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R
Plan of This Lecture

@ Confidence Interval Estimation: One Population
- One Normal Mean, Known Population Variance
- One Normal Mean, Unknown Population Variance
- One Proportion, Large Samples
- One Normal Variance
- Confidence Intervals in Finite Populations

@ (*) Sample-Size Determination
- Large Populations
- Finite Populations

@ Confidence Interval Estimation: Two Populations
- Matched Pair: Two Means
- Independent Samples: Two Normal Means, Known Population Variances
- Independent Samples: Two Normal Means, Unknown Equal Population
Variances
- Independent Samples: Two Normal Means, Unknown Unequal Population
Variances
- Independent Samples: Two Proportions, Large Samples
- Independent Samples: Two Normal Variances [exercise]

@ The discussion of this lecture is parallel to that in the last lecture.
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Confidence Interval Estimation: One Population

Confidence Interval Estimation: One Population
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Confidence Interval (ClI)

@ A confidence interval estimator of a population parameter is a rule for determining
(based on the sample) an interval that is likely to include the parameter. The
corresponding estimate is called a confidence interval estimate.

- This concept was introduced by Jerzy Neyman in 1937, "Outline of a Theory of
Statistical Estimation Based on the Classical Theory of Probability”, Philosophical
Transactions of the Royal Society A, 236 (767): 333-380.

- The variability of a point estimator is not reflected in its estimate, but can be
reflected in a Cl estimate — when the variability is smaller, the Cl is typically
shorter.

- The textbook calls a confidence interval estimate as a confidence interval, but we
will use "confidence interval" to refer to both "confidence interval estimator" and
"confidence interval estimate", depending on the context.

@ A Clis an interval giving a range of values that:
- Takes into consideration variation in sample statistics from sample to sample.
- Based on observation from 1 sample (i.e., map one sample to an interval).
- Gives information about closeness to unknown population parameters.
- Stated in terms of level of confidence, so can never be 100% confident.
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Confidence Level

@ Suppose the CI of 6 takes the form [A, B], where A and B are random variables,
i.e., [A,B] is a random interval. If

PA<O<B)=1-a,

then 100 (1 — o) % is called the confidence level of the CI.
- We cannot say "8 falls in the Cl with (1 — o) probability” but only say "the ClI
covers 6 with (1 — «) probability”, i.e., in repeated samples, 100 (1 — o) %
(realized) intervals will cover 6, where note that given a realization of [A, B], say
[a,b], either 6 € [a,b] or 6 ¢ [a, b], but we do not know which happens since 6 is
unknown.

@ Analog: catch a butterfly using a net.

@ Ais the lower confidence limit (LCL) of the ClI, B is the upper confidence limit
(UCL) of the CI, and B — A is the width of the CI:
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Estimation Process

I am 95%
confident that
M is between

40 & 60.

‘ Random Sample ‘

Population
(mean, y, is
unknown)
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Margin of Error

@ Because 6 can be larger or smaller than a point estimator § of 6, the Cl typically
takes the form
6 +ME,

where the error factor ME is called the margin of error (or sampling error).
- ME should be increasing in (1 — ).

@ The UCL of the Cl is given by
UCL =8 +ME.
@ The LCL of the Cl is given by
LCL=6—ME.
@ The width of the Cl is equal to twice the ME:
w =2(ME),

which is typically also random.

