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Plan of This Lecture

Hypothesis Testing: One Population
- Concepts of Hypothesis Testing
- One Normal Mean, Known Population Variance
- One Normal Mean, Unknown Population Variance
- One Proportion, Large Samples
- Assessing the Power of a Test
- One Normal Variance

Hypothesis Testing: Two Populations
- Matched Pair: Two Means
- Independent Samples: Two Normal Means, Known Population Variances
- Independent Samples: Two Normal Means, Unknown Equal Population
Variances
- Independent Samples: Two Normal Means, Unknown Unequal Population
Variances
- Independent Samples: Two Proportions, Large Samples
- Independent Samples: Two Normal Variances
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Hypothesis Testing: One Population

Hypothesis Testing: One Population
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Hypothesis Testing: One Population Concepts of Hypothesis Testing

Hypothesis and Null Hypothesis

In hypothesis testing, we first state two alternatives/options/hypotheses that cover
all possible outcomes, and then select one of them using statistics computed from
random samples.
- What is the difference between estimation and hypothesis testing?

A hypothesis is a claim (assumption) about a population parameter.
- e.g., the mean monthly cell phone bill of this city is µ = $52.
- e.g., the proportion of adults in this city with cell phones is p = .88.

The null hypothesis is the maintained hypothesis (or the status quo) unless there
is strong evidence against it.

The null hypothesis is usually stated numerically, always contains "= ","� " or
"� " sign, e.g., the average number of TV sets in U.S. homes is equal to three
(H0 : µ = 3).

The null hypothesis is always about a population parameter, not about a sample
statistic.

The null hypothesis may or may not be rejected.
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Hypothesis Testing: One Population Concepts of Hypothesis Testing

Alternative Hypothesis

The alternative hypothesis is the complement or negation of the null (hypothesis),
i.e., "rejecting the null" means "accepting the alternative".
- e.g., the average number of TV sets in U.S. homes is not equal to three
(H1 : µ 6= 3).

H1 challenges the status quo.

H1 never contains the "= ","� " or "� " sign.

H1 may or may not be supported.

H0 and H1 are asymmetric: H0 is the default state of the world, and we focus on
using data to reject H0, i.e., H1 is generally the hypothesis that the researcher is
trying to support [explain more below].

The textbook uses the term "fail to reject the null" instead of "accept the null" since
the null need not be correct (even if we cannot reject it) but only because we do
not have sufficient evidence to reject it; anyway, we will use these two terms
interchangeably.
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Hypothesis Testing: One Population Concepts of Hypothesis Testing

Simple and Composite Hypotheses

The specification of null and alternative hypotheses depends on the problem.

Example

To test whether the mean package weight of a ready-to-eat cereal is 16 ounces, we
can set our null hypothesis as

H0 : µ = 16,

and the alternative hypothesis can be

H1 : µ > 16 or H1 : µ 6= 16.

If the company wants to avoid legal action and/or customer dissatisfaction, then it can
set H0 : µ � 16 vs. H1 : µ > 16.

The hypothesis like µ = 16, which specifies a single value of µ, is called the
simple hypothesis.
Either of the two alternative hypotheses in the above example includes more than
one values of µ, so is called the composite hypothesis.
Among which, µ > 16 is a one-sided (composite) hypothesis, and µ 6= 16 is a
two-sided (composite) hypothesis.
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Hypothesis Testing: One Population Concepts of Hypothesis Testing

Testing Procedure

Define a test statistic; if its value has a small probability to occur under H0, then
we will reject H0; otherwise, accept H0. [figure here]
- How to construct the test statistic from the observed data?
- To study the probability of its realized value, we need to derive the distribution of
the test statistic.
- Also, how small is small? 10%,5% or 1%?

Answering the above three questions determines a test.
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Hypothesis Testing: One Population Concepts of Hypothesis Testing

continue

Analog: in criminal jury trial,

H0 : you are innocent vs. H1 : you are guilty;

evidences cannot happen if you are innocent, but they indeed happened, so you
must be guilty.

Rejecting H0 is a strong statement, but accepting H0 is not. [why?]
- This is also why the textbook uses the terms "accept H1" and "fail to reject H0".

So if seek strong evidence in favor of a particular outcome, we should define that
outcome as the alternative hypothesis.
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Hypothesis Testing: One Population Concepts of Hypothesis Testing

Type I Error

Because the test statistic is random, the decision rule based on the test statistic is
random, i.e., we have some chance to make mistakes.
A false rejection of H0 (rejecting H0 when H0 is true) is called a Type I error.
- Usually, restrict the Type I error rate P (Reject H0jH0 is true) = α to be small, i.e.,
the probability of convicting an innocent (which is considered a serious type of
error) should be small.
- α is called the significance level of the test (typically, 10%, 5% or 1%), and is
selected by the researcher in advance.
- α defines the unlikely values of the test statistic if the null hypothesis is true:
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Hypothesis Testing: One Population Concepts of Hypothesis Testing

Type II Error

A false acceptance of H0 (accepting H0 when H1 is true) is called a Type II error.

π := 1�P (Accept H0jH1 is true) =: 1�β is called the power of the test, which is
the probability of correctly rejecting H0, i.e., convicting a gulity.
- Minimizing the probability of the Type II error, β , is equivalent to maximizing the
power, i.e., trying our best to convict every guilty person.

Type I and Type II errors can not happen at the same time: Type I error can only
occur if H0 is true, while Type II error can only occur if H0 is false.

Type I error is more serious than Type II error because the former involves
declaring a scientific finding that is not correct. This is why we must restrict the
Type I error rate to be small.
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Hypothesis Testing: One Population Concepts of Hypothesis Testing

Summary

We fail to reject H0 either because H0 is true or we have committed a Type II error.

α and β cannot be minimized simultaneously, so there is a trade-off between α

and β . [see the next slide]

Usually, we fix α and try to minimize β (or equivalently, maximize π).
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Hypothesis Testing: One Population Concepts of Hypothesis Testing

Trade-off Between Type-I and Type-II Errors

Suppose we have only one data point z in hand and we know z � N (µ,1).

We want to test H0: µ = 0 against H1: µ = 3.

