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Plan of This Lecture

Confidence Interval Estimation: One Population
- One Normal Mean, Known Population Variance
- One Normal Mean, Unknown Population Variance
- One Proportion, Large Samples
- One Normal Variance
- Confidence Intervals in Finite Populations

(*) Sample-Size Determination
- Large Populations
- Finite Populations

Confidence Interval Estimation: Two Populations
- Matched Pair: Two Means
- Independent Samples: Two Normal Means, Known Population Variances
- Independent Samples: Two Normal Means, Unknown Equal Population
Variances
- Independent Samples: Two Normal Means, Unknown Unequal Population
Variances
- Independent Samples: Two Proportions, Large Samples
- Independent Samples: Two Normal Variances [exercise]

The discussion of this lecture is parallel to that in the last lecture.
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Confidence Interval Estimation: One Population

Confidence Interval Estimation: One Population
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Confidence Interval Estimation: One Population

Confidence Interval (CI)

A confidence interval estimator of a population parameter is a rule for determining
(based on the sample) an interval that is likely to include the parameter. The
corresponding estimate is called a confidence interval estimate.
- This concept was introduced by Jerzy Neyman in 1937, "Outline of a Theory of
Statistical Estimation Based on the Classical Theory of Probability", Philosophical
Transactions of the Royal Society A, 236 (767): 333-380.
- The variability of a point estimator is not reflected in its estimate, but can be
reflected in a CI estimate – when the variability is smaller, the CI is typically
shorter.
- The textbook calls a confidence interval estimate as a confidence interval, but we
will use "confidence interval" to refer to both "confidence interval estimator" and
"confidence interval estimate", depending on the context.

A CI is an interval giving a range of values that:
- Takes into consideration variation in sample statistics from sample to sample.
- Based on observation from 1 sample (i.e., map one sample to an interval).
- Gives information about closeness to unknown population parameters.
- Stated in terms of level of confidence, so can never be 100% confident.
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Confidence Interval Estimation: One Population

Confidence Level

Suppose the CI of θ takes the form [A,B], where A and B are random variables,
i.e., [A,B] is a random interval. If

P (A� θ � B) = 1�α,

then 100 (1�α)% is called the confidence level of the CI.
- We cannot say "θ falls in the CI with (1�α) probability" but only say "the CI
covers θ with (1�α) probability", i.e., in repeated samples, 100(1�α)%
(realized) intervals will cover θ , where note that given a realization of [A,B], say
[a,b], either θ 2 [a,b] or θ /2 [a,b], but we do not know which happens since θ is
unknown.

Analog: catch a butterfly using a net.

A is the lower confidence limit (LCL) of the CI, B is the upper confidence limit
(UCL) of the CI, and B�A is the width of the CI:
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Confidence Interval Estimation: One Population

Estimation Process
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Confidence Interval Estimation: One Population

Margin of Error

Because θ can be larger or smaller than a point estimator θ̂ of θ , the CI typically
takes the form

θ̂ �ME ,

where the error factor ME is called the margin of error (or sampling error).
- ME should be increasing in (1�α).

The UCL of the CI is given by

UCL= θ̂ +ME .

The LCL of the CI is given by

LCL= θ̂ �ME .

The width of the CI is equal to twice the ME:

w = 2 (ME) ,

which is typically also random.

Either an open interval
�
θ̂ �ME , θ̂ +ME

�
or a closed interval

�
θ̂ �ME , θ̂ +ME

�
is

fine.
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Confidence Interval Estimation: One Population One Normal Mean, Known Population Variance

One Normal Mean, Known Population Variance

From the last lecture, for a random sample fxign
i=1, where xi � N

�
µ,σ2

�
with

unknown µ and known σ2, if µ0 is the true value of µ, then

z =
x̄ �µ0

σ/
p

n
� N (0,1) ,

which implies

1�α = P (�zα/2 � z � zα/2) = P
�
�zα/2 �

x̄ �µ0

σ/
p

n
� zα/2

�
= P

�
�zα/2

σp
n
� x̄�µ0 � zα/2

σp
n

�
= P

�
x̄ �zα/2

σp
n
� µ0 � x̄ + zα/2

σp
n

�
,

i.e., the interval
h
x̄ �zα/2

σp
n
, x̄ + zα/2

σp
n

i
will cover µ0 with probability 1�α, so it

is a CI with confidence level 100(1�α)% or a 100 (1�α)% CI.