@ Either an open interval (é —ME, b+ ME) or a closed interval [é —ME, 6+ ME] is
fine.
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One Normal Mean, Known Population Variance
One Normal Mean, Known Population Variance

@ From the last lecture, for a random sample {x; }{_;, where x; ~ N (u, 0-2) with
unknown u and known o2, if Wg is the true value of u, then

_X—Ho

~ o/yn

z N (0,1),

which implies

X —HUg
l-a = P(-2q2<2<2q/2)=P (_Za/z < = S 206/2)

o/vn
(o3 _ (o3
= P (*Za/ZW SX—pg < Za/zﬁ)

i.e., the interval [)‘( - za/z\%,x +2Zg/2 %] will cover g with probability 1 — ¢, so it
is a Cl with confidence level 100 (1 — o) % or a 100 (1 — &) % CI.
@ In this example, 6 = u, 8 = x and ME = Za/Z%-

Ping Yu (HKU) Confidence Interval Estimation 81740



One Normal Mean, Known Population Variance
A General Principle to Construct the CI: Inverting the Test Statistic

@ Re-examining the procedure of constructing the Cl above, we are actually
inverting the test statistic in testing

Ho:p =g vs. Hy: jt # po.

@ Specifically, we try different py’s, and for each ug value, we conduct the two-sided
test with significance level a; if a ug value is not rejected, then this ug value is put
in our CI. The interval collecting all i values that are not rejected is the CI with
confidence level (1 — ). [figure here]

@ Conversely, if a value uqy ¢ClI, then we will reject Hg : 4 = g in favor of Hy : p # pg
at the level of (1—confidence level).

@ In summary, the hypothesis testing and CI construction are somewhat equivalent.

Table 7.2 Selected Confidence Levels and Corresponding Values of z,,

CONFIDENCE LEVEL 90% 95% 98% 99%
a 0.100 0.05 0.02 0.01
Zaf2 1.645 1.96 233 258

Copyright 2013 Pearson Education, publishing as Prentice Hall

@ The reliability factor z,/, is the critical value for z at the significance level a.
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Confidence Interval Estimation: One Population One Normal Mean, Known Population Variance

Acceptance Interval

Kt 0/2\%

L
T — T -
T = Zaf2 Z+ Zap2 M

Figure: Test Statistic Inversion: recall that the acceptance interval for i at u is
[H —Zaj2 M +Za/2%]
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One Normal Mean, Known Population Variance
Example 7.3: Time at the Grocery Store

@ Suppose the shopping times for customers are normally distributed with population
standard deviation 20 minutes. A random sample of 64 shoppers had a mean time
of 75 minutes. Construct the 95% CI for the population mean shopping time.

@ Solution: Since
X =75and 6 = 6/vnh=20/V64=2.5,

we have

ME = Zy/20% =196x%x25=4.9,
UCL = )z—‘rza/z(?;( =754+4.9=79.9,
LCL = X—-24/205=75-49=70.1.

So the 95% CI for the population mean shopping time is [70.1,79.9].

@ Although the true mean may or may not be in this interval, 95% of intervals formed
in this manner will contain the true mean.
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Confidence Interval Estimation: One Population One Normal Mean, Known Population Variance

0.025 L 0025 | —
¥ -
1 1Y
1w-1.96-Z Ay 1.96-Z % : :
s i u

Figure: Sample Distribution of X and Schematic Description of 95% CI

@ Intuition: X appears in |{t—2zy /-5, U +24/2-% | with (1— o) probability, so
/2 /m /27

extending X to the left and right by Za/2%, ie., [)‘( — za/Z%,X +2q/2 %] , will
cover u with (1 — o) probability.
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Confidence Interval Estimation: One Population One Normal Mean, Known Population Variance
Reducing Margin of Error

e ME = Za/2% is decreasing in n and increasing in o and (1— o).
- Decreasing in n: if we get more information about the location of the butterfly,
then we can use a smaller net.
- Increasing in o: if the information about the location of the butterfly is more
vague, we must use a larger net.
- Increasing in (1 — «): to catch with a higher probability, we must use a larger net.
@ To reduce the width of the CI (= 2- ME) while maintain the confidence level, we
can either increase n or decrease o (more information or better information).