A natural test is to reject H0 if z is large, e.g., z > c for some c > 0.

α = P(z > cjµ = 0) = 1�Φ(c), which is a decreasing function of c, where Φ(�) is
the distribution function of the standard normal.

β = P (z � cjµ = 3) = P (z�3� c�3) = Φ(c�3) which is an increasing function
of c. [figure here]

There is not a direct linear substitution between α and β .

What is the difference in the two legal systems with H0 and H1 switched? e.g, the
case of Huawei.

Fix α = 0.05, then c is chosen such that 1�Φ(c) = 0.05, i.e., c = 1.645.

Now, π = 1�Φ(1.645�3).
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Hypothesis Testing: One Population Concepts of Hypothesis Testing

Figure: Trade-Off Between Type-I and Type-II Errors

The left panel illustrates α and β when c = 1.8, and the right panel illustrates
these probabilities as a function of c.
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Hypothesis Testing: One Population Concepts of Hypothesis Testing

Example Continued

In testing H0 : µ � 16 vs. H1 : µ > 16, suppose our test statistic is x̄ , and the
decision rule is "reject H0 if x̄ > 16.13".

α = P (x̄ > 16.13jµ) with µ � 16 and β = P (x̄ � 16.13jµ) with µ > 16.

Obviously, α and β are functions of µ, i.e., they should be written as α (µ) and
β (µ).
- supµ�16 α (µ) is called the size of the test, and supµ�16 α (µ) is restricted to be
no greater than the significance level α.
- π (µ) := 1�β (µ) is called the power function of the test, and is the target of
maximization (uniformly over µ > 16 although maybe impossible).

Figure 9.1: Consequences of Fixing the Significance Level of a Test:
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Hypothesis Testing: One Population Concepts of Hypothesis Testing

Summary

One hypothesis testing problem includes the following steps.

0. specify the null and alternative.

1. construct the test statistic.

2. derive the distribution of the test statistic under the null.

3. specify a level of significance.

4. determine the decision rule by finding the critical value.

5. study the power of the test.

The difficult step is Step 2 which has been studied in Lecture 5.
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Hypothesis Testing: One Population One Normal Mean, Known Population Variance

One Normal Mean, Known Population Variance

Data: fxign
i=1, where xi � N

�
µ,σ2

�
, and n is the sample size.

σ2 is known from the historical data and is assumed to be maintained, and we
only want to know whether the mean of the new data meets a standard, µ0.

H0 : µ = µ0 vs. H1 : µ > µ0
- In the previous example, let µ0 = 16.1 ounces to meet the industry regulation
with label weight 16 ounces.
- µ > µ0 is chosen as H1. (why?)
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Hypothesis Testing: One Population One Normal Mean, Known Population Variance

continue

Test Statistic:

z =
x̄ �µ0

σ/
p

n
,

which follows the N (0,1) distribution under H0.
Decision Rule: reject H0 if z > zα .
- Why? Under H1, z tends to be large (the mean of x̄ is µ, greater than µ0, and
σ/
p

n > 0 is fixed), and P (z > zα jµ = µ0) = α (i.e., z has only α probability to be
larger than zα under H0).
Caution on the notation: When we state the distribution of z, z is a random
variable; in the decision rule, z is the realized value of z.1

z > zα () x̄ > x̄c = µ0+ zα σ/
p

n, where x̄c(> µ0) is called the critical value for
the decision.2

1The textbook uses Z to denote the random variable, and z its realized value, but the authors seem not
consistent in their notations.

2The critical value is defined relative to the test statistic: if z is the test statistic, then zα is its critical value.
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Hypothesis Testing: One Population One Normal Mean, Known Population Variance

A Numerical Example

Suppose n = 25, σ = 0.4 and α = 0.05 (so zα = 1.645).
The decision rule is to reject H0 if

x̄ �µ0

σ/
p

n
=

x̄ �16.1

0.4/
p

25
> 1.645

() x̄ > x̄c = µ0+ zα σ/
p

n = 16.1+1.645�
�

0.4/
p

25
�
= 16.232.

Figure: Normal Densities Showing Both z and x̄ Values for the Decision Rule to Test H0 : µ = 16.1
vs. H1 : µ > 16.1
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Hypothesis Testing: One Population One Normal Mean, Known Population Variance

History of the Neyman-Pearson Approach and the p-Value Approach

Jerzy Neyman (1894-1981), Berkeley Egon Pearson (1895-1980), UCL

Ronald A. Fisher (1890-1962), UCL

The rejection/acceptance dichotomy is associated with the Neyman-Pearson
approach to hypothesis testing; p-value is associated with R.A. Fisher.
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Hypothesis Testing: One Population One Normal Mean, Known Population Variance

p-Value

There is a shortcoming in the above testing procedure: for a different α, we need
to repeat the test. The p-value can avoid this problem.

If α is made smaller and smaller, there will be a point where H0 cannot be rejected
anymore. [refer to the figure in the last slide, where x̄ = 16.3 (or z = 2.5)]

The reason is that, by lowering α, we need stronger evidences to reject H0, and
the current evidence becomes not enough.

The smallest α at which H0 is still rejected, is called the p-value of the hypothesis
test. [Do you expect the p-value < .05 or > .05 when x̄ = 16.3?]

The p-value is the α at which one is indifferent between rejecting and not rejecting
the null hypothesis.

Alternatively, the p-value is the probability of observing a test statistic as extreme
as or more extreme than what we obtained if H0 is true.
- p = P (Z > z),3 where Z � N (0,1), the null distribution of z.

A null hypothesis is rejected if and only if the corresponding p-value is smaller
than α:

α = P (Z > zα ) , so z > zα () p < α.

- The p-value is also called the observed level of significance.
3Note that P (Z > z) = P (Z � z) since the probability of a single point for N (0,1) is 0.
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Hypothesis Testing: One Population One Normal Mean, Known Population Variance

More on the p-Value

In the above example,

p = P (Z > 2.5) = 1�Φ (2.5) = 0.0062< 0.05.

Note that p = P (Z > z) = 1�Φ (z) is actually a random variable because z is
random, and the observed p-value is one of its realized value.