In this example, θ = µ, θ̂ = x̄ and ME = zα/2
σp
n

.
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Confidence Interval Estimation: One Population One Normal Mean, Known Population Variance

A General Principle to Construct the CI: Inverting the Test Statistic

Re-examining the procedure of constructing the CI above, we are actually
inverting the test statistic in testing

H0 : µ = µ0 vs. H1 : µ 6= µ0.

Specifically, we try different µ0’s, and for each µ0 value, we conduct the two-sided
test with significance level α; if a µ0 value is not rejected, then this µ0 value is put
in our CI. The interval collecting all µ0 values that are not rejected is the CI with
confidence level (1�α). [figure here]
Conversely, if a value µ0 /2CI, then we will reject H0 : µ = µ0 in favor of H1 : µ 6= µ0
at the level of (1�confidence level).
In summary, the hypothesis testing and CI construction are somewhat equivalent.

The reliability factor zα/2 is the critical value for z at the significance level α.
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Confidence Interval Estimation: One Population One Normal Mean, Known Population Variance

Figure: Test Statistic Inversion: recall that the acceptance interval for bµ at µ ish
µ�zα/2

σp
n
,µ+ zα/2

σp
n

i

Ping Yu (HKU) Confidence Interval Estimation 10 / 40



Confidence Interval Estimation: One Population One Normal Mean, Known Population Variance

Example 7.3: Time at the Grocery Store

Suppose the shopping times for customers are normally distributed with population
standard deviation 20 minutes. A random sample of 64 shoppers had a mean time
of 75 minutes. Construct the 95% CI for the population mean shopping time.

Solution: Since
x̄ = 75 and σ x̄ = σ/

p
n = 20/

p
64= 2.5,

we have

ME = zα/2σ x̄ = 1.96�2.5= 4.9,

UCL = x̄ + zα/2σ x̄ = 75+4.9= 79.9,

LCL = x̄ �zα/2σ x̄ = 75�4.9= 70.1.

So the 95% CI for the population mean shopping time is [70.1,79.9].

Although the true mean may or may not be in this interval, 95% of intervals formed
in this manner will contain the true mean.
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Confidence Interval Estimation: One Population One Normal Mean, Known Population Variance

Figure: Sample Distribution of x̄ and Schematic Description of 95% CI

Intuition: x̄ appears in
h
µ�zα/2

σp
n
,µ+ zα/2

σp
n

i
with (1�α) probability, so

extending x̄ to the left and right by zα/2
σp
n

, i.e.,
h
x̄ �zα/2

σp
n
, x̄ + zα/2

σp
n

i
, will

cover µ with (1�α) probability.

Ping Yu (HKU) Confidence Interval Estimation 12 / 40



Confidence Interval Estimation: One Population One Normal Mean, Known Population Variance

Reducing Margin of Error

ME = zα/2
σp
n

is decreasing in n and increasing in σ and (1�α).

- Decreasing in n: if we get more information about the location of the butterfly,
then we can use a smaller net.
- Increasing in σ : if the information about the location of the butterfly is more
vague, we must use a larger net.
- Increasing in (1�α): to catch with a higher probability, we must use a larger net.

To reduce the width of the CI (= 2 �ME) while maintain the confidence level, we
can either increase n or decrease σ (more information or better information).
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Confidence Interval Estimation: One Population One Normal Mean, Known Population Variance

continue

Figure: Effects of n, σ and (1�α) on CIs
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Confidence Interval Estimation: One Population One Normal Mean, Unknown Population Variance

One Normal Mean, Unknown Population Variance

Inverting the test statistic

t =
x̄ �µ0

s/
p

n

in testing H0 : µ = µ0 vs. H1 : µ 6= µ0, we have the (1�α) CI for µ is�
µ0j

���� x̄ �µ0

s/
p

n

����� tn�1,α/2

�
=

�
x̄ � tn�1,α/2

sp
n
, x̄ + tn�1,α/2

sp
n

�
.

- ME = tn�1,α/2
sp
n

is random, which is different from the known σ case where

ME = zα/2
σp
n

is fixed.