Ping Yu (HKU) Confidence Interval Estimation 13/40



Confidence Interval Estimation: One Population One Normal Mean, Known Population Variance
continue

) n=250c=12,1-a=.95 )
19.33 19.80 20.27

n=64,0=121-a=.95

19.51 19.80 20.09

n=250=201-a=.95
19.02 19.80 20.58

n=250c=12,1-a=.99 )
19.18 19.80 20.42

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Figure: Effects of n, o and (1—«) on Cls
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One Normal Mean, Unknown Population Variance
One Normal Mean, Unknown Population Variance

@ Inverting the test statistic .
t— X "Ho
s/vn
intesting Hp : 0 = pg vs. Hy : u # ng, we have the (1— o) Cl for p is

X —l.LO _ S _ S
Kol s/vn Sthoqa/2 ¢ = [X *tnfl,a/Zva +tn—l,a/2ﬁ :
-ME = tn—l,a/z\% is random, which is different from the known ¢ case where
ME = za/Q% is fixed.

@ Compared with [X —za/z\%,i +Zy/2 %] , this CI should be wider because
th_1.a/2 > Zg /2 [table here]. This is the cost associated with replacing the

unknown o2 by s2.
- When n gets large, t,_1 o/2 = Zq/2 and s = o, so these two Cls are close.
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Confidence Interval Estimation: One Population One Normal Mean, Unknown Population Variance

Confidence t t t z
Level (10 d.f.) | (20 d.f.) | (30 d.f.)
.80 1.372 1.325 1.310 1.282
.90 1.812 1.725 1.697 1.645
.95 2.228 2.086 2.042 1.960
.99 3.169 2.845 2.750 2.576

Figure: Comparison Between t, /2 and 2,/

Ping Yu (HKU)
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Confidence Interval Estimation: One Population One Normal Mean, Unknown Population Variance
A Numerical Example

@ A random sample of n =25 has X = 50, and s = 8. Form a 95% Cl for u.
@ Solution: The df =n—1=24,s0ty_1 o/2 = 24 025 = 2.0639.
@ TheClis

_ S _ S
{X _tn—l,a/ZﬁvX +tn—1,a/2ﬁ}

8 8
50 -2.0639 x —,50+2.0639 x ——
{ V25 \/25}

[46.698,53.302).
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One Proportion, Large Samples
One Proportion, Large Samples

@ We can invert the test statistic
P —Po
Po(1—pg)/n

in testing Hg : p = pg Vs. Hy : p # pg, but z is a nonlinear function of pg, so instead
we replace pg in the denominator by p (which is consistent to pg as n — ) to have
the test statistic

@ The (1—a) Clforpis

R p(1-p) . p(1—p
{po Sza/z}:{pzw/w,pﬂa/z e

-ME =2z,,, M is random.

P—po
p(1-p)/n

@ The width of the Cl can be reduced by either increasing n or decreasing (1 — o).

[ois v/p(1—p) here, so out of control]
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Confidence Interval Estimation: One Population One Proportion, Large Samples

[Example] Proportion of Left-Handers

@ Arandom sample of 100 people shows that 25 are left-handed. Form a 95%
confidence interval for the true proportion of left-handers.

Ve

@ Solution: First, p =25/100 = 0.25. Second, a = 0.05, so z,,, = 1.96. Therefore,
the 95% Cl for p is

0.25x (1—0.25)
100

For the 99% ClI for p, the ME increases from 0.085 to

0.25+1.96 =0.25+0.085.

0.25x (1—0.25)

2.58 100

=0.1117.
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Confidence Interval Estimation: One Population One Normal Variance
One Normal Variance

@ Inverting the test statistic
» (n—-1)s?

=",

%%

in testing Ho : 62 = 63 vs. Hy : 62 # 63, we have the (1—a) Cl for 62 is
5 (n-1)s?> _, (n—-1)s? (n—1)s?
{60 SXn-ta/2 (=

2
09
@ This Cl is not symmetric about s2 (which is the unbiased estimator of 62) although
it indeed includes s? because X% 1qp>n—landy2 ., ,,<n—1forusual
a’s, so ME is not well defined.