A small p-value is evidence against H0 because one would reject H0 even at small
α ’s.

p-values are more informative than tests at fixed α ’s because you can choose
your own α.

Caveat: the p-value should not be interpreted as the probability that either
hypothesis is true. For example, p is NOT the probability “that H0 is true.” Rather, p
is a measure of the strength of information against H0.
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Hypothesis Testing: One Population One Normal Mean, Known Population Variance

[Example] p-Value Approach to Testing

A phone industry manager thinks that customer monthly cell phone bill have
increased, and now average over $52 per month. The company wishes to test this
claim. [Assume σ = 10 is known]

Form hypotheses to test: H0 : µ = 52 [the average is $52 per month] vs.
H1 : µ > 52 [the average is greater than $52 per month]
Suppose α = 0.10. Find the rejection region:
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Hypothesis Testing: One Population One Normal Mean, Known Population Variance

continue

Suppose a sample is taken with the following results: n = 64, and x̄ = 53.1.

Using the sample results,

z =
x̄ �µ0

σ/
p

n
=

53.1�52

10/
p

64
= 0.88.

Because z < 1.28, we cannot reject H0.

Alternatively, the p-value is

p = P (x̄ > 53.1jµ = 52)

= P (Z > z) = 1�Φ (0.88) = 0.1894> α,

so we still cannot reject H0.
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Hypothesis Testing: One Population One Normal Mean, Known Population Variance

Composite Null and Alternative Hypotheses

Upper-Tail Test: H0 : µ � µ0 vs. H1 : µ > µ0

The data, test statistic, decision rule and p-value are exactly the same as in the
previous test.
- Why is zα the appropriate critical value to guarantee the size of the test to be α?
[exercise�]

Lower-Tail Test: H0 : µ � µ0 vs. H1 : µ < µ0
- e.g., from the regulator’s perspective in the cereal example, H0 : µ = 16 (or H0 :
µ � 16) vs. H1 : µ < 16

The data and test statistic are exactly the same as in the previous test.

Decision Rule: reject H0 if z <�zα , or equivalently, x̄ < x̄c = µ0�zα σ/
p

n. [figure
here]
- e.g., in the setup of the previous numerical example,

x̄c = 16�1.645�
�

0.4/
p

25
�
= 13.868.

The p-value is now P (Z < z), where Z � N (0,1).
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Hypothesis Testing: One Population One Normal Mean, Known Population Variance

Two-Sided Alternative Hypotheses

Two-Tail Test: H0 : µ = µ0 vs. H1 : µ 6= µ0
- e.g., the diameter of an automobile engine piston cannot be too large or too
small.

The data and test statistic are exactly the same as in the previous test.

Decision Rule: reject H0 if jzj> zα/2, or equivalently, x̄ < µ0�zα/2σ/
p

n or
x̄ > µ0+ zα/2σ/

p
n. [figure here]

- Note that zα/2 > zα , e.g., z0.05/2 = 1.96.

The p-value is now P (jZ j> jzj), where Z � N (0,1).
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Hypothesis Testing: One Population One Normal Mean, Known Population Variance

[Example] Average Number of TV Sets in US Homes

Our target is to test the claim that the true mean # of TV sets in US homes is equal
to 3. [Assume σ = 0.8 is known]

State the appropriate null and alternative hypotheses: H0 : µ = 3 vs. H1 : µ 6= 3.
[This is a two-tail test]

Specify the desired level of significance: suppose α = 0.05.

Choose a sample size: suppose a sample of size n = 100 is selected.

Determine the appropriate technique: σ is known, so this is a z test.

Set up the critical values: for α = 0.05, the critical z values are �1.96.

Collect the data and compute the test statistic: suppose x̄ = 2.84.

So the test statistic is

z =
x̄ �µ0

σ/
p

n
=

2.84�3

0.8/
p

100
= �2.0.

Because jzj> 1.96, we reject the null and conclude that there is sufficient
evidence that the mean number of TVs in US homes is not equal to 3.

Alternatively, p = P (jZ j> jzj) = P (Z > 2)+P (Z <�2) = 0.0456< 0.05, so the
null is rejected.
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Hypothesis Testing: One Population One Normal Mean, Known Population Variance

Acceptance Interval and Critical Interval (Pages 264-266)

The acceptance interval is the interval where x̄ occurs such that H0 cannot be
rejected.

This concept can be applied to any test, but we discuss it here to aid
understanding the acceptance interval on Page 264.

Specifically, the acceptance interval for the above test is�
µ0�zα/2σ/

p
n,µ0+ zα/2σ/

p
n
�
=: AI

�
x̄ 2 AI()

���� x̄ �µ0

σ/
p

n

����� zα/2

�
.

The acceptance interval provides an operating rule for process-monitoring to
determine if product standards continue to be achieved over time.

In US industries, zα/2 = 3, which results in the so-called Six Sigma methodology.

Often, the process is adjusted so that σ is small, and the resulting acceptance
interval is called the control interval, which is plotted over time and is called the
control chart (or more specifically, X-bar chart for x̄).

The critical interval (or rejection interval) is the interval where x̄ occurs such that
H0 is rejected, i.e., it is the complement of the acceptance interval.
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Hypothesis Testing: One Population One Normal Mean, Known Population Variance

Example 6.6: Cereal Package Weights

A random sample of five packages is collected every 30 minutes, µ = 448.8, and
the implied σ from 451�448.8= 3� σp

5
is 1.64.

Figure: X-Bar Chart For Cereal-Package Weight
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Hypothesis Testing: One Population One Normal Mean, Unknown Population Variance

One Normal Mean, Unknown Population Variance

The hypotheses are exactly the same as in the known population variance case:
- (i) H0 : µ = µ0 or H0 : µ � µ0 vs. H1 : µ > µ0
- (ii) H0 : µ = µ0 or H0 : µ � µ0 vs. H1 : µ < µ0
- (iii) H0 : µ = µ0 vs. H1 : µ 6= µ0

Test Statistic: the t-statistic

t =
x̄ �µ0

s/
p

n
,

which follows the Student’s tn�1 distribution under H0. [see the next four slides for
the definition and history of the t distribution]

Decision Rule: reject H0 if t > tn�1,α in (i), if t <�tn�1,α in (ii), and jt j> tn�1,α/2 in
(iii).
- The corresponding decision rule based on x̄ is the same as before except
replacing zα by tn�1,α , and σ by s.

