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Plan of This Lecture

@ Hypothesis Testing: One Population
- Concepts of Hypothesis Testing
- One Normal Mean, Known Population Variance
- One Normal Mean, Unknown Population Variance
- One Proportion, Large Samples
- Assessing the Power of a Test
- One Normal Variance

@ Hypothesis Testing: Two Populations
- Matched Pair: Two Means
- Independent Samples: Two Normal Means, Known Population Variances
- Independent Samples: Two Normal Means, Unknown Equal Population
Variances
- Independent Samples: Two Normal Means, Unknown Unequal Population
Variances
- Independent Samples: Two Proportions, Large Samples
- Independent Samples: Two Normal Variances
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Hypothesis Testing: One Population

Hypothesis Testing: One Population
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Concepts of Hypothesis Testing
Hypothesis and Null Hypothesis

@ In hypothesis testing, we first state two alternatives/options/hypotheses that cover
all possible outcomes, and then select one of them using statistics computed from
random samples.

- What is the difference between estimation and hypothesis testing?

@ A hypothesis is a claim (assumption) about a population parameter.
- e.g., the mean monthly cell phone bill of this city is u = $52.
- e.g., the proportion of adults in this city with cell phones is p = .88.

@ The null hypothesis is the maintained hypothesis (or the status quo) unless there
is strong evidence against it.

@ The null hypothesis is usually stated numerically, always contains " =","” <" or
" >" sign, e.g., the average number of TV sets in U.S. homes is equal to three
(HO U= 3)

@ The null hypothesis is always about a population parameter, not about a sample

statistic.
. %“

@ The null hypothesis may or may not be rejected.
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Concepts of Hypothesis Testing
Alternative Hypothesis

@ The alternative hypothesis is the complement or negation of the null (hypothesis),
i.e., "rejecting the null* means "accepting the alternative".
- e.g., the average number of TV sets in U.S. homes is not equal to three
(Hy:p#3).

@ H; challenges the status quo.

@ Hj; never containsthe” ="," <" or” >" sign.

@ H; may or may not be supported.

@ Hy and H; are asymmetric: Hg is the default state of the world, and we focus on

using data to reject Hg, i.e., Hy is generally the hypothesis that the researcher is
trying to support [explain more below].

@ The textbook uses the term "fail to reject the null" instead of "accept the null" since
the null need not be correct (even if we cannot reject it) but only because we do
not have sufficient evidence to reject it; anyway, we will use these two terms
interchangeably.
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Concepts of Hypothesis Testing
Simple and Composite Hypotheses

@ The specification of null and alternative hypotheses depends on the problem.

Example

To test whether the mean package weight of a ready-to-eat cereal is 16 ounces, we
can set our null hypothesis as
Ho: u =16,

and the alternative hypothesis can be
Hy:u>16o0rH;p:p#16.

If the company wants to avoid legal action and/or customer dissatisfaction, then it can
setHp:u <16vs. Hy - u > 16.

@ The hypothesis like u = 16, which specifies a single value of y, is called the
simple hypothesis.

@ Either of the two alternative hypotheses in the above example includes more than
one values of u, so is called the composite hypothesis.

@ Among which, u > 16 is a one-sided (composite) hypothesis, and u # 16 is a
two-sided (composite) hypothesis.
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Concepts of Hypothesis Testing
Testing Procedure

@ Define a test statistic; if its value has a small probability to occur under Hg, then
we will reject Hp; otherwise, accept Hg. [figure here]
- How to construct the test statistic from the observed data?
- To study the probability of its realized value, we need to derive the distribution of
the test statistic.
- Also, how small is small? 10%,5% or 1% ?

@ Answering the above three questions determines a test.
Claim: the

ponaton ) §RRHFRF

(Null Hypothesis: Population
Hy:p=50)
Now select a
e
if £ =507 o 0o 0 0 0
e L
<i the sample

mean age Sample
is 20: x=20

Is x =20 likel

If not likely,
Reject
Null Hypothesis
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Hypothesis Testing: One Population Concepts of Hypothesis Testing
continue

@ Analog: in criminal jury trial,
Hp : you are innocent vs. H; : you are guilty;

evidences cannot happen if you are innocent, but they indeed happened, so you
must be guilty.

@ Rejecting Hy is a strong statement, but accepting Hy is not. [why?]
- This is also why the textbook uses the terms "accept H;" and "fail to reject Hp".

@ So if seek strong evidence in favor of a particular outcome, we should define that
outcome as the alternative hypothesis.
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Hypothesis Testing: One Population Concepts of Hypothesis Testing
Type | Error

@ Because the test statistic is random, the decision rule based on the test statistic is
random, i.e., we have some chance to make mistakes.

@ A false rejection of Hg (rejecting Hg when Hg is true) is called a Type | error.
- Usually, restrict the Type | error rate P (Reject Hg|Hg is true) = o to be small, i.e.,
the probability of convicting an innocent (which is considered a serious type of
error) should be small.
- o is called the significance level of the test (typically, 10%, 5% or 1%), and is
selected by the researcher in advance.
- o defines the unlikely values of the test statistic if the null hypothesis is true:

Level of significance = & ‘ <~ Represents
o critical value
C= o had
Hy: p =4y {/\&
H, u Rejection
VA Twolsl et " regionis

shaded

Hy <, ﬂa
Hy:p =gl

Upper-tail test 0 1

Hy gz i, o
Hyp<p,
=, |~

Lower-tail test 0
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Hypothesis Testing: One Population Concepts of Hypothesis Testing
Type Il Error

@ A false acceptance of Hq (accepting Hg when H, is true) is called a Type Il error.

@ 7:=1-P (Accept Hy|H; is true) =: 1 — f is called the power of the test, which is
the probability of correctly rejecting Hy, i.e., convicting a gulity.
- Minimizing the probability of the Type Il error, §, is equivalent to maximizing the
power, i.e., trying our best to convict every guilty person.

@ Type | and Type Il errors can not happen at the same time: Type | error can only
occur if Hg is true, while Type Il error can only occur if Hg is false.

@ Type | error is more serious than Type Il error because the former involves
declaring a scientific finding that is not correct. This is why we must restrict the
Type | error rate to be small.
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Hypothesis Testing: One Population Concepts of Hypothesis Testing

Summary

Table 9.1 States of Nature and Decisions on the Null Hypothesis, with Probabilities of
Making the Decisions, Given the States of Nature

Decrsions on

STATES OF NATURE

Nurr Hyporresis  Nurr HyrotHesis Is TRUE Nutrr HyrotHgesis Is FALSE
Fail to reject H, Correct decision Type Il error
Probability = 1 — « Probability = B
Reject H,, Type I error Probability = « Correct decision Probability = 1 —

(a is called the significance level) (1 — Bis called the power of the test)

¢

@ We fail to reject Hg either because Hg is true or we have committed a Type Il error.