@ (*) In general, we can construct the Cl for 4 and 2 based on other tests (i.e.,
one-sided H;) in the last lecture. However, such a Cl may have an infinite length.
- For example, inverting the test statistic for Hg : 1 < g vs. Hp : u > p1g with
unknown normal variance, we have [X ftn,lva\%,oo), where compared with

2
Xn-11-a/2 <

2 o
Xn-t,0/2 %n-11-a/2

X *tn—l,a/z%vx +tn—1,a/2%] , X *tnfl,(x% > X *tn—l,a/Z%v but
0 > X —‘rtn,lya/g\%.
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One Normal Variance
[Example] Speed of Computer Processors

@ You are testing the speed of a batch of computer processors. You collect the
following data (in Mhz):

Sample size 17
Sample mean 3004
Sample std dev 74

@ Assume the population is normal. Determine the 95% confidence interval for 2.
@ Solution: n =17, so the chi-square distribution has (n—1) = 16 d.f..
@ o = .05, so use the the chi-square values with area .025 in each tail:

xﬁ—l,a/Z = X%s,.ozs: =28.85, and %ﬁfl,l—a/Z = X%e,.ws =691

probability probability
%:.025 y %:.025

t t
P16 =691 P16 =28.85 at

0 lmns2 (nm1)s? | Tar-1)x742 (a7-1)x7427
o The 95% Cl |s{ ﬁfl,a/z'xﬁfl,lfa/z}_[ s g™ | = [3037,12680]

@ Converting to standard deviation, we are 95% confident that the population
standard deviation of CPU speed is between 55.1 and 112.6 Mhz.
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Confidence Intervals in Finite Populations
(*) Confidence Intervals in Finite Populations

@ nis not much smaller than N in random sampling without replacement, e.g.,
n > 0.05N.

@ n itself is large enough so that the CLT can be applied.
@ One Mean, Unknown Population Variance, Large Samples: the (1— «) Cl for u is

[)_( 720(/26)7(’)_( +Z[x/26)z] ,

_szN—n_sz 1 1
" n N n N

rather than s?/n is an unbiased estimator of Var (X).
- ME = Za/zég < Z(X/Z\%'

where

XN

6

@ The (1— ) Cl for the population total Nu (e.g., the total enrollment in business
statistics when u is the mean enrollment) is

[N)_( —Za/zN(AF)'(,N)_( +Za/2N6)‘(} .

- ME = z,,2N&5 is N times the ME of the Cl for u. [example here]
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Confidence Interval Estimation: One Population Confidence Intervals in Finite Populations

(**) Discussion

@ As shown in Lecture 5, ~
X —
XTHE 4N (0,1),
s2 N—n

n N

t:=

as N — o, so the (1—«) Cl for u is
[)? — Za/sz)z,x + Za/zég]
with 62 defined above.

n \N-1
The second replacement is innocent given that N — oo, but the first one is not.

@ In the textbook, the authors replace z, 5 by t,_1 4,2 and %% by (M)

@ The t-distribution is applied for a finite n. When n is finite, it is appropriate to
assume N is also finite because n > 0.05N. In this case, it is not appropriate to
think x; follows a normal distribution (which requires an infinite population because
a normal distribution can take infinite values). As a result, when n is finite, t follows
a discrete distribution, not the t-distribution!

- The logic inconsistency of the textbook is obvious in assuming large samples
(i.e., n — ) and at the same time using t,_4 distribution.
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Confidence Intervals in Finite Populations
[Example] CI for Population Total

@ A firm has a population of 1000 accounts and wishes to estimate the value of the
total population balance. A sample of 80 accounts is selected with average
balance of $87.60 and standard deviation of $22.30. Find the 95% CI of the total
balance.

@ Solution: N =1000, n =80, X =87.6, and s = 22.3.