Compared with
h
x̄ �zα/2

σp
n
, x̄ + zα/2

σp
n

i
, this CI should be wider because

tn�1,α/2 > zα/2 [table here]. This is the cost associated with replacing the
unknown σ2 by s2.
- When n gets large, tn�1,α/2 � zα/2 and s � σ , so these two CIs are close.
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Confidence Interval Estimation: One Population One Normal Mean, Unknown Population Variance

Figure: Comparison Between tn,α/2 and zα/2
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Confidence Interval Estimation: One Population One Normal Mean, Unknown Population Variance

A Numerical Example

A random sample of n = 25 has x̄ = 50, and s = 8. Form a 95% CI for µ.

Solution: The df = n�1= 24, so tn�1,α/2 = t24,.025 = 2.0639.

The CI is �
x̄� tn�1,α/2

sp
n
, x̄ + tn�1,α/2

sp
n

�
=

�
50�2.0639� 8p

25
,50+2.0639� 8p

25

�
= [46.698,53.302].
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Confidence Interval Estimation: One Population One Proportion, Large Samples

One Proportion, Large Samples

We can invert the test statistic

z =
p̂�p0p

p0 (1�p0)/n

in testing H0 : p = p0 vs. H1 : p 6= p0, but z is a nonlinear function of p0, so instead
we replace p0 in the denominator by p̂ (which is consistent to p0 as n! ∞) to have
the test statistic

p̂�p0p
p̂ (1� p̂)/n

.

The (1�α) CI for p is(
p0j
����� p̂�p0p

p̂ (1� p̂)/n

������ zα/2

)
=

"
p̂�zα/2

r
p̂ (1� p̂)

n
, p̂+ zα/2

r
p̂ (1� p̂)

n

#
.

- ME = zα/2

q
p̂(1�p̂)

n is random.

The width of the CI can be reduced by either increasing n or decreasing (1�α).
[σ is

p
p (1�p) here, so out of control]
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Confidence Interval Estimation: One Population One Proportion, Large Samples

[Example] Proportion of Left-Handers

A random sample of 100 people shows that 25 are left-handed. Form a 95%
confidence interval for the true proportion of left-handers.

Solution: First, p̂ = 25/100= 0.25. Second, α = 0.05, so zα/2 = 1.96. Therefore,
the 95% CI for p is

0.25�1.96

r
0.25� (1�0.25)

100
= 0.25�0.085.

For the 99% CI for p, the ME increases from 0.085 to

2.58

r
0.25� (1�0.25)

100
= 0.1117.
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Confidence Interval Estimation: One Population One Normal Variance

One Normal Variance

Inverting the test statistic

χ
2 =

(n�1)s2

σ2
0

,

in testing H0 : σ2 = σ2
0 vs. H1 : σ2 6= σ2

0, we have the (1�α) CI for σ2 is(
σ

2
0

�����χ2
n�1,1�α/2 �

(n�1)s2

σ2
0

� χ
2
n�1,α/2

)
=

"
(n�1)s2

χ2
n�1,α/2

,
(n�1)s2

χ2
n�1,1�α/2

#
.

This CI is not symmetric about s2 (which is the unbiased estimator of σ2) although
it indeed includes s2 because χ2

n�1,α/2 > n�1 and χ2
n�1,1�α/2 < n�1 for usual

α ’s, so ME is not well defined.

(*) In general, we can construct the CI for µ and σ2 based on other tests (i.e.,
one-sided H1) in the last lecture. However, such a CI may have an infinite length.
- For example, inverting the test statistic for H0 : µ � µ0 vs. H0 : µ > µ0 with
unknown normal variance, we have [x̄ � tn�1,α

sp
n
,∞), where compared withh

x̄ � tn�1,α/2
sp
n
, x̄ + tn�1,α/2

sp
n

i
, x̄ � tn�1,α

sp
n
> x̄ � tn�1,α/2

sp
n

, but

∞> x̄ + tn�1,α/2
sp
n

.
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Confidence Interval Estimation: One Population One Normal Variance

[Example] Speed of Computer Processors

You are testing the speed of a batch of computer processors. You collect the
following data (in Mhz):

Assume the population is normal. Determine the 95% confidence interval for σ2.
Solution: n = 17, so the chi-square distribution has (n�1) = 16 d.f..
α = .05, so use the the chi-square values with area .025 in each tail:
χ2

n�1,α/2 = χ2
16,.025 = 28.85, and χ2

n�1,1�α/2 = χ2
16,.975 = 6.91.