@ o and f cannot be minimized simultaneously, so there is a trade-off between «
and . [see the next slide]

@ Usually, we fix a and try to minimize 8 (or equivalently, maximize ).
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Concepts of Hypothesis Testing
Trade-off Between Type-l and Type-Il Errors

e 6 6 o

Suppose we have only one data point z in hand and we know z ~ N (g, 1).

We want to test Hg: u =0 against Hy: u = 3.

A natural test is to reject Hy if z is large, e.g., z > ¢ for some ¢ > 0.

a=P(z >c|u=0)=1-P(c), which is a decreasing function of c, where ®(-) is
the distribution function of the standard normal.
B=P(z<clu=3)=P(z-3<c—-3)=P(c—23) which is an increasing function
of c. [figure here]

@ There is not a direct linear substitution between o and .

What is the difference in the two legal systems with Hy and H; switched? e.g, the
case of Huawei.

Fix oo = 0.05, then c is chosen such that 1 — ®(c) = 0.05, i.e., c = 1.645.

@ Now, 7 =1—®(1.645-3).
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Hypothesis Testing: One Population Concepts of Hypothesis Testing

Type | Error
——Type Il Error]

0399

Normal Density
Probability of Two Types of Errors

Aea =0.11 | Area=0.036 -

\ 0.069
\

\. 0.036

Figure: Trade-Off Between Type-I and Type-Il Errors

@ The left panel illustrates o and § when ¢ = 1.8, and the right panel illustrates
these probabilities as a function of c.
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Concepts of Hypothesis Testing
Example Continued

@ Intesting Hg : 1 <16 vs. Hy : u > 16, suppose our test statistic is X, and the
decision rule is "reject Hg if X > 16.13".

@ oo=P (X >16.13|u) withu <16 and f =P (X <16.13|u) with u > 16.
@ Obviously, o and B are functions of y, i.e., they should be written as o (1) and

B (u).

- Sup, <16 & (1) is called the size of the test, and sup, <16 @ (1) is restricted to be
no greater than the significance level «.

-m(u):=1—p(u)is called the power function of the test, and is the target of
maximization (uniformly over u > 16 although maybe impossible).

@ Figure 9.1: Consequences of Fixing the Significance Level of a Test:

Investigator chooses
significance level
(probability of Type | error)

» Decision rule # Probability of
is established Type Il error follows

Copyright ©2013 Pearson Education, publishing as Prentice Hall
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Hypothesis Testing: One Population Concepts of Hypothesis Testing
Summary

@ One hypothesis testing problem includes the following steps.

specify the null and alternative.

construct the test statistic.

derive the distribution of the test statistic under the null.
specify a level of significance.

determine the decision rule by finding the critical value.

a s NP o

study the power of the test.

@ The difficult step is Step 2 which has been studied in Lecture 5.
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One Normal Mean, Known Population Variance
One Normal Mean, Known Population Variance

@ Data: {X}{"_;, where x; ~N (u,oz), and n is the sample size.

@ o2 is known from the historical data and is assumed to be maintained, and we
only want to know whether the mean of the new data meets a standard, 1.

@ Ho:pu=pgvs. Hy:u>pg
- In the previous example, let uy = 16.1 ounces to meet the industry regulation
with label weight 16 ounces.
- U > Ug is chosen as Hy. (why?)
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Hypothesis Testing: One Population One Normal Mean, Known Population Variance

continue

@ Test Statistic: _
_X—Ho
- o/yn’
which follows the N (0, 1) distribution under Hg.
@ Decision Rule: reject Hg if z > 2.
- Why? Under Hy, z tends to be large (the mean of X is u, greater than uq, and
o/+y/n > 0is fixed), and P (z > zo |1t = 11g) = & (i-e., z has only « probability to be
larger than z, under Hp).
@ Caution on the notation: When we state the distribution of z, z is a random
variable; in the decision rule, z is the realized value of z.1
@ Z>27q =X >Xe=lg+2Zq0o//N, where Xc(> L) is called the critical value for

the decision.?

1
" Reject H,

Do not reject H,

2 0
_ o
% 1o Hotza e

1The textbook uses Z to denote the random variable, and z its realized value, but the authors seem not

consistent in their notations.
2The critical value is defined relative to the test statistic: if z is the test statistic, then z,is its critical value:
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One Normal Mean, Kniown Population Variance
A Numerical Example

@ Suppose n =25, c =0.4 and o = 0.05 (S0 z4 = 1.645).
@ The decision rule is to reject Hq if

X -  X—16.1
o/vn  04/V25
=% > Xe = g+ 2006/ = 16.1+1.645 x (0.4/\/25) — 16.232.

> 1.645

a=0.05

1
15.86 16.02
15.44

1
16.18 16.34 X
16.1 16.26
— Reject H; 1.645

16.232

Copyright £2013 Pearson Education, publishing as Prentice Hall

Figure: Normal Densities Showing Both z and X Values for the Decision Rule to Test Hp : p = 16.1
vs. Hy:u>16.1
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One Normal Mean, Known Population Variance
History of the Neyman-Pearson Approach and the p-Value Approach

l ’/f 7 i

Egon Pearson (1895-1980), UCL

R

Jerzy Neyman (1894-1981), Berkeley

Ronald A. Fisher (1890-1962), UCL

@ The rejection/acceptance dichotomy is associated with the Neyman-Pearson
approach to hypothesis testing; p-value is associated with R.A. Fisher.
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Hypothesis Testing: One Population One Normal Mean, Known Population Variance

(]

There is a shortcoming in the above testing procedure: for a different o, we need
to repeat the test. The p-value can avoid this problem.

If @ is made smaller and smaller, there will be a point where Hq cannot be rejected
anymore. [refer to the figure in the last slide, where x = 16.3 (or z = 2.5)]

The reason is that, by lowering «, we need stronger evidences to reject Hg, and
the current evidence becomes not enough.

The smallest o at which Hg is still rejected, is called the p-value of the hypothesis
test. [Do you expect the p-value < .05 or > .05 when X = 16.37]

The p-value is the a at which one is indifferent between rejecting and not rejecting
the null hypothesis.

Alternatively, the p-value is the probability of observing a test statistic as extreme
as or more extreme than what we obtained if Hg is true.
-p=P(Z >z),2 where Z ~ N (0,1), the null distribution of z.