@ In the textbook,

2 _ 2 _
N262 = NEA (N n) = 1ooo2£ (M) = 5724559.6,

n \N-1 80 1000-1
so N6y = /5724559.6 = 2392.6, and the resulting 95% CI for Nu is
NX +t79 02sNG6x = 1000 x 87.6+1.9905 x 2392.6
= [82837.53,92362.47].
@ Actually,
N262 = N2§ N,\T " _ 10002 23‘5’2 71028 &)80 — 5718835,

so N6éx = /5718835 = 2391.41, and the resulting 95% CI for Nu is
NX £z 95N 6% = 1000 x 87.6 +1.96 x 2391.41 = [82912.84,92287.16].
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Confidence Interval Estimation: One Population Confidence Intervals in Finite Populations

@ One Proportion, Large Samples: the (1— «) Cl for p is

D —24/26p.0+20/26p]

where R R
P(L-Pp)N—n

n-1 N

is an unbiased estimator of Var (p). [see Problem 5(iii) of Assignment Ill,
s? f’(lfﬁ)]

6

N

n n—-1

. N p(1 p (1 p) .
-ME =24,26p5 = Zq 2 ﬁ\l(n'j)l';\/w <22\ PEP) ifn2 > N (or n > N1/2),
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Sample-Size Determination

(*) Sample-Size Determination
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Large Populations
Large Populations

@ If we think the Cl is too wide, we can narrow it by increasing n.
@ Fix the width of the ClI, determine how large an n can achieve it.
@ Consider only two cases below.

@ One Normal Mean, Known Population Variance: Solving

o
ME - Za/27n,

\/7
we have ,
z:,,0
o/2
n= , 1
MEZ @)
which increases in 1 — a, 62 and decreases in ME, i.e., to make a (1 — a) Cl for u

2 52
2% /,0
ME2

extend a distance ME on each side of X, we need (or the rounding-up

222" if 2i/20" is not an integer) samples
ME? ME? :

@ Example: If o = 45, what sample size is needed to estimate the mean within +5
with 90% confidence?

2 2
@ Solution: n = z’;\‘/{éf = 1-645522X452 =219.19, so the required sample size is n = 220.
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Sample-Size Determination Large Populations
continue

@ One Proportion, Large Samples: We cannot solve

ME = 2451/ (1n* P
to have the required n, since p is unobserved beforehand.

@ Anyway, p(1—p) <0.25, so solving

/0.25
ME :ZO(/Z T,

2
N 0.25z; ,,

ME?2
can guarantee that the Cl extends no more than ME on each side of the p, where
n increases in 1 — a and decreases in ME.
- For one normal mean with unknown population variance, ME = tn—1,a/2% is not

easy to solve since both t,_; 4, and s depend on n.
@ Example 7.14: Electoral College: If an opinion survey on changing the Electoral
College process reported that the poll has a 3% margin of error (with 95%

confidence), how many citizens of voting age need to be sampled?
0.2572

we conclude that

on- N — a/2 _ 0.25x1.96% _ —
@ Solution: n = —=52 = 503~ —1067.11 = n = 1068.
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Finite Populations
Finite Populations

@ One Mean, Known Population Variance: If 0')2( is the target, then solving
2 (72 N—n
of=— ,
n \N-1

N o2
(N-1)02 + 02

we have

- If ME is the target, then solving

c N—n

ME =22 BV N=T

to have
n= L < n
- np+(N-1) — o
where ng is given in (1). [Implicitly assume normality or the implied n is large]
- If the population total is of interest, then solve ME =z, N ox.
@ With nonresponse or missing data, practitioners may add a certain percent (like
10%) to the implied size n.
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Sample-Size Determination Finite Populations

continue

@ One Proportion, Large Samples: Solving

2_P(1-p) <N—n)

%= m \N-1

to have
Np(1—p)
(N-1)cf+p(1-p)
- Since p (1 —p) is unknown, the largest possible value of n (note that n is an
increasing function of p(1—p)) is

0.25N
(N-1)o5+0.25

Nmax =

- A 95% ClI for p will extend approximately 1.96c; on each side of p.