The 95% CI is
�
(n�1)s2

χ2
n�1,α/2

,
(n�1)s2

χ2
n�1,1�α/2

�
=
h
(17�1)�742

28.85 ,
(17�1)�742

6.91

i
= [3037,12680].

Converting to standard deviation, we are 95% confident that the population
standard deviation of CPU speed is between 55.1 and 112.6 Mhz.
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Confidence Interval Estimation: One Population Confidence Intervals in Finite Populations

(*) Confidence Intervals in Finite Populations

n is not much smaller than N in random sampling without replacement, e.g.,
n > 0.05N.

n itself is large enough so that the CLT can be applied.

One Mean, Unknown Population Variance, Large Samples: the (1�α) CI for µ is

[x̄ �zα/2σ̂ x̄ , x̄ + zα/2σ̂ x̄ ] ,

where

σ̂
2
x̄ =

s2

n
N�n

N
= s2

�
1
n
� 1

N

�
rather than s2/n is an unbiased estimator of Var (x̄).
- ME = zα/2σ̂ x̄ < zα/2

sp
n

.

The (1�α) CI for the population total Nµ (e.g., the total enrollment in business
statistics when µ is the mean enrollment) is

[Nx̄�zα/2Nσ̂ x̄ ,Nx̄ + zα/2Nσ̂ x̄ ] .

- ME = zα/2Nσ̂ x̄ is N times the ME of the CI for µ. [example here]
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Confidence Interval Estimation: One Population Confidence Intervals in Finite Populations

(**) Discussion

As shown in Lecture 5,

t :=
x̄�µq
s2

n
N�n

N

d�! N (0,1) ,

as N ! ∞, so the (1�α) CI for µ is

[x̄ �zα/2σ̂ x̄ , x̄ + zα/2σ̂ x̄ ]

with σ̂
2
x̄ defined above.

In the textbook, the authors replace zα/2 by tn�1,α/2 and s2

n
N�n

N by s2

n

�
N�n
N�1

�
.

The second replacement is innocent given that N ! ∞, but the first one is not.

The t-distribution is applied for a finite n. When n is finite, it is appropriate to
assume N is also finite because n > 0.05N. In this case, it is not appropriate to
think xi follows a normal distribution (which requires an infinite population because
a normal distribution can take infinite values). As a result, when n is finite, t follows
a discrete distribution, not the t-distribution!
- The logic inconsistency of the textbook is obvious in assuming large samples
(i.e., n! ∞) and at the same time using tn�1 distribution.
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Confidence Interval Estimation: One Population Confidence Intervals in Finite Populations

[Example] CI for Population Total

A firm has a population of 1000 accounts and wishes to estimate the value of the
total population balance. A sample of 80 accounts is selected with average
balance of $87.60 and standard deviation of $22.30. Find the 95% CI of the total
balance.
Solution: N = 1000, n = 80, x̄ = 87.6, and s = 22.3.
In the textbook,

N2
σ̂

2
x̄ = N2 s2

n

�
N�n
N�1

�
= 10002 22.32

80

�
1000�80
1000�1

�
= 5724559.6,

so Nσ̂ x̄ =
p

5724559.6= 2392.6, and the resulting 95% CI for Nµ is

Nx̄ � t79,.025Nσ̂ x̄ = 1000�87.6�1.9905�2392.6

= [82837.53,92362.47].