A null hypothesis is rejected if and only if the corresponding p-value is smaller
than a:

o0=P(Z>24),50z>2z5<=p<a.

- The p-value is also called the observed level of significance.

SNote that P (Z > z) = P (Z > z) since the probability of a single point for N (0, 1) is 0.
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Hypothesis Testing: One Population One Normal Mean, Known Population Variance
More on the p-Value

@ In the above example,
p=P(Z>25)=1-®(2.5)=0.0062 < 0.05.

@ Note thatp =P (Z >z) =1—®(z) is actually a random variable because z is
random, and the observed p-value is one of its realized value.

@ A small p-value is evidence against Hy because one would reject Hg even at small
a’s.

@ p-values are more informative than tests at fixed a’s because you can choose
your own a.

@ Caveat: the p-value should not be interpreted as the probability that either
hypothesis is true. For example, p is NOT the probability “that Hg is true.” Rather, p
is a measure of the strength of information against Hy.

Ping Yu (HKU) Hypothesis Testing 21/71



Hypothesis Testing: One Population One Normal Mean, Known Population Variance
[Example] p-Value Approach to Testing
@ A phone industry manager thinks that customer monthly cell phone bill have

increased, and now average over $52 per month. The company wishes to test this
claim. [Assume o = 10 is known]

@ Form hypotheses to test: Hg : u = 52 [the average is $52 per month] vs.
Hq : u > 52 [the average is greater than $52 per month]
@ Suppose o = 0.10. Find the rejection region:

Reject H,

/\\LQ:JO

1

Do not reject 1, T Reject 1,
0 2

N . X-4,

Reject I, if 2= U*“

—
Nn
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Hypothesis Testing: One Population One Normal Mean, Known Population Variance
continue

@ Suppose a sample is taken with the following results: n = 64, and x = 53.1.
@ Using the sample results,

_ X—pup 531-52
~o/vn  10/V64
@ Because z < 1.28, we cannot reject Hy.

@ Alternatively, the p-value is

z =0.88.

p = P(X>53.1|u=52)
= P(Z>z)=1-®(0.88)=0.1894 > q,

so we still cannot reject Hg.

. p-value =.1894

: Reject H,
0
Poa=.10

—_
D not reject H, Reject H,
! 1.28 "

=088
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One Normal Mean, Known Population Variance
Composite Null and Alternative Hypotheses

@ Upper-Tail Test: Hy: u < pig vs. Hy : > g

@ The data, test statistic, decision rule and p-value are exactly the same as in the
previous test.
- Why is z,, the appropriate critical value to guarantee the size of the test to be o?
[exercise*]

@ Lower-Tail Test: Hp : 0 > pg vs. Hy : < g
- e.g., from the regulator’s perspective in the cereal example, Hy : 4 =16 (or Hg :
u>16)vs. Hy:u <16

@ The data and test statistic are exactly the same as in the previous test.
@ Decision Rule: reject Hg if z < —z4, or equivalently, X < X¢ = ug—2zq0/+/n. [figure
here]
- e.g., in the setup of the previous humerical example,
%o = 16— 1.645 x (0.4/\/25) = 13.868.

@ The p-valueis now P (Z < z), where Z ~N(0,1).
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Hypothesis Testing: One Population One Normal Mean, Known Population Variance

Two-Sided Alternative Hypotheses

@ Two-Tail Test: Hg: = g vs. Hy 1 # g
- e.g., the diameter of an automobile engine piston cannot be too large or too
small.

@ The data and test statistic are exactly the same as in the previous test.

Decision Rule: reject Hy if |z| >z, or equivalently, X < pg—z4/20/+/n or
X > lg+24,20/+/n. [figure here]
- Note that Zy /2 >Za, €.0., 20.05/2 = 1.96.

@ The p-value is now P (|Z| > |z|), where Z ~ N (0, 1).

H,:p2p, H,: p=u
H, :u<u, H, :pu#p,
3 @
a 2 2
I ‘ #o *
Rejocttt, T Do ot reject 1, REychIJ Do not reject , T Reioct
-z 0 z ~Za 0 *z
“ %
. T _ % Lower critical Upper
Critical value ¥. value critical value
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One Normal Mean, Known Population Variance
[Example] Average Number of TV Sets in US Homes

(]

® 6 6 6 o ¢

Our target is to test the claim that the true mean # of TV sets in US homes is equal
to 3. [Assume ¢ = 0.8 is known]

State the appropriate null and alternative hypotheses: Hg: u =3 vs. Hy: u # 3.
[This is a two-tail test]

Specify the desired level of significance: suppose o = 0.05.
Choose a sample size: suppose a sample of size n = 100 is selected.
Determine the appropriate technique: o is known, so this is a z test.
Set up the critical values: for a = 0.05, the critical z values are +1.96.
Collect the data and compute the test statistic: suppose X = 2.84.
So the test statistic is
 X—pp  284-3
~ o/vn 08/V100
Because |z| > 1.96, we reject the null and conclude that there is sufficient
evidence that the mean number of TVs in US homes is not equal to 3.

Alternatively, p =P (|Z| > |z|) =P (Z > 2)+ P (Z < —2) = 0.0456 < 0.05, so the
null is rejected.
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One Normal Mean, Known Population Variance
Acceptance Interval and Critical Interval (Pages 264-266)

@ The acceptance interval is the interval where X occurs such that Hy cannot be
rejected.

@ This concept can be applied to any test, but we discuss it here to aid
understanding the acceptance interval on Page 264.

@ Specifically, the acceptance interval for the above test is

- X—U
(o —Za/20/VN, g +24/20/V/n] =: Al (x €Al = 'T\/% gza/2>.

@ The acceptance interval provides an operating rule for process-monitoring to
determine if product standards continue to be achieved over time.

@ In US industries, z,/, = 3, which results in the so-called Six Sigma methodology.

@ Often, the process is adjusted so that ¢ is small, and the resulting acceptance
interval is called the control interval, which is plotted over time and is called the
control chart (or more specifically, X-bar chart for X).

@ The critical interval (or rejection interval) is the interval where X occurs such that
Hg is rejected, i.e., it is the complement of the acceptance interval.
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Hypothesis Testing: One Population One Normal Mean, Known Population Variance

Example 6.6: Cereal Package Weights

@ A random sample of five packages is collected every 30 minutes, u = 448.8, and
the implied o from 451 — 448.8 = 3 x % is 1.64.