The p-value is P (T > t) in (i), P (T < t) in (ii), and P (jT j> jt j) in (iii), where
T � tn�1.
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Hypothesis Testing: One Population One Normal Mean, Unknown Population Variance

t Distribution (Section 7.3)

If Z is a standardized normal r.v.,

Z � N (0,1) ,

and the r.v. X has a χ2 (chi-square) distribution with v degrees of freedom,

X � χ
2
v , [see the next slide for review]

independent of Z , then

Zp
X /v

=
standard normal variablep

independent chi-square variable/df
� tv ,

a t-distribution with v degrees of freedom.
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Hypothesis Testing: One Population One Normal Mean, Unknown Population Variance

continue

If Z1, � � � ,Zv are i.i.d. such that Zi � N (0,1), i = 1, � � � ,v , then

X =∑v
i=1 Z 2

i � χ
2
v .

Note that
v

∑
i=1

Z 2
i

,
v ! E

h
Z 2

i

i
= 1 as v ! ∞

by the LLN, so
tv ! N (0,1) as v ! ∞.

- Recall that E
h
Z 2

i

i
= Var (Zi )+E [Zi ]

2 = 1+02 = 1.

In practice, when v � 20, the approximation is good enough.
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Hypothesis Testing: One Population One Normal Mean, Unknown Population Variance

continue
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Figure: Density of the tv Distribution with v = 1,2,5,∞

Compared to N (0,1), the t-distribution is also symmetric, but has a heavier tail,
which implies the upper αth quantile of the tn�1 distribution tn�1,α > zα .
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Hypothesis Testing: One Population One Normal Mean, Unknown Population Variance

History of the t Test

William S. Gosset (1876-1937)

The t-test is named after Gosset (1908), “The probable error of a mean”. At the
time, Gosset worked at Guiness Brewery, which prohibited its employees from
publishing in order to prevent the possible loss of trade secrets. To circumvent this
barrier, Gosset published under the pseudonym “Student”. Consequently, this
famous distribution is known as the Student’s t rather than Gosset’s t ! The name
“t” was popularized by R.A. Fisher.
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Hypothesis Testing: One Population One Normal Mean, Unknown Population Variance

Why the t-Statistic Follows the t-Distribution Under H0?

Note that

t =
x̄ �µ0

s/
p

n
=
(x̄ �µ0)/

p
σ2/nr

s2

n

.
σ2

n

=
(x̄�µ0)/sd (x̄)r
(n�1)s2

σ2

.
(n�1)

� N (0,1)r
χ2

n�1

.
(n�1)

= tn�1,

where N (0,1) and χ2
n�1 are independent [proof not required].

When the σ in x̄�µ0
σ/
p

n
is replaced by its estimator s, the null distribution changes

from N (0,1) to tn�1.

When n! ∞, the two null distributions coincide [(*) because s is consistent to σ ],
but when n is small, e.g., n � 10, the tn-distribution differs greatly from the normal
distribution.

Ping Yu (HKU) Hypothesis Testing 34 / 71



Hypothesis Testing: One Population One Normal Mean, Unknown Population Variance

Ping Yu (HKU) Hypothesis Testing 35 / 71



Hypothesis Testing: One Population One Normal Mean, Unknown Population Variance

[Example] Average Cost of Chicago Hotel Room

The average cost of a hotel room in Chicago is said to be $168 per night. A
random sample of 25 hotels resulted in x̄ = $172.50 and s = $15.40. Test at the
α = 0.05 level that H0 : µ = 168 vs. H1 : µ 6= 168.

Because σ is unknown, we use the (two-tail) t test.
The test statistic

t =
x̄ �µ0

s/
p

n
=

172.5�168

15.40/
p

25
= 1.46< 2.064= t24,0.025 = tn�1,α/2,

so we cannot reject the null.
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Hypothesis Testing: One Population One Proportion, Large Samples

One Proportion, Large Samples

Data: same as in the previous test, but xi can only take 0 or 1 and follows the
Bernoulli(p) distribution.

The three pairs of hypotheses are the same as in the previous test, but here the
population means are denoted as p.

Test Statistic:

z =
p̂�p0p

p0 (1�p0)/n
,

which follows the N (0,1) distribution under H0 in large sample [np0 (1�p0)> 5
with p0 being the proportion under H0], where p̂ = x̄ is the sample proportion.
- Recall that the variance of the Bernoulli(p) distribution is p (1�p), so under H0,
the variance of xi is known. This is like testing one normal mean with known
population variance.

Decision Rule: reject H0 if z > zα in (i), if z <�zα in (ii), and jzj> zα/2 in (iii).

The p-value formulae are the same as in testing one normal mean with known
population variance.
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Hypothesis Testing: One Population One Proportion, Large Samples
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Hypothesis Testing: One Population One Proportion, Large Samples

Example 9.5: Supermarket Shoppers Price Knowledge

A supermarket wants to know whether shoppers are sensitive to the prices of
goods. Among a random sample of 802 shoppers, 378 can state the correct price
of an item immediately after putting it into their cart. Test at the 7% level the null
that at least one-half of all shoppers can state the correct price.

Solution: Our hypotheses are H0 : p � 0.5 vs. H1 : p < 0.5. The decision rule is

z =
p̂�p0p

p0 (1�p0)/n
<�zα .

In this example, p̂ = 378/802= 0.471, p0 = 0.5 and n = 802, which implies
np0 (1�p0) = 802�0.5� (1�0.5) = 200.5> 5, so

z =
0.471�0.5p

0.5 (1�0.5)/802
= �1.64<�1.474= �z0.07,

and we reject the null. Or the p-value is P (Z < z) = 0.051< 0.07.
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Hypothesis Testing: One Population Assessing the Power of a Test

Assessing the Power of a Test

In testing one normal mean with known population variance, H0 : µ = µ0 vs.
H1 : µ > µ0.