Actually,

N2
σ̂

2
x̄ = N2 s2

n
N�n

N
= 10002 22.32

80
1000�80

1000
= 5718835,

so Nσ̂ x̄ =
p

5718835= 2391.41, and the resulting 95% CI for Nµ is

Nx̄�z.025Nσ̂ x̄ = 1000�87.6�1.96�2391.41= [82912.84,92287.16].
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Confidence Interval Estimation: One Population Confidence Intervals in Finite Populations

continue

One Proportion, Large Samples: the (1�α) CI for p is�
p̂�zα/2σ̂ p̂, p̂+ zα/2σ̂ p̂

�
,

where

σ̂
2
p̂ =

p̂ (1� p̂)
n�1

N�n
N

is an unbiased estimator of Var (p̂). [see Problem 5(iii) of Assignment III,
s2

n =
p̂(1�p̂)

n�1 ]

- ME = zα/2σ̂ p̂ = zα/2

r
(N�n)n
N(n�1)

q
p̂(1�p̂)

n < zα/2

q
p̂(1�p̂)

n if n2 > N (or n > N1/2).
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Sample-Size Determination

(*) Sample-Size Determination
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Sample-Size Determination Large Populations

Large Populations

If we think the CI is too wide, we can narrow it by increasing n.

Fix the width of the CI, determine how large an n can achieve it.

Consider only two cases below.

One Normal Mean, Known Population Variance: Solving

ME = zα/2
σp
n
,

we have

n =
z2

α/2σ2

ME2 , (1)

which increases in 1�α, σ2 and decreases in ME , i.e., to make a (1�α) CI for µ

extend a distance ME on each side of x̄ , we need
z2

α/2σ2

ME2 (or the rounding-up�
z2

α/2σ2

ME2

�
if

z2
α/2σ2

ME2 is not an integer) samples.

Example: If σ = 45, what sample size is needed to estimate the mean within �5
with 90% confidence?

Solution: n=
z2

α/2σ2

ME2 = 1.6452�452

52 = 219.19, so the required sample size is n= 220.
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Sample-Size Determination Large Populations

continue

One Proportion, Large Samples: We cannot solve

ME = zα/2

r
p̂ (1� p̂)

n
,

to have the required n, since p̂ is unobserved beforehand.
Anyway, p̂ (1� p̂)� 0.25, so solving

ME = zα/2

r
0.25

n
,

we conclude that

n =
0.25z2

α/2

ME2

can guarantee that the CI extends no more than ME on each side of the p̂, where
n increases in 1�α and decreases in ME .
- For one normal mean with unknown population variance, ME = tn�1,α/2

sp
n

is not
easy to solve since both tn�1,α/2 and s depend on n.
Example 7.14: Electoral College: If an opinion survey on changing the Electoral
College process reported that the poll has a 3% margin of error (with 95%
confidence), how many citizens of voting age need to be sampled?

Solution: n =
0.25z2

α/2

ME2 = 0.25�1.962

0.032 = 1067.11 =) n = 1068.
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Sample-Size Determination Finite Populations

Finite Populations

One Mean, Known Population Variance: If σ2
x̄ is the target, then solving

σ
2
x̄ =

σ2

n

�
N�n
N�1

�
,

we have

n =
Nσ2

(N�1)σ2
x̄ +σ2

.

- If ME is the target, then solving

ME = zα/2
σp
n

r
N�n
N�1

to have

n =
n0N

n0+(N�1)
� n0,

where n0 is given in (1). [Implicitly assume normality or the implied n is large]
- If the population total is of interest, then solve ME = zα/2Nσ x̄ .

With nonresponse or missing data, practitioners may add a certain percent (like
10%) to the implied size n.
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Sample-Size Determination Finite Populations

continue

One Proportion, Large Samples: Solving

σ
2
p̂ =

p (1�p)
n

�
N�n
N�1

�
to have

n =
Np (1�p)

(N�1)σ2
p̂+p (1�p)

.

- Since p (1�p) is unknown, the largest possible value of n (note that n is an
increasing function of p (1�p)) is

nmax =
0.25N

(N�1)σ2
p̂+0.25

.

- A 95% CI for p will extend approximately 1.96σ p̂ on each side of p̂.
Example 7.16: Campus Survey: Suppose a random sample of the 1,395 U.S.
colleges is taken to estimate the proportion for which the business statistics
course is two semesters long. For a 95% CI to extend no further than 0.04 on
each side of the sample proportion, how many samples should be taken?
Solution: 1.96σ p̂ = 0.04=) σ p̂ = 0.020408. So

nmax =
0.25N

(N�1)σ2
p̂+0.25

= 0.25�1,395
1,394�0.0204082+0.25 = 419.88=) n = 420.
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Confidence Interval Estimation: Two Populations