@ Example 7.16: Campus Survey: Suppose a random sample of the 1,395 U.S.
colleges is taken to estimate the proportion for which the business statistics
course is two semesters long. For a 95% CI to extend no further than 0.04 on
each side of the sample proportion, how many samples should be taken?

@ Solution: 1.960 = 0.04 = o5 = 0.020408. So

Mmax = (N-%i%ﬁo.zs = 73920 0r04085 7075 = 419.88 = n = 420.
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Confidence Interval Estimation: Two Populations

Confidence Interval Estimation: Two Populations
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Confidence Interval Estimation: Two Populations Matched Pair: Two Means

Matched Pair: Two Means

@ Inverting the test statistic
t— d—po
sq/vn
in testing Ho : g == Uy — Hy = o VS. Hy t iy # Lo, we have the (1 - a) Cl for pq

d—ug 3 Sd
— 2 <t =d+t,_ —,
{No\ sq/vn| = n 1,05/2} n 1,a/2\m
where d = X —¥, and sq is the sample standard deviation of {d; }{_; with

di =X —yi.
-ME = tn—l,a/zﬁ-
- If the CI contains 0, then we cannot reject u, = p,, at the significance level o.
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Matched Pair: Two Means
[Example] Weight Loss Program

@ Six people sign up for a weight loss program. You collect the following data:

Weight:
Person Before (x) After (y) Difference, d;
1 136 125 1"
2 205 195 10
3 157 150 7
4 138 140 -2
5 175 165 10
6 166 160 _6
42

Form the 95% ClI for u, —u,.
@ Solution: d =42/6 =7, and sq = 4.82. ty_1 4/2 =5, 025 = 2.571.
@ So the 95% Cl for u, —uy is d £ty m/zsf =7+2. 5714}2 = [—1.94,12.08].
@ Since this interval contains zero, we cannot be 95% confident, given this limited
data, that the weight loss program helps people lose weight.
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Confidence Interval Estimation: Two Populations Independent Samples: Two Normal Means, Known Population Variances

Independent Samples: Two Normal Means, Known Population
Variances

@ Inverting the test statistic
_ (X=Y)—Ho

zZ =
2

oi_i'_&

n, " ny

intesting Hy : g = 1o vs. Hy : g # U, we have the (1— o) Cl for py is

- - 2 2
X—y)—u - of ©
Mol (F=3) ~to S2g 0= (R =Y) £2a2(| >+ 2.
o2 o Ny I'ly
2x 4 Y
Ny ny
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Confidence Interval Estimation: Two Populations Indpt Samples: Two Normal Means, Unknown Equal Population Variances

Independent Samples: Two Normal Means, Unknown Equal Population
Variances

@ Inverting the test statistic
(X—¥)—Ho

2 2
SJ_FSJ
Ny ny

intesting Hy : fiq = 1o vs. Hy : g # g, we have the (1— o) Cl for uq is

. 2 2
X—y)—u o [s2 s
ol (x-Y)~to 2) ZO Sthzase p =(X-Y)tth 24/2 *np +7an
Sp Sp X y
Ve Tay

where n = ny 4+ ny, and the pooled sample variance

t=

(nx —1)sZ +(ny —1)s7
Ny +ny —2 '

2 _
Sp—

s3 | s?
- ME = tn—z,a/zﬁ/i + %.
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Indpt Samples: Two Normal Means, Unknown Equal Population Variances
[Example] Speed Difference Between Two CPUs

@ You are testing two computer processors for speed. Form a Cl for the difference in
CPU speed. You collect the following speed data (in Mhz):

CPU,
Number Tested 17 14
Sample mean 3004 2538
Sample std dev 74 56

CPU

y

@ Assume both populations are normal with equal variances, and use 95%
confidence.