Fix µ� > µ0,

β (µ�) = P ( x̄ < x̄c jµ�)

= P
�

x̄ �µ�

σ/
p

n
<

x̄c �µ�

σ/
p

n

����µ��
= P

�
Z <

x̄c �µ�

σ/
p

n

�
= Φ

�
x̄c �µ�

σ/
p

n

�
.

π (µ�) = 1�β (µ�) = P ( x̄ > x̄c jµ�) = 1�Φ
�

x̄c�µ�

σ/
p

n

�
= Φ

�
µ��x̄c

σ/
p

n

�
.

Ping Yu (HKU) Hypothesis Testing 40 / 71



Hypothesis Testing: One Population Assessing the Power of a Test

A Numerical Example

Suppose n = 16, σ = 0.1, µ0 = 5 and α = 0.05 (so zα = 1.645).

Now, x̄c = µ0+ zα σ/
p

n = 5+1.645�
�

0.1/
p

16
�
= 5.041, so

β (µ�) = Φ
�

5.041�µ�

0.1/
p

16

�
and π (µ�) = Φ

�
µ��5.041

0.1/
p

16

�
.

Figure: The Determination of π (5.05)

Refer also to the figure on the trade-off between two types of errors.
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Hypothesis Testing: One Population Assessing the Power of a Test

Figure: Power Functions for Test of H0 : µ = 5 vs. H1 : µ > 5
(α = 0.05,σ = 0.1,n = 16,9,4)

π (µ�) = Φ
�

µ��x̄c

σ/
p

n

�
= Φ

�
µ��µ0�zα σ/

p
n

σ/
p

n

�
= Φ

�p
n µ��µ0

σ
�zα

�
is increasing in

µ��µ0, n and α, and decreasing in σ2, and π (x̄c) = 0.5. [why?]
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Hypothesis Testing: One Population Assessing the Power of a Test

Another Numerical Example

Suppose we are interested in H0 : p = p0 = 0.5 vs. H1 : p 6= 0.5, where p is, say,
the proportion of forecasts made by a group of financial analysts that exceeded
the actual level of earnings.

The decision rule is to reject H0 if

���� p̂�p0p
p0(1�p0)/n

����> zα/2, where

p̂ = 382/600= .637 and n = 600.
For p1 6= p0,

β (p1) = P

 ����� p̂�p0p
p0 (1�p0)/n

������ zα/2

�����p1

!

= P

 ����� p̂�p1+p1�p0p
p1 (1�p1)/n

������ zα/2

p
p0 (1�p0)/np
p1 (1�p1)/n

�����p1

!

= P

 �����Z + p1�p0p
p1 (1�p1)/n

������ zα/2

s
p0 (1�p0)

p1 (1�p1)

!

= Φ

 
zα/2

s
p0 (1�p0)

p1 (1�p1)
� p1�p0p

p1 (1�p1)/n

!

�Φ

 
�zα/2

s
p0 (1�p0)

p1 (1�p1)
� p1�p0p

p1 (1�p1)/n

!
.
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Hypothesis Testing: One Population Assessing the Power of a Test

continue

Figure: Power Functions for Test of H0 : p = .5 vs. H1 : p 6= .5 (α = 0.05,n = 600)

π (p1) = 1�β (p1) is increasing in jp1�p0j .
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Hypothesis Testing: One Population One Normal Variance

One Normal Variance

Data: same as in the one normal mean test.

H0 : σ2 = σ2
0 vs. (i) H1 : σ2 > σ2

0, (ii) σ2 < σ2
0, and (iii) σ2 6= σ2

0
- Such hypotheses are useful in quality control.

Test Statistic:

χ
2 =

(n�1)s2

σ2
0

,

which follows the χ2
n�1 distribution under H0.

Decision Rule: reject H0 if χ2 > χ2
n�1,α in (i), if χ2 < χ2

n�1,1�α
in (ii), and

χ2 > χ2
n�1,α/2 or χ2 < χ2

n�1,1�α/2 in (iii). [figure here]
- The chi-square distribution tests are more sensitive to the normality assumption
than the standard normal distribution tests.

The p-value is P
�

χ2
n�1 > χ2

�
in (i), P

�
χ2

n�1 < χ2
�

in (ii), and in (iii)

2�min
n

P
�

χ
2
n�1 > χ

2
�
,P
�

χ
2
n�1 < χ

2
�o

[why? make sure the p-value approach is equivalent to the Neyman-Pearson
approach].
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Hypothesis Testing: One Population One Normal Variance

Figure: Chi-Square Distribution with n�1 Degrees of Freedom and Its Upper α/2 and 1�α/2
Quantiles: the chi-square distribution is not symmetric, so there is no direct relation between
χ2

n�1,α/2 and χ2
n�1,1�α/2 and we cannot use jχ2j to describe the two-sided test
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Hypothesis Testing: Two Populations

Hypothesis Testing: Two Populations
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Hypothesis Testing: Two Populations Matched Pair: Two Means

Matched Pair: Two Means

Matched pair is a kind of dependent samples; apart from the factor under study,
the pairs should resemble one another as closely as possible, such as twins.
- Dependent samples can also be two measurements taken on the same person
or object, e.g., a measurement is taken before an event and one after the event
(e.g., the treatment on a patient), namely, repeated measurements.

Data: f(xi ,yi )gn
i=1, where di := xi �yi � N

�
µx �µy ,σ

2
d

�
but xi and yi need not be

normally distributed, and µx , µy and σ2
d are unknown.4

(i) H0 : µx �µy = 0 or H0 : µx �µy � 0 vs. H1 : µx �µy > 0

(ii) H0 : µx �µy = 0 or H0 : µx �µy � 0 vs. H1 : µx �µy < 0

(ii) H0 : µx �µy = 0 vs. H1 : µx �µy 6= 0

This is like testing one normal mean with unknown population variance.
- xi , µ, µ0 and σ2 there are like di , µx �µy , 0 and σ2

d here.

4Because xi and yi are not independent, σ2
d need not be σ2

x +σ2
y .
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Hypothesis Testing: Two Populations Matched Pair: Two Means

continue

Test Statistic:

t =
d̄

sd /
p

n
,

which follows the tn�1 distribution under H0, where d̄ = x̄� ȳ , and sd is the sample
standard deviation of fdign

i=1.

