CI at X = xi .
- When xi is farther away from the center of xi ’s, the CI would be wider.

Rule of Thumb for high leverage: hi > 3p/n, where p is the number of predictors
(including the constant).
- In this lecture, p = 2, so hi > 6/n is the rot.
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Graphical Analysis

Example 11.6: The Effect of Extreme X Values

Figure: Scatter Plot with Two Extreme X Points: Positive Slope

It seems that there is a significantly positive relationship: the t test rejects the null
of β 1 = 0 with the p value close to zero.
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Graphical Analysis

Example 11.6: ONLY the Y Values for Two Extreme Points Changed

Figure: Scatter Plot with Two Extreme X Points: Negative Slope

It seems that there is a significantly negative relationship: the t test rejects the null
of β 1 = 0 with the p value close to zero.

Ping Yu (HKU) Simple Linear Regression 66 / 74



Graphical Analysis

Outlier Points and Residual Analysis

Outlier points are points that deviate substantially in the Y direction from the
predicted value.
- Note that extreme points deviate in the X direction.

These points can be identified by the standardized residual

eis =
ei

se
p

1�hi
.

Rule of Thumb for outliers: jeisj> 2.

Recall that ei = ε i � (b0�β 0)� (b1�β 1)xi . We can show [exercise�]

Var (ei ) = σ
2 (1�hi ) ,

where note that ε i is correlated with b0 and b1.

So eis is a studentized version of ei .

Note that hi is high, se(ei ) is low!
- This is because the fitting line is pulled to the high leverage points, so the
corresponding ei tends to be small.
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Graphical Analysis

Example 11.7: The Effect of Outlier Y Values

Figure: Scatter Plot with Anticipated Pattern

b1 = 11.88 is significantly positive with the p value close to zero.
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Graphical Analysis

Example 11.7: Two Outlier Y Values

Figure: Scatter Plot with Y Outlier Points

b1 changes to 6.4, much smaller than 11.88 (why?), and has a much larger se
(because the two ei ’s are large) such that β 1 is not as significant as before.
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Graphical Analysis

How to Address Extreme and Outlier Points?

The extreme and outlier points may be generated in the normal operation of the
process. In this case, they should be kept.

On the other hand, the extreme xi ’s may be due to unusual conditions (e.g.,
COVID made the hiring of workforce X unusually low) or recording errors, so
should be discarded.

Similarly, the outlier yi ’s may be due to unusual conditions (e.g., COVID made the
output Y unusually low) or measurement errors.

In summary, you should have a good understanding of the process, and decide,
based on your model and logic, whether the extreme and outlier points should
remain or be removed.
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(**) Multiple Linear Regression
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Multiple Linear Regression

Introduction

Idea: Examine the linear relationship between 1 dependent (Y ) & 2 or more
independent variables (Xj ).

Multiple Regression Model with K Independent Variables:

Y = β 0+β 1X1+β 2X2+ � � �+β K XK + ε, (2)

where

β 0 is the Y -intercept,

β 1, � � � ,β K are population slopes,

ε is the random error.

This model enables us to determine the simultaneous effect of several
independent variables on a dependent variable using the least squares principle.

Applications:
- The quantity of goods sold is a function of price, income, advertising, price of
substitute goods, and other variables.
- Salary is a function of experience, education, age, and job rank.
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Multiple Linear Regression

Least Squares Procedure

Like the simple linear regression case, define residuals at arbitrary β as

ei (β ) = yi �β 0�∑K
j=1 β jxji .

Then minimize the sum of squared errors:

min
β 0,fβ jgK

j=1

SSE (β ) � min
β 0,fβ jgK

j=1

n

∑
i=1

ei (β )
2 = min

β 0,fβ jgK

j=1

n

∑
i=1

 
yi �β 0�

K

∑
j=1

β jxji

!2

=) b =
�

b0,
�

bj
	K

j=1

�
.

The FOCs are

∑n
i=1 ei = 0, (3)

∑n
i=1 xjiei = 0, j = 1, � � � ,K ,

where ei = yi �b0�∑K
j=1 bjxji with

�
b0,
�

bj
	K

j=1

�
being the minimizer.
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Multiple Linear Regression

Explanatory Power, Inferences and Prediction

R2 = SSR
SST = 1� SSE

SST .

σ̂
2 = s2

e =
SSE

n�K�1 =
∑n

i=1 e2
i

n�K�1 is an unbiased estimator of σ2.

σ2
bj

is a complicated function of n, SSTj ’s, the correlations between Xj ’s, and σ2,

where SSTj := SSTxj = (n�1)s2
xj

.

tbj
=

bj�β
�
j

sbj
� tn�K�1 under H0 : β j = β

�
j , where s2

bj
is an unbiased estimator of σ2

bj
.

This implies that the (1�α) CI for β j is(
β j

��� �����bj �β j

sbj

������ tn�K�1,α/2

)
=
h
bj � tn�K�1,α/2sbj

,bj + tn�K�1,α/2sbj

i
.

We can also test on multiple regression coefficients using the F statistic.

In prediction, the PI and CI can be similarly constructed as in the simple linear
regression, usually relying on software.
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