Confidence Interval Estimation: Two Populations
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Confidence Interval Estimation: Two Populations Matched Pair: Two Means

Matched Pair: Two Means

Inverting the test statistic

t =
d̄ �µ0

sd /
p

n

in testing H0 : µd := µx �µy = µ0 vs. H1 : µd 6= µ0, we have the (1�α) CI for µd
is �

µ0j
���� d̄ �µ0

sd /
p

n

����� tn�1,α/2

�
= d̄ � tn�1,α/2

sdp
n
,

where d̄ = x̄� ȳ , and sd is the sample standard deviation of fdign
i=1 with

di = xi �yi .
- ME = tn�1,α/2

sdp
n

.

- If the CI contains 0, then we cannot reject µx = µy at the significance level α.
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Confidence Interval Estimation: Two Populations Matched Pair: Two Means

[Example] Weight Loss Program

Six people sign up for a weight loss program. You collect the following data:

Form the 95% CI for µx �µy .

Solution: d̄ = 42/6= 7, and sd = 4.82. tn�1,α/2 = t5,.025 = 2.571.

So the 95% CI for µx �µy is d̄ � tn�1,α/2
sdp

n
= 7�2.571 4.82p

6
= [�1.94,12.06].

Since this interval contains zero, we cannot be 95% confident, given this limited
data, that the weight loss program helps people lose weight.
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Confidence Interval Estimation: Two Populations Independent Samples: Two Normal Means, Known Population Variances

Independent Samples: Two Normal Means, Known Population
Variances

Inverting the test statistic

z =
(x̄ � ȳ)�µ0r

σ2
x

nx
+

σ2
y

ny

in testing H0 : µd = µ0 vs. H1 : µd 6= µ0, we have the (1�α) CI for µd is8>><>>: µ0j

��������
(x̄� ȳ)�µ0r

σ2
x

nx
+

σ2
y

ny

��������� zα/2

9>>=>>;= (x̄� ȳ)�zα/2

s
σ2

x

nx
+

σ2
y

ny
.

- ME = zα/2

r
σ2

x
nx
+

σ2
y

ny
.
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Confidence Interval Estimation: Two Populations Indpt Samples: Two Normal Means, Unknown Equal Population Variances

Independent Samples: Two Normal Means, Unknown Equal Population
Variances

Inverting the test statistic

t =
(x̄ � ȳ)�µ0r

s2
p

nx
+

s2
p

ny

in testing H0 : µd = µ0 vs. H1 : µd 6= µ0, we have the (1�α) CI for µd is8>><>>: µ0j

��������
(x̄� ȳ)�µ0r

s2
p

nx
+

s2
p

ny

��������� tn�2,α/2

9>>=>>;= (x̄� ȳ)� tn�2,α/2

s
s2

p

nx
+

s2
p

ny
,

where n = nx +ny , and the pooled sample variance

s2
p =

(nx �1)s2
x +(ny �1)s2

y

nx +ny �2
.

- ME = tn�2,α/2

r
s2

p
nx
+

s2
p

ny
.
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Confidence Interval Estimation: Two Populations Indpt Samples: Two Normal Means, Unknown Equal Population Variances

[Example] Speed Difference Between Two CPUs

You are testing two computer processors for speed. Form a CI for the difference in
CPU speed. You collect the following speed data (in Mhz):

Assume both populations are normal with equal variances, and use 95%
confidence.
Solution: The pooled variance is

s2
p =

(nx �1)s2
x +(ny �1)s2

y

nx +ny �2
=
(17�1)�742+(14�1)�562

17+14�2
= 4427.03.

The t value for the 95% CI is tn�2,α/2 = t29,.025 = 2.045.
The 95% CI is

(x̄� ȳ)� tn�2,α/2

s
s2

p

nx
+

s2
p

ny
= (3004�2538)�2.045

r
4427.03

17
+

4427.03
14

= [416.69,515.31].
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Confidence Interval Estimation: Two Populations Indpt Samples: Two Normal Means, Unknown Unequal Population Variances

Independent Samples: Two Normal Means, Unknown Unequal
Population Variances

Inverting the test statistic

t =
(x̄ � ȳ)�µ0r

s2
x

nx
+

s2
y

ny

in testing H0 : µd = µ0 vs. H1 : µd 6= µ0, we have the (1�α) CI for µd is8>><>>: µ0j

��������
(x̄� ȳ)�µ0r

s2
x

nx
+

s2
y

ny

��������� tv ,α/2

9>>=>>;= (x̄� ȳ)� tv ,α/2

s
s2

x

nx
+

s2
y

ny
,

where v =

��
s2
x

nx

�
+

�
s2
y

ny

��2

�
s2
x

nx

�2

/(nx�1)+
�

s2
y

ny

�2

/(ny�1)

is defined in the last lecture.