Eg xJ 3.0SL=451.0
@ 4507 A [\ ‘ \ X=448.8
y\l M /\ m,'( L]\%? W -3.0SL=446.5
445 | X V y ¥

T T T T T
0 10 20 30 40

Sample Number

Copyright ©2013 Pearson Educ: hing a

Figure: X-Bar Chart For Cereal-Package Weight
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One Normal Mean, Unknown Population Variance
One Normal Mean, Unknown Population Variance

@ The hypotheses are exactly the same as in the known population variance case:
-()Ho:pu=pgorHo: u<pgvs. Hy:p>pg
-(i)Ho:p=pgorHo:pu>pgvs. Hy:tpp <pg
- (i) Ho - = po vs. Hy: pu # o
@ Test Statistic: the t-statistic _
t— X"Ho
s/vn’
which follows the Student’s t,_, distribution under Hg. [see the next four slides for
the definition and history of the t distribution]

@ Decision Rule: reject Hg if t > th_1 o in (i), if t < —t,_1 o in (ii), and [t| > ty_q ¢ /2 iN
(iii).
- The corresponding decision rule based on X is the same as before except
replacing z¢ by t,_1 ¢, and o by s.

@ The p-valueis P (T >t) in (i), P (T <t) in (i), and P (|T| > [t|) in (iii), where
T ~thg.
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One Normal Mean, Unknown Population Variance
t Distribution (Section 7.3)

@ If Z is a standardized normal r.v.,
Z~N(0,1),
and the r.v. X has a x?2 (chi-square) distribution with v degrees of freedom,
X ~ x2, [see the next slide for review]

independent of Z, then

z standard normal variable
VX/v /independent chi-square variable/df

Vo

a t-distribution with v degrees of freedom.
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Hypothesis Testing: One Population One Normal Mean, Unknown Population Variance

continue

@ IfZy,---,Zy arei.id. suchthat Z; ~N (0,1),i=1,---,v, then

v 2 2

Ziz/VHE[ZiZ]ZlaSVHOO

tv—>N(O,1) as Vv — oo,

@ Note that

M-

by the LLN, so

- Recall that E [zﬁ] —Var (Z)+E[Z?=1+02=1.

@ In practice, when v > 20, the approximation is good enough.
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Hypothesis Testing: One Population One Normal Mean, Unknown Population Variance
continue

Density

Figure: Density of the ty Distribution withv =1,2,5,

@ Compared to N (0,1), the t-distribution is also symmetric, but has a heavier tail,
which implies the upper ath quantile of the t,,_; distribution t,_; o > zq.
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One Normal Mean, Unkniown Population Variance
History of the t Test

William S. Gosset (1876-1937)

@ The t-test is named after Gosset (1908), “The probable error of a mean”. At the
time, Gosset worked at Guiness Brewery, which prohibited its employees from
publishing in order to prevent the possible loss of trade secrets. To circumvent this
barrier, Gosset published under the pseudonym “Student”. Consequently, this
famous distribution is known as the Student’s t rather than Gosset's t! The name
“t” was popularized by R.A. Fisher.
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One Normal Mean, Unknown Population Variance
Why the t-Statistic Follows the t-Distribution Under Hg?

@ Note that

X—po _ (X—pg)/Vo?/n
5/\5 52 /g2

n n

(X —pg) /d (X)

~ e =1 1,

Xﬁfl/ (n - 1)

where N (0,1) and xﬁ& are independent [proof not required].

@ Whenthe o in é;\’j% is replaced by its estimator s, the null distribution changes
from N (0,1) tot, ;.
@ When n — o, the two null distributions coincide [(*) because s is consistent to o],

but when n is small, e.g., n < 10, the ty-distribution differs greatly from the normal
distribution.
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Hypothesis Testing: One Population

One Normal Mean, Unknown Population Variance

State the hypotheses:

® ®

®

Hotp=po Hpp=po Ho

Standard
normal Z
distribution

@ Hypothesis @

type

@]

Student ¢
distribution

!
QRN

type,

@]

Compute critical
values

Ty = potZandy
¥, = Mo~ ZanTs

Compute critical
value
Farit = Kot Za0%

Compute critical
value

Xarit = Ko~ 2a0%|

Compute critical
values

Xy = mottanse
¥ = o~ lanst

Compute critical
value

Fait = ot laSy

Compute critical
value

Farit = Ko~ leSt

|

|

Decision rule Decision rule Decision rule Decision rule Decision rule Decision rule
If X >, or If £>Forir If £< Foier If ¥ >, or If X >Xorie If %< Fopier
X<Xp,reject Hy | | reject Hyand reject Hy and X<Xj,rejectH, | | reject Hyand reject Hy and
and accept H;. accept H,. accept H;. and accept H,. accept Hj. accept Hj.

Copyright ©2013 Pearson Education, publishing as Prentice Hall
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One Normal Mean, Unknown Population Variance
[Example] Average Cost of Chicago Hotel Room
@ The average cost of a hotel room in Chicago is said to be $168 per night. A

random sample of 25 hotels resulted in X = $172.50 and s = $15.40. Test at the
o =0.05 level that Hy : © = 168 vs. Hy : 1 # 168.

@ Because o is unknown, we use the (two-tail) t test.
@ The test statistic
_ X—pg 1725-168

~ s/y/n  15.40/v/25

S0 we cannot reject the null.

=1.46 <2.064 =124,0.025 =th-1,0/2

Reject Hy_ Do not reject H, | RejectH,

0 s

1% 5
-2.064 1.46 2064
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One Proportion, Large Samples
One Proportion, Large Samples

@ Data: same as in the previous test, but x; can only take 0 or 1 and follows the
Bernoulli(p) distribution.

@ The three pairs of hypotheses are the same as in the previous test, but here the
population means are denoted as p.
@ Test Statistic: .
P—Po

VPo(1—po) /n’

which follows the N (0, 1) distribution under Hg in large sample [npg (1 —pg) > 5
with pg being the proportion under Hg], where p = X is the sample proportion.

- Recall that the variance of the Bernoulli(p) distribution is p (1 —p), so under Hy,
the variance of x; is known. This is like testing one normal mean with known
population variance.

@ Decision Rule: reject Hg if z > 24 in (i), if Z < —z4 in (ii), and |z| >z, /5 in (iii).
@ The p-value formulae are the same as in testing one normal mean with known
population variance.