Decision Rule: reject H0 if t > tn�1,α in (i), if t <�tn�1,α in (ii), and jt j> tn�1,α/2 in
(iii).

The p-value is P (T > t) in (i), P (T < t) in (ii), and P (jT j> jt j) in (iii), where
T � tn�1.

(*) Recall that the power of the t-test is inversely affected by σ2
d , so a smaller σ2

d is
favorable to the detection of the difference in µx and µy . Since

σ
2
d = Var (x �y) = σ

2
x +σ

2
y �2σxy ,

a positive σxy (as in our treatment example in the last slide) is helpful to our
purpose. Intuitively, taking differences eliminates random fluctuations that are
present in both the x- and y -components and do not interest us; after eliminating
this variation, it is easier to discover a possible difference caused by the treatment.

Ping Yu (HKU) Hypothesis Testing 49 / 71



Hypothesis Testing: Two Populations Matched Pair: Two Means

Example 10.1: Analysis of Alternative Turkey-Feeding Programs

Suppose we want to know whether a new feeding process can increase the mean
weight of turkeys at the level 2.5% by using a random set of 25 matched turkey
chicks hatched from the the same hen.
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Hypothesis Testing: Two Populations Matched Pair: Two Means

continue

Solution: Our hypotheses are H0 : µx �µy � 0 vs. H1 : µx �µy > 0. The level of
significance α = 2.5%.

In this example,
d̄ = 1.489,

and

s2
d = s2

x + s2
y �2rxy sx sy

= 3.2262+2.0572�2�0.823�3.226�2.057= 3.716,

which can also be calculated from fdign
i=1 by s2

d = ∑n
i=1

�
di � d̄

�2 / (n�1) directly,
so

t =
1.489p

3.716/
p

25
=

1.489
0.385

= 3.86> 2.064= t24,0.025 = tn�1,α ,

and we reject the null and conclude that the new feeding program indeed
increases the weight of turkey.
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Hypothesis Testing: Two Populations Independent Samples: Two Normal Means, Known Population Variances

Independent Samples: Two Normal Means, Known Variances

Data: fxignx
i=1[

�
yj
	ny

j=1, where xi � N
�

µx ,σ
2
x

�
, yj � N

�
µy ,σ

2
y

�
, and xi and yj are

independent for any i and j .

The three pairs of hypotheses are the same as in the previous test.

Test Statistic:

z =
x̄ � ȳr
σ2

x
nx
+

σ2
y

ny

,

which follows the N (0,1) distribution under H0 because E [x̄ � ȳ ] = µx �µy = 0,

Var (x̄ � ȳ) = Var (x̄)+Var (ȳ) = σ2
x

nx
+

σ2
y

ny
, and x̄ � ȳ is normally distributed.

Decision Rule: reject H0 if z > zα in (i), if z <�zα in (ii), and jzj> zα/2 in (iii).

The p-value is P (Z > z) in (i), P (Z < z) in (ii), and P (jZ j> jzj) in (iii), where
Z � N (0,1).
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Hypothesis Testing: Two Populations Independent Samples: Two Normal Means, Unknown Equal Variances

Independent Samples: Two Normal Means, Unknown Equal Variances

Data and hypotheses are the same as in the previous test, but σ2
x = σ2

y now.

Test Statistic:

t =
x̄ � ȳr
s2

p
nx
+

s2
p

ny

,

which follows the tn�2 distribution under H0, where n = nx +ny , and the pooled
sample variance

s2
p =

∑nx
i=1 (xi � x̄)2+∑ny

j=1

�
yj � ȳ

�2
nx +ny �2

=
(nx �1)s2

x +(ny �1)s2
y

nx +ny �2

is the weighted average of s2
x and s2

y .5

Decision Rule: reject H0 if t > tn�2,α in (i), if t <�tn�2,α in (ii), and jt j> tn�2,α/2 in
(iii).

The p-value P (T > t) in (i), P (T < t) in (ii), and P (jT j> jt j) in (iii), where
T � tn�2.

5Why s2
p is better than

s2
x+s2

y
2 ? A larger sample size induces a better estimator of the common variance, so is

imposed a larger weight.
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Hypothesis Testing: Two Populations Independent Samples: Two Normal Means, Unknown Equal Variances

Example 10.4: Example 10.1 continued

The setup and data are the same as in Example 10.1 but we assume the two
samples are independent now.

In the current notation, nx = ny = n0 = 25, and n = 2n0 = 50.

x̄� ȳ is still 1.489, but

s2
d = 3.2262+2.0572 = 14.638> 3.716

and
sdp
n0
=

p
14.638p

25
= 0.765> 0.385

or

s2
p =

24�3.2262+24�2.0572

48
= 7.319

and s
s2

p

nx
+

s2
p

ny
=

r
7.319

25
+

7.319
25

= 0.765> 0.385.
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Hypothesis Testing: Two Populations Independent Samples: Two Normal Means, Unknown Equal Variances

continue

The test statistic

t =
1.489
0.765

= 1.946< 2.01= t48,0.025,

so we cannot reject the null, a different conclusion from that in Example 10.1,
where note that the df is 48 now.

(*) rxy = 0.823> 2p
25

, indicating that xi and yi are not independent, so the t test

here is not suitable. If xi and yi are indeed independent, the t test here is
preferable because it has a larger df and thus a higher power (e.g., in this
example, t24,0.025 > t48,0.025).
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Hypothesis Testing: Two Populations Independent Samples: Two Normal Means, Unknown Unequal Variances

Indpt Samples: Two Normal Means, Unknown Unequal Variances

This is the famous Behrens-Fisher Problem [figure here].
Data and hypotheses are the same as in the previous test.
Test Statistic:

t =
x̄ � ȳr
s2

x
nx
+

s2
y

ny

,

whose null distribution is very complicated, but Welch (1938) and Satterthwaite
(1946) suggested to use the tv distribution to approximate it, where

v =

��
s2

x
nx

�
+

�
s2

y
ny

��2

�
s2

x
nx

�2
/ (nx �1)+

�
s2

y
ny

�2

/ (ny �1)

is random and need not be an integer. 6

Decision Rule: reject H0 if t > tv ,α in (i), if t <�tv ,α in (ii), and jt j> tv ,α/2 in (iii).
The p-value is P (T > t) in (i), P (T < t) in (ii), and P (jT j> jt j) in (iii), where
T � tv .