- ME = tv ,α/2

r
s2

x
nx
+

s2
y

ny
.

- Whether σ2
x = σ2

y or not can be tested using the test in the last lecture.
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Confidence Interval Estimation: Two Populations Independent Samples: Two Proportions, Large Samples

Independent Samples: Two Proportions, Large Samples

Recall that the test statistic is

z =
p̂x � p̂yq

p̂0(1�p̂0)
nx

+
p̂0(1�p̂0)

ny

,

in testing H0 : px �py = 0 vs. H1 : px �py 6= 0, which employs the null information
px = py in estimating the variance of p̂x � p̂y .
In testing H0 : px �py = p0 vs. H1 : px �py 6= p0 for a general p0 value, the proper
test statistic is

z =
(p̂x � p̂y )�p0r

p̂x (1�p̂x )
nx

+
p̂y (1�p̂y )

ny

,

inverting which to have the (1�α) CI for px �py as8>><>>:p0j

��������
(p̂x � p̂y )�p0r

p̂x (1�p̂x )
nx

+
p̂y (1�p̂y )

ny

��������� zα/2

9>>=>>;= (p̂x � p̂y )�zα/2

s
p̂x (1� p̂x )

nx
+

p̂y (1� p̂y )

ny
.

- ME = zα/2

r
p̂x (1�p̂x )

nx
+

p̂y (1�p̂y )
ny

.
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Confidence Interval Estimation: Two Populations Independent Samples: Two Proportions, Large Samples

[Example] Difference Between the College Degree Rates

Form a 90% confidence interval for the difference between the proportion of men
and the proportion of women who have college degrees. In a random sample, 26
of 50 men and 28 of 40 women had an earned college degree.

Solution: Men: p̂x =
26
50 = 0.52; Women: p̂y =

28
40 = 0.70.r

p̂x (1�p̂x )
nx

+
p̂y (1�p̂y )

ny
=
q

0.52�0.48
50 + 0.7�0.3

40 = 0.1012.

For the 90% CI, zα/2 = 1.645.
So the 90% CI for px �py is

(p̂x � p̂y )�zα/2

s
p̂x (1� p̂x )

nx
+

p̂y (1� p̂y )

ny
= (.52� .70)�1.645�0.1012

= [�0.3465,�0.0135].

Since this interval does not contain zero we are 90% confident that the two
proportions are not equal – the college degree rate of men is lower than that of
women.
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Confidence Interval Estimation: Two Populations Independent Samples: Two Proportions, Large Samples

Comparison of the Neyman-Pearson Approach, Fisher’s p-Value
Approach and Neyman’s CI

Consider testing H0 : µ = µ0 vs. H1 : µ 6= µ0 at the significance level α.

The Neyman-Pearson approach can only make a decison for a fixed µ0 and a
fixed α each time.

Fisher’s p-value approach can make a decision for any α but a fixed µ0 each time.

Neyman’s CI can make a decision for any µ0 but a fixed α each time.

Ping Yu (HKU) Confidence Interval Estimation 40 / 40


	Confidence Interval Estimation: One Population
	One Normal Mean, Known Population Variance
	One Normal Mean, Unknown Population Variance
	One Proportion, Large Samples
	One Normal Variance
	Confidence Intervals in Finite Populations

	Sample-Size Determination
	Large Populations
	Finite Populations

	Confidence Interval Estimation: Two Populations
	Matched Pair: Two Means
	Independent Samples: Two Normal Means, Known Population Variances
	Indpt Samples: Two Normal Means, Unknown Equal Population Variances
	Indpt Samples: Two Normal Means, Unknown Unequal Population Variances
	Independent Samples: Two Proportions, Large Samples