Ping Yu (HKU) Hypothesis Testing 37/71



Hypothesis Testing: One Population One Proportion, Large Samples

@

State the hypotheses:
Hy:P=Py Hy:P=P, Hy:P=P;
H:P#Py H:P>P, H;:P<P,

Decision rule

op-Py

o
[Po0=Po)/n

reject Hy
and accept H;

Decision rule
tp-p

reject Hy
and accept H;

Decision rule

reject Hy
and accept H;

Copyright ©2013 Pearson Education, publishing as Prentice Hall
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One Proportion, Large Samples
Example 9.5: Supermarket Shoppers Price Knowledge

@ A supermarket wants to know whether shoppers are sensitive to the prices of
goods. Among a random sample of 802 shoppers, 378 can state the correct price
of an item immediately after putting it into their cart. Test at the 7% level the null
that at least one-half of all shoppers can state the correct price.

@ Solution: Our hypotheses are Hg : p > 0.5 vs. Hy : p < 0.5. The decision rule is

7= PP .,

VPo(1—po)/n

In this example, p = 378/802 = 0.471, pg = 0.5 and n = 802, which implies
Npo (1 —pg) =802 x 0.5 x (1—-0.5) =200.5 > 5, so

A471-0.
L 0 05 =164 < —1.474 = —74 07,

/05(1-05)/802

and we reject the null. Or the p-value is P (Z < z) = 0.051 < 0.07.
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Hypothesis Testing: One Population Assessing the Power of a Test

Assessing the Power of a Test

@ In testing one normal mean with known population variance, Hyp : 1 = g vs.

Hy:u > po.
@ Fix u* > g,
B(u*) = P(>‘<_<>‘<c\u*)
- op(A )
- P<z<xé/’;‘ﬁ)
= (%)
°”(ﬂ*)zl—ﬁ(#*):P(x>xc|u*):1_q>(>;<:*\t/lﬁ*)qu(;;*/—\%)_

Ping Yu (HKU)
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Hypothesis Testing: One Population Assessing the Power of a Test

A Numerical Example

@ Suppose n =16, 0 =0.1, ug =5 and o = 0.05 (so z, = 1.645).
o Now, Xc = g +246/+/N =5+ 1.645 x (0.1/\/16) —5.041, S0

b1 (B s - (298

1— B=.6406

o=.05
' ) )
Ho=5.00 5.041 X 5.041 p;=5.05 i
(@) (b)
Copyright ©2013 Pearson Education, publishing as Prentice Hall
Figure: The Determination of x (5.05)
@ Refer also to the figure on the trade-off between two types of errors.
41/71
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Hypothesis Testing: One Population Assessing the Power of a Test

1+ n=16
1F n=9
)
| 3
E - n=4
) =
25 2 5F
o &
.05
0 L ' y % . : y
5.00 5.05 i 13 5.00 5.05 5.10

Figure: Power Functions for Testof Hy: u =5vs. Hy: u >5
(a=0.05,06 =0.1,n=16,9,4)

o n(u)=o (i/jﬁ) = (%ﬁ) = (ﬁ% fza) is increasing in
¥ —pg, nand a, and decreasing in 62, and 7 (X¢) = 0.5. [why?]
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Another Numerical Example
@ Suppose we are interested in Hp : p = pg = 0.5 vs. Hy : p # 0.5, where p is, say,

the proportion of forecasts made by a group of financial analysts that exceeded
the actual level of earnings.

@ The decision rule is to reject Hy if ‘% > Z4/2, Where
p =382/600 = .637 and n = 600.
@ For py # po,
- P
B (p1) (‘ oo (oper7n| - a/zp>
_ p[|P=PLtPi—Po P Po(1—po)/n b1
- a
VP1(1—p1)/n p1(1-p1)/n
P1—Po Po (1—po)
= P|(|[Z+—————|<2 —
( Vpr(@—py)/n| = p(1p1)>
Po (1 —po) P1—Po
= Pz
<°‘/2 p1(1-p1) m)
-

—24/7 Po (1—Ppo) P1—Po
“2\[p1(1=p1)  /pr(1—p1)/n
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Hypothesis Testing: One Population Assessing the Power of a Test
continue

.05 L 1 1 1 1
0 42 46 50 54 .58

Copyright ©2013 Pearson Education, publishing s Prentice Hall

-

p

Figure: Power Functions for Test of Hy : p = .5 vs. Hy : p # .5 (¢ = 0.05,n = 600)

@ n(py) =1-PB(py) is increasing in [py — po| .
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One Normal Variance
One Normal Variance

@ Data: same as in the one normal mean test.

@ Hy:02=03vs. () Hy: 02 > c_rg, (ii) _02 < 03, and (i) 62 # 0§
- Such hypotheses are useful in quality control.

@ Test Statistic:

5> (n-1)s?
o3
which follows the 2 _; distribution under Ho.
@ Decision Rule: reject Ho if 2 > x2_; , in (i), if x? <x3_;,_, in (i), and

X2 > A2 1 0n O X2 < X2 11 oo in(iii). [figure here]
- The chi-square distribution tests are more sensitive to the normality assumption
than the standard normal distribution tests.

e The p-value is P (xﬁ,l > XZ) in (i), P (ngl < xz) in (ii), and in (iii)
2 x min {P (xi1 > %2) P (%il < xz)}

[why? make sure the p-value approach is equivalent to the Neyman-Pearson
approach].
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Hypothesis Testing: One Population One Normal Variance

NIR

2 2
Xn-1,1-ar2 Xn—1,a/2

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Figure: Chi-Square Distribution with n — 1 Degrees of Freedom and Its Upper ««/2 and 1 — /2
Quantiles: the chi-square distribution is not symmetric, so there is no direct relation between
X3 _14/28nd %31/, and we cannot use |x?| to describe the two-sided test
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Hypothesis Testing: Two Populations

Hypothesis Testing: Two Populations
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Matched Pair: Two Means
Matched Pair: Two Means

@ Matched pair is a kind of dependent samples; apart from the factor under study,
the pairs should resemble one another as closely as possible, such as twins.
- Dependent samples can also be two measurements taken on the same person
or object, e.g., a measurement is taken before an event and one after the event
(e.g., the treatment on a patient), namely, repeated measurements.

e Data: {(x;,yi)}_,, where d; :=x; —y; ~N (ux —,uy,oﬁ) but x; and y; need not be
normally distributed, and u,, i, and 3 are unknown.*

@ (i) Ho: ty —ty =00rHo:puy —py <Ovs. Hy iy —py >0

@ (i) Ho: puy —py =00rHo: py —pty >0vs. Hy s pty — 1y, <O

o (ii) Ho : py — py =0vs. Hy:py —py #0

@ This is like testing one normal mean with unknown population variance.
- Xi, 1, o and o2 there are like d;, u, —uy, 0 and 63 here.