6(*) If s2
x = s2

y , then v = (nx+ny )
2
(nx�1)(ny�1)

n2
x (nx�1)+n2

y (ny�1)
, which is nonrandom! If further assume nx = ny = n0, then v

further reduces to 2 (n0�1), which is the same as in the unknown equal population variances case. (**) If v is
not an integer, we replace the χ2

v in the denominator of tv distribution by Gamma(v/2,2) which equals tv when
v is an integer.
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Hypothesis Testing: Two Populations Independent Samples: Two Normal Means, Unknown Unequal Variances

Walter U. Behrens (1902-1962), German Ronald A. Fisher (1890-1962), UCL
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Hypothesis Testing: Two Populations Independent Samples: Two Normal Means, Unknown Unequal Variances

(**) How is the Degrees of Freedom v Determined?

We try to match the mean and variance of

v

s2
x

nx
+

s2
y

ny

σ2
x

nx
+

σ2
y

ny

=: v
V̂
V

with those of χ2
v . Essentially, this operation is to mimic (n�1) s2

σ2 � χ2
n�1.

Because E
h
s2

x

i
= σ2

x and E
h
s2

y

i
= σ2

y , the means automatically match.

Because (nx �1)s2
x /σ2

x � χ2
nx�1, and (ny �1)s2

y /σ2
y � χ2

ny�1, and s2
x and s2

y are
independent of each other, we have

Var
�
V̂
�
=

2 (nx �1)σ4
x

(nx �1)2 n2
x

+
2 (ny �1)σ4

y

(ny �1)2 n2
y

=
2

nx �1

 
σ2

x
nx

!2

+
2

ny �1

 
σ2

y

ny

!2

,

so matching the variance,

v2 Var
�
V̂
�

V 2 = 2v =) v =
2V 2

Var
�
V̂
� =

�
σ2

x
nx
+

σ2
y

ny

�2

�
σ2

x
nx

�2
/ (nx �1)+

�
σ2

y
ny

�2
/ (ny �1)

,

and the v above replaces σ2
x and σ2

y by their unbiased estimates.
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Hypothesis Testing: Two Populations Independent Samples: Two Normal Means, Unknown Unequal Variances

More on v

v is usually smaller than n�2 which is the df of the test statistic in the unknown
equal variances case.

This is because more parameters are estimated: σ2
x and σ2

y rather than a
common variance, so more df’s are lost.

To aid understanding, think about testing one normal mean with known and
unknown population variances.

When σ2 is known,

z =
x̄ �µ0

σ/
p

n
� N (0,1) = t∞,

while when σ2 is unknown,

z =
x̄ �µ0

s/
p

n
� tn�1,

so the df decreases from ∞ to n�1.
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Hypothesis Testing: Two Populations Independent Samples: Two Normal Means, Unknown Unequal Variances

Example 10.4 continued

The setup and data are the same as in Example 10.4, but we assume the two
unknown population variances are unequal now.

The test statistic takes the same value 1.946; this is because when nx = ny = n0,

s2
p

nx
+

s2
p

ny
=

2
n0

(n0�1)s2
x +(n0�1)s2

y

n0+n0�2
=

s2
x + s2

y

n0
.

The only difference is that the df is 40 rather than 48 now.

The p-value is equal to

P (t40 > 1.946) = 0.02935> 0.025,

so we cannot reject null, the same conclusion as in Example 10.4.
- For comparison, the p-value in Example 10.4 is

P (t48 > 1.946) = 0.02876> 0.025.

- 0.02935> 0.02876, which is the cost to assume unequal variances.

In practice, we can first test whether σ2
x = σ2

y (using the f test below) before
conducting either test above.
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Hypothesis Testing: Two Populations Independent Samples: Two Normal Means, Unknown Unequal Variances

(**) More Comments

When σ2
x 6= σ2

y , but we assume they are equal and apply the two-sample t-test
with equal variances, then the true size may be different from the nominal size.
Anyway, as nx = ny (= n0)! ∞, the true size of t = x̄�ȳq

s2
p /nx+s2

p /ny

converges to the

nominal size for any pair of
�

σ2
x ,σ

2
y

�
.

- Why? When nx = ny , t = x̄�ȳq
(s2

x+s2
y )/n0

from the example above, which is the

correct test statistic when σ2
x 6= σ2

y ; also, 2 (n0�1)! ∞, so the critical value
t2(n0�1),α ! zα , while the correct critical value tv ,α also converges to zα since

v = (n0�1)
�

1+ 2
s2

x /s2
y+s2

y /s2
x

�
! ∞ for any pair of

�
σ2

x ,σ
2
y

�
.

This leads to the advice to choose samples of equal size whenever possible.
This is also wise when σ2

x = σ2
y , because the power of the corresponding t-test is

maximal when nx = ny (for fixed total sample size nx +ny ) as 1
nx
+ 1

ny
achieves the

minimum. [a large t statistic induces higher powers because the power is equal to,
e.g., P (t > critjH1) when H1 : µ > µ0]

When nx ,ny ! ∞ (need not be equal), by the central limit theorem,
t = x̄�ȳq

s2
p /nx+s2

p /ny

converges in distribution to N (0,1).
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Hypothesis Testing: Two Populations Independent Samples: Two Normal Means, Unknown Unequal Variances

(*) Specification Tests in Two Normal Populations

In practice, we need to conduct the following three specification tests sequentially.

1 Check whether the data are normally distributed using the normal probability plot.
2 Check whether the two populations are independent; in matched pair, check

whether
��rxy
��> 2p

n
.