@ Solution: The pooled variance is

2 (-DsEH(ny—1)s)  (17-1) x 742 + (14— 1) x 562

- = = 4427.03.
P Ny +ny —2 17+14-2

@ The t value for the 95% Cl is tn—2,a/2 = t29,.025 = 2.045.
@ The 95% Cl is

32 s3

o 4427.03 4427.03
(Xfy):ttn_z,a/z + +

17 14

(3004 — 2538) + 2.045\/
Ny

[416.69,515.31).
Confidence Interval Estimation 36 /40



Confidence Interval Estimation: Two Populations Indpt Samples: Two Normal Means, Unknown Unequal Population Variances

Independent Samples: Two Normal Means, Unknown Unequal
Population Variances

@ Inverting the test statistic
(X—=¥)— Ko

2 2
Six+siy
n T ny

intesting Hy : g = 1o vs. Hy : iy # U, we have the (1— o) Cl for uy is

X—y)— o s2 s
ol ( ) Lo <tya/2 :(X*y)itv,a/z 7x+7y’
s2 s2 Ny ny
X+
X y
2 s2 2
G)+(3)] < defined i
where v = is defined in the last lecture.

(%)zunx—lw(%)z/(nwn

2 2
-ME :tv,a/Z\/ %XJFS*V

X r'|y :
- Whether 62 = c§ or not can be tested using the test in the last lecture.
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Independent Samples: Two Proportions, Large Samples
Independent Samples: Two Proportions, Large Samples

@ Recall that the test statistic is
Px — Py
\/Po (1—po) +P01 Po) '

Ny

in testing Hg : px —py = 0 vs. Hy : px —py # 0, which employs the null information
px = Py in estimating the variance of px — Py .
@ Intesting Hg : px — Py = Po VS. H1 : px — Py # Po for a general pg value, the proper
test statistic is
(Px —Py) —Po
\/px<]r-1x Px) + py(l py)

Ny

Z =

inverting which to have the (1 —a) ClI for px —py as

Aoy o 5 (1_b 5 (1-0
Pol (Px —by) ~Po <Zgs2 ¢ = (Px py)iza/Z\/px n Px) + Py ( n Py)
Px (1-Px) +Py(1 Py ) X y
Nx ny

_ME :Za/z\/mq;ﬁx) L BB

Ny
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Independent Samples: Two Proportions, Large Samples
[Example] Difference Between the College Degree Rates
@ Form a 90% confidence interval for the difference between the proportion of men

and the proportion of women who have college degrees. In a random sample, 26
of 50 men and 28 of 40 women had an earned college degree.

(;\‘j

@ Solution: Men: pyx = 50 = 0.52; Women: py = 40 =0.70.
° \/Px(l Px) +py(1 Py) :\/0.52§<00.48_~_0.74><00.3 —0.1012.

Nx ny

@ For the 90% ClI, z,,,, = 1.645.
@ So the 90% Cl for px —py is

(Px —Py) iza/z\/px (1n_ Px) | Py (1n_ by) _ (52— .70)+1.645 x 0.1012
X y

= [-0.3465,-0.0135].
@ Since this interval does not contain zero we are 90% confident that the two

proportions are not equal — the college degree rate of men is lower than that of
women.
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Confidence Interval Estimation: Two Populations Independent Samples: Two Proportions, Large Samples

Comparison of the Neyman-Pearson Approach, Fisher’s p-Value
Approach and Neyman'’s ClI

@ Consider testing Hg : 1 = g vs. Hy : 1 # g at the significance level o.

@ The Neyman-Pearson approach can only make a decison for a fixed ug and a
fixed o each time.

@ Fisher's p-value approach can make a decision for any « but a fixed pq each time.
@ Neyman’s Cl can make a decision for any pq but a fixed « each time.
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