“Because x; and y; are not independent, 3 need not be 6% + 67.
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Hypothesis Testing: Two Populations Matched Pair: Two Means
continue

@ Test Statistic:

=9
sq/vn'
which follows the t,,_ distribution under Hg, where d = X — ¥, and s4 is the sample
standard deviation of {d; }{"_;.
@ Decision Rule: reject Hg if t > th_q o in (i), if t < —t,_1 o in (i), and |t| > ty_1 ¢ /2 iN
(ii).
@ The p-valueis P (T >t)in (i), P (T <t) in (i), and P (|T| > [t|) in (iii), where
T ~th_ 1.
@ (*) Recall that the power of the t-test is inversely affected by o-ﬁ, so a smaller Gé is
favorable to the detection of the difference in u, and p,. Since

04 =Var (x —y) = 0% + 67 — 20xy,

a positive oxy (as in our treatment example in the last slide) is helpful to our
purpose. Intuitively, taking differences eliminates random fluctuations that are
present in both the x- and y-components and do not interest us; after eliminating
this variation, it is easier to discover a possible difference caused by the treatment.
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Matched Pair: Two Means
Example 10.1: Analysis of Alternative Turkey-Feeding Programs

@ Suppose we want to know whether a new feeding process can increase the mean
weight of turkeys at the level 2.5% by using a random set of 25 matched turkey
chicks hatched from the the same hen.

Table 10.1 Finish Weight of Turkeys for Old and New Feeding Programs

ow NEw DIFFERENCE HEN
17.76 1815 038 1

18.66 19.92 126 2

2184 23.60 176

16.64 17.96 133 4

1737 1625 5

1675 17,50 6

1801 2079 7
2200 289 8
17.68 2025 9
1823 2095 10
2063 276 11

2003 2064 12
1590 1467 13
1589 16.15 025 14
1853 256 403 15
1392 1546 154 16
18.60 1633 -226 17
20.09 21.03 094 18
18.04 1851 047 19
19.87 232 245 20
19.00 2453 553 21

1859 2115 256 2
21.02 2636 535 23
1562 1856 24
1541 1402 25
Copyright © 2020 Pearson Education Lid. Al Rights Reserved.
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Hypothesis Testing: Two Populations Matched Pair: Two Means
continue

@ Solution: Our hypotheses are Hg : i1, —pty <0 vs. Hy : i, —pty, > 0. The level of
significance o = 2.5%.
@ In this example,
d =1.489,

and
S§ = SE4s—2rxysxsy
= 3.226%42.0572 —2x 0.823 x 3.226 x 2.057 = 3.716,

which can also be calculated from {d; }[_; by s3 = 3", (d; — 6)2 / (n—1) directly,

SO
1.489 1.489

t= =
Vv3.716/v/25 0.385

and we reject the null and conclude that the new feeding program indeed
increases the weight of turkey.

=3.86 > 2.064 = t24'0.025 = tn,]_’a,
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Independent Samples: Two Normal Means, Known Population Variances
Independent Samples: Two Normal Means, Known Variances

@ Data: {xI U{y] ]il, where x; ~ N (ux,ax) yj ~N <uy, ) and x; and y; are
|ndependent for any i and j.
@ The three pairs of hypotheses are the same as in the previous test.

'
2 2
&4_&
Ny ny

which follows the N (0, 1) distribution under Ho because E [X —y] = p, —p, =0

@ Test Statistic:
7z =

2
Var (X —y) = Var (X) + Var (y) = ‘;—f + % and X —y is normally distributed.
@ Decision Rule: reject Hy if z > z¢ in (i), if Z < —2z4 in (ii), and |z| > z /5 in (ii).

@ The p-valueis P (Z >z) in (i), P (Z < z) in (ii), and P (|Z| > |z|) in (iii), where
N(0,1).
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Hypothesis Testing: Two Populations Independent Samples: Two Normal Means, Unknown Equal Variances

Independent Samples: Two Normal Means, Unknown Equal Variances

@ Data and hypotheses are the same as in the previous test, but o5 = 65 now.

@ Test Statistic: _
X—=y

T
2 2
b s
Ny ny

which follows the t,,_, distribution under Hq, where n = nx + ny, and the pooled
sample variance

t=

OGR4 (5-9)7 (e —1)sE+ (ny — 1)

s2 — =
P Ny +ny —2 Nx +ny —2

is the weighted average of sz and s7.°

@ Decision Rule: reject Hg if t > th_5 o in (i), if t < —t,_5 o in (ii), and |t| > ty_5 o /2 iN
(iii).

@ The p-value P (T >t)in (i), P (T <t) in (i), and P (|T| > |t]) in (iii), where
T ~th_o.

2.2
. Sy +5 . . . . .
SWhy s is better than =5=~? A larger sample size induces a better estimator of the common variance, so is
imposed a larger weight.
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Independent Samples: Two Normal Means, Unknown Equal Variances
Example 10.4: Example 10.1 continued

@ The setup and data are the same as in Example 10.1 but we assume the two
samples are independent now.

@ In the current notation, ny = ny = ng = 25, and n = 2ny = 50.
@ X —V is still 1.489, but

s =3.2262 +2.057? = 14.638 > 3.716

and

Sa__ V14.638 _ 0.765 > 0.385

vNo V25
or , ,

24 x 3.226“ + 24 x 2.057
2
= =731
Sp 8 319

and

s? s? 7319 7.319
PR ST 2T —0.765 > 0.385.
Nx Ny 25 25
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Hypothesis Testing: Two Populations Independent Samples: Two Normal Means, Unknown Equal Variances
continue

@ The test statistic
1489

0.765
so we cannot reject the null, a different conclusion from that in Example 10.1,
where note that the df is 48 now.

@ (*)ryy =0.823 > \/% indicating that x; and y; are not independent, so the t test
here is not suitable. If x; and y; are indeed independent, the t test here is
preferable because it has a larger df and thus a higher power (e.g., in this
example, t24,0.025 > t48,0.025)-

=1.946 < 2.01 = t4g5,0.025.
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Hypothesis Testing: Two Populations Independent Samples: Two Normal Means, Unknown Unequal Variances

Indpt Samples: Two Normal Means, Unknown Unequal Variances

@ This is the famous Behrens-Fisher Problem [figure here].
@ Data and hypotheses are the same as in the previous test.