3 When the two populations are independent, check whether σ2
x = σ2

y by using the f
test below.
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Hypothesis Testing: Two Populations Independent Samples: Two Proportions, Large Samples

Independent Samples: Two Proportions, Large Samples

Data: same as in the previous test, but xi and yj can only take 0 or 1, so follows
the Bernoulli(px ) and Bernoulli(py ) distributions.
The three pairs of hypotheses are the same as in the previous test, but here the
population means are denoted as px and py .
Test Statistic:

z =
p̂x � p̂yq

p̂0(1�p̂0)
nx

+
p̂0(1�p̂0)

ny

,

which follows the N (0,1) distribution under H0 in large sample [np0 (1�p0)> 5
with p0 being the common proportion under H0 and n = nx +ny ], where

p̂0 =
nx p̂x +ny p̂y

nx +ny
=

total number of successes in fxignx
i=1[

�
yj
	ny

j=1

total sample size of fxignx
i=1[

�
yj
	ny

j=1

.

- Recall that the variance of the Bernoulli(p) distribution is p (1�p), so under H0,
the variances of xi and yj are also equal. This is like testing two normal means
with unknown equal population variances.
Decision Rule: reject H0 if z > zα in (i), if z <�zα in (ii), and jzj> zα/2 in (iii).
The p-value is P (Z > z) in (i), P (Z < z) in (ii), and P (jZ j> jzj) in (iii), where
Z � N (0,1).
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Hypothesis Testing: Two Populations Independent Samples: Two Proportions, Large Samples

Example 10.5: Change in Customer Recognition of New Products After
an Advertising Campaign

Before the advertising campaign, 50 of 270 random residents heard of the new
product; after the campaign, 81 of 203 new random samples heard of the new
product. Do these results indicate that customer recognition increased after the
campaign at the 5% level?

Solution: Our hypotheses are H0 : px �py � 0 vs. H1 : px �py < 0. In this example,

p̂x = 50/270= 0.185, p̂y = 81/203= 0.399,

p̂0 =
nx p̂x +ny p̂y

nx +ny
=

50+81
270+203

= 0.277 2 [p̂x , p̂y ] ,

so

z =
p̂x � p̂yq

p̂0(1�p̂0)
nx

+
p̂0(1�p̂0)

ny

=
0.185�0.399q

0.277(1�0.277)
270 +

0.277(1�0.277)
203

= �5.15,

which is smaller than �z0.05 = �1.645, and we reject the null and conclude that
the advertising campaign is effective.
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Hypothesis Testing: Two Populations Independent Samples: Two Normal Variances

Independent Samples: Two Normal Variances

In testing two normal means with unknown equal population variances, we
assume σ2

x = σ2
y .

- This hypothesis is also of interest in quality-control studies.

Data: same as in testing two normal means, where s2
x � s2

y .

(i) H0 : σ2
x = σ2

y or H0 : σ2
x � σ2

y vs. H1 : σ2
x > σ2

y

- Why don’t we consider H0 : σ2
x = σ2

y or H0 : σ2
x � σ2

y vs. H1 : σ2
x < σ2

y ?

(ii) H0 : σ2
x = σ2

y vs. H1 : σ2
x 6= σ2

y

Test Statistic:

f =
s2

x

s2
y
,

which follows the Fnx�1,ny�1 distribution [see the next slide] under H0, where the
larger sample variance is put in the numerator and the smaller in the denominator
so that only the upper cutoff points of the F distribution are used [see below].

Decision Rule: reject H0 if f > Fnx�1,ny�1,α in (i), and if f > Fnx�1,ny�1,α/2 in (ii).7

The p-value is P (F > f ) in (i), and 2 �P (F > f ) in (ii), where F � Fnx�1,ny�1.

7We need not check f < Fnx�1,ny�1,1�α/2 since we sorted s2
x � s2

y such that f � 1 while Fnx�1,ny�1,1�α/2 < 1
for popular α ’s.
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F Distribution

This distribution is named after R.A. Fisher.

If X1 follows a χ2 distribution with d1 degrees of freedom,

X1 � χ
2
d1
,

and X2 follows a χ2 distribution with d2 degrees of freedom,

X2 � χ
2
d2
,

independent of X1, then

X1/d1

X2/d2
=

chi-square variable/df
independent chi-square variable/df

� Fd1,d2
,

an F -distribution with degrees of freedom d1 and d2.

- f = s2
x

s2
y

H0= s2
x /σ2

x
s2

y /σ2
y
=
[(nx�1)s2

x /σ2
x ]/(nx�1)

[(ny�1)s2
y /σ2

y ]/(ny�1)
� χ2

nx�1/(nx�1)
χ2

ny�1/(ny�1)
= Fnx�1,ny�1.

As in the t-distribution, X2/d2 ! 1 as d2 ! ∞. So

Fd1,d2
! χ

2
d1

/d1

as d2 ! ∞, i.e., Fd1,d2,α � χ2
d1,α

/d1.
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Figure: The Density of F10,20
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Example 10.6: Study of Maturity Variances

We want to know whether the variance of the maturities of AAA-rated industrial
bonds (σ2

x ) is different from that of CCC-rated ones (σ2
y ) at the 2% level.

Solution: Our hypotheses are H0 : σ2
x = σ2

y vs. H1 : σ2
x 6= σ2

y . In this example,

nx = 17,ny = 11,

s2
x = 123.35 and s2

y = 8.02,

so

f =
s2

x

s2
y
=

123.35
8.02

= 15.380> 4.520= F16,10,0.01,

or the p-value is P (F16,10 > 15.380) = 0.00< 0.01. As a result, we reject the null
and conclude that there is strong evidence that variances in maturities are
different for these two types of bonds.
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Some Comments on Hypothesis Testing

A test with low power can result from:
- Small sample size
- Large variances in the underlying populations
- Poor measurement procedures [σ2 = σ2

true+σ2
me, where "me" means

measurement error]

If sample sizes are large it is possible to find significant differences that are not
practically important.

- e.g., in matched pair, t = d̄
sd /

p
n

, so even if d̄ is not practically significant, it may

be statistically significant if n is large (if s2
d � σ2

d is stable).

Researchers should select the appropriate level of significance before computing
p-values, i.e., we should pre-set α.
- (*) If you set α after observing p, then α depends on the data so is random, and
the size, e.g., P (t > zα ), is hard to calculate.
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