@ Test Statistic:
Ny + ny

whose null distribution is very complicated, but Welch (1938) and Satterthwaite
(1946) suggested to use the ty, distribution to approximate it, where

2 s2 2
+(2)
= o2 2 2
(2)/oe-0+ () /00y -)
is random and need not be an integer. &
@ Decision Rule: reject Hg if t > ty o in (i), if t < —ty o in (ii), and [t| > t, 42 in (ii).

@ The p-valueis P (T >t) in (i), P (T <t) in (i), and P (|T| > [t|) in (iii), where
T Nt\/

5(*) If sz =sZ,thenv =

t=

(nx+ny)2(nx—l)(ny—l)
n%(nx 1)+n)2/ (ny 1)
further reduces to 2 (ng — 1), which is the same as in the unknown equal population variances case. (**) If v is
not an integer, we replace the x2 in the denominator of t, distribution by Gamma(v /2, 2) which equals t, when

v is an integer.
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Hypothesis Testing: Two Populations Independent Samples: Two Normal Means, Unknown Unequal Variances

Walter U. Behrens (1902-1962), German Ronald A. Fisher (1890-1962), UCL
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Independent Samples: Two Normal Means, Unknown Unequal Variances
(**) How is the Degrees of Freedom v Determined?

@ We try to match the mean and variance of

2 2
S5 Sy ~
x4+
v D _-v!
O'§ + Oy \Y
Ny ny

with those of 2. Essentially, this operation is to mimic (n — 1)3—22 ~x2 .
@ Because E [sf] =oc2andE [3)2,] = 07, the means automatically match.

© Because (nx—1)sZ/o% ~x2 _;,and (ny —1)sZ/c§ ~ xﬁy_l, and s and s are
independent of each other, we have

2 2
. ~1)o% 2(ny—1)0c4 2 o2
Var (V):Z(nx l)GXJr (ny —oy 2 <GX> T 2 (y ’

(x—1)2n  (ny—1)2n7 M™—1\nx ny—1\ny

so matching the variance,

62 o2 2
Var (V) 2v?2 ot hy
vl —ov—

v o . )’/ me-+ (F) /0y )

- Var (V) (¢ Li?
and the v above replaces o2 and cf, by their unbiased estimates.

n
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Hypothesis Testing: Two Populations Independent Samples: Two Normal Means, Unknown Unequal Variances
More on v

@ v is usually smaller than n — 2 which is the df of the test statistic in the unknown
equal variances case.

@ This is because more parameters are estimated: ¢2 and cr?, rather than a
common variance, so more df’s are lost.

@ To aid understanding, think about testing one normal mean with known and
unknown population variances.

@ When 62 is known,

X—Hg
z=—"2~N(0,1) = tw,
o/ vn (0,1)
while when ¢2 is unknown, }
Z:mNt 1
s/vn Y

so the df decreases from o to n — 1.
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Hypothesis Testing: Two Populations Independent Samples: Two Normal Means, Unknown Unequal Variances
Example 10.4 continued

@ The setup and data are the same as in Example 10.4, but we assume the two
unknown population variances are unequal now.

@ The test statistic takes the same value 1.946; this is because when ny = ny = ng,

ﬁ+i:£(no—1)s§+(no—l)s§ :s§+s§
Nx Ny ng Ng+nNg—2 ng

@ The only difference is that the df is 40 rather than 48 now.
@ The p-value is equal to

P (t40 > 1.946) = 0.02935 > 0.025,

so we cannot reject null, the same conclusion as in Example 10.4.
- For comparison, the p-value in Example 10.4 is

P (t4g > 1.946) = 0.02876 > 0.025.

- 0.02935 > 0.02876, which is the cost to assume unequal variances.

@ In practice, we can first test whether 6% = o (using the f test below) before
conducting either test above.
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Hypothesis Testing: Two Populations Independent Samples: Two Normal Means, Unknown Unequal Variances
**
(**) More Comments

When ¢2 # G , but we assume they are equal and apply the two-sample t-test
with equal varlances, then the true size may be different from the nominal size.
Anyway, as Ny = Ny (= ng)— o, the true size of t = ——==Y ____ converges to the

\/SB/nx+s/ny

nominal size for any pair of (0')2(,6)2,).

- Why? When ny =ny, t = ——*Y_ from the example above, which is the
(sx+sy)/n0

correct test statistic when o-x #* oy, also, 2 (ng —1) — o, so the critical value
ta(no—1),a — Za,» While the correct critical value ty ¢ also converges to z, since

v=(no-1) (14 gty
This leads to the advice to choose samples of equal size whenever possible.

This is also wise when 62 = cry, because the power of the correspondlng t-testis
maximal when ny = ny (for fixed total sample size nx +-ny) as % + W achieves the

minimum. [a large t statistic induces higher powers because the power is equal to,
e.g., P (t > critjHy) when Hy : u > pg]

) — oo for any pair of (G)Z(, 63).

When ny,ny — o (need not be equal), by the central limit theorem,
t=—2Y ___ converges in distribution to N (0,1).

,/sp/nx+s /ny
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Hypothesis Testing: Two Populations Independent Samples: Two Normal Means, Unknown Unequal Variances

State the hypothesis:

® ® ® N =X

Hi i = b2 = 0 i o~ =0 H s = iy =0
i = ) (i = () B () 29, —=> 'g—

o o

i
Gty (L G
AT

Dl ensen DOF =+ m—2

PO

]

etz

Pooled Variance

Equation 10.11

2
+ 52

Compute critical | | Compute critical | | Compute critical Compute critical | [Compute critical | [Compute critical
values value values value alue
A%y 20057 | | AT =—2a0s7 | | Ao =+2as5 Fu=tlarsr | | AT =—tasss | |AFog

AT =-2up0y7

Decision rule Decision rule Decision rule Decision rule

War> A% 0| | |fay <azy, || HAT> A%, e (T (i
Av <Az, reject Hyand | | reject Hyand A¥ < AR, reject Hyand T
reject Hyand | | acoept H,. accept Hi. refect Hyand | | ocept 11 pecliin
accept H; Blent s i accept ;.

Copyright ©2013 Pearson Education, publishing as Prentice Hall
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Hypothesis Testing: Two Populations Independent Samples: Two Normal Means, Unknown Unequal Variances

(*) Specification Tests in Two Normal Populations

@ In practice, we need to conduct the following three specification tests sequentially.

© Check whether the data are normally distributed using the normal probability plot.

@ Check whether the two populations are independent; in matched pair, check
whether [ry| > 2.

© When the two populations are independent, check whether 6% = 0'5 by using the f
test below.
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Independent Samples: Two Proportions, Large Samples
Independent Samples: Two Proportions, Large Samples

@ Data: same as in the previous test, but x; and y; can only take O or 1, so follows
the Bernoulli(px ) and Bernoulli(py ) distributions.

@ The three pairs of hypotheses are the same as in the previous test, but here the
population means are denoted as px and py.

@ Test Statistic:
Px — Py

\/Po (1-po) + Po 1yP0)
which follows the N (0, 1) distribution under Hg in large sample [npg (1 —pg) > 5

with py being the common proportion under Hy and n = ny +ny], where

_ nxPxbnypy total number of successes in {xj}*, U {yj}

A

'O

Ny + Ny total sample size of {x; 1, U{y; }}*,

- Recall that the variance of the Bernoulli(p) distribution is p (1 —p), so under Hg,
the variances of x; and y; are also equal. This is like testing two normal means
with unknown equal population variances.

@ Decision Rule: reject Hg if 2 > zq in (i), if Z < —2z4 in (ii), and |z| > z /5 in (ii).

@ The p-valueis P (Z >z)in (i), P (Z < z) in (ii), and P (|Z] > |z|) in (iii), where
Z ~N(0,1).
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Hypothesis Testing: Two Populations Independent Samples: Two Proportions, Large Samples

State the hypothesis:

Hy: Py—P,=0 Hy: P;—P,=<0 Hy:P;—P,=0
Hy: Py—P,0 Hy: Py—P,>0 H:P;—P, <0

-Siate a ?l - '?/x)
P>ty

Compute

Ap=pr—f2

Compute critical| | Compute critical | | Compute critical
values value value

8Pu= 42085 | | Mpn=zo0ap | | B = ~za07
ApL= ~Zapopp

Decision rule Decision rule Decision rule

If Ap >Apy O | | If Ap>Aprie It Ap <Bperit,
Ap <A, reject Hyand reject Hyand

reject H, and accept H. accept H;.
accept Hj.

Copyright ©2013 Pearson Education, publishing as Prentice Hall
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Hypothesis Testing: Two Populations Independent Samples: Two Proportions, Large Samples

Example 10.5: Change in Customer Recognition of New Products After
an Advertising Campaign

@ Before the advertising campaign, 50 of 270 random residents heard of the new
product; after the campaign, 81 of 203 new random samples heard of the new
product. Do these results indicate that customer recognition increased after the
campaign at the 5% level?

@ Solution: Our hypotheses are Hp : px —py >0 vs. Hy : px —py < 0. In this example,

px = 50/270=0.185, f)y =81/203 = 0.399,
R Ny Px + Ny Py 50481 A
= = =0.277
Po netn, 2704203 € [Pyl
)
Px — Py _ 0.185-0.399 _ 516
Po(1— P Po(1—Po)  /0277(1-0277) , 0.277(1-0.277) '
\/ 0 o) 4 Po . o \/ (270 )+ (203 )

which is smaller than —zg g5 = —1.645, and we reject the null and conclude that
the advertising campaign is effective.
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Independent Samples: Two Normal Variances
Independent Samples: Two Normal Variances

@ In testing two normal means with unknown equal population variances, we
2 2

assume oy = oy .
- This hypothesis is also of interest in quality-control studies.
e Data: same as in testing two normal means, where s > s7.
® () Ho: 02 =07 orHg: 0% <0 vs. Hy : 6% > 03
: ; s 52 — 52 .52 2 .52 2
- Why don’t we consider Hp : o5 = oy or Hp : 0% > oy vs. Hy : 05 < 0y?
o (ii) HO:G§:G)2, vs. leoi#cg
@ Test Statistic:

which follows the Fp _; n 1 distribution [see the next slide] under Ho, where the
larger sample variance is put in the numerator and the smaller in the denominator
so that only the upper cutoff points of the F distribution are used [see below].

@ Decision Rule: reject Hg if f > Fr,—1n,-1,a in (i), and if f > Fr—1.n~1,a/2 in (ii).”
@ The p-value is P (F >f)in (i), and 2-P (F > f) in (ii), where F ~Fp 15 1.

“We need not check f < Fox-1ny-11-a/2 Since we sorted sZ > sZ such that f > 1 while Fox-1ny-11-a/2 <1
for popular o’s.
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Hypothesis Testing: Two Populations Independent Samples: Two Normal Variances
F Distribution

@ This distribution is named after R.A. Fisher.
@ If X4 follows a 2 distribution with d; degrees of freedom,
X1~ %3,
and X, follows a 2 distribution with d, degrees of freedom,
Xz ~ 25,
independent of X4, then

Xi/dy chi-square variable/df
X,/d, ~ independent chi-square variable/df

~Fd,d,»

an F-distribution with degrees of freedom d; and d,.
g sEHost/o? _ [(=Dsi/of]/(e=D) | a0 /(x-1) o
s si/0; [(ny-0sj/03]/(ny1) T 23, u/(ny-1) MLyl

@ As in the t-distribution, X, /d, — 1 as d, — . So

2
Fd1,d2 — xdl/dl
asdp — «,i.e., Fq, d,0 ~ x‘%lv“/dl'
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Hypothesis Testing: Two Populations Independent Samples: Two Normal Variances
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Independent Samples: Two Normal Variances
Example 10.6: Study of Maturity Variances

@ We want to know whether the variance of the maturities of AAA-rated industrial
bonds (%) is different from that of CCC-rated ones (o%) at the 2% level.

@ Solution: Our hypotheses are Hg : 65 = 6 Vs. Hy : 62 # 67. In this example,

nx == 17, ny == 11,
s = 123.35andsZ=8.02,
SO
_s2 12335

=5 = =15.380>4520=F
s; 802 > 16,10,0.01,

or the p-value is P (F16 10 > 15.380) = 0.00 < 0.01. As a result, we reject the null
and conclude that there is strong evidence that variances in maturities are
different for these two types of bonds.
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Independent Samples: Two Normal Variances
Some Comments on Hypothesis Testing

@ A test with low power can result from:
- Small sample size
- Large variances in the underlying populations
- Poor measurement procedures [62 = 63 ,, + 07, Where "me" means
measurement error]

@ If sample sizes are large it is possible to find significant differences that are not
practically important.

- e.g., in matched pair, t = ﬁ, so even if d is not practically significant, it may
be statistically significant if n is large (if s3 ~ o3 is stable).

@ Researchers should select the appropriate level of significance before computing
p-values, i.e., we should pre-set a.
- (*) If you set o after observing p, then o depends on the data so is random, and
the size, e.g., P (t > z4), is hard to calculate.
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