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Ping Yu (HKU) Sampling Distribution Theory 2/49



N ———
[Review] Descriptive and Inferential Statistics

@ Descriptive statistics: collecting, presenting, and describing data.

@ Inferential statistics: drawing conclusions and/or making decisions concerning a
population based only on sample data. [figure here]
- Estimation, e.g., estimate the population mean weight using the sample mean
weight.
- Hypothesis Testing, e.g., use sample evidence to test the claim that the
population mean weight is 120 pounds.

Sample statistics == Population parameters
(known) Inference (unknown, but can

be estimated from
@ Population

sample evidence)



Sampling from a Population

Sampling from a Population
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Population and Simple Random Sample

@ Statistical analysis requires that we obtain a proper sample from a population of
items of interest that have measured characteristics.

@ Recall that a population means all (say, N) items of interest.
- If N is large enough, N can be treated as .
- A population is generated by a process that can be modeled as a series of
random experiments (see Lecture 2).
@ A (simple) random sample is a sample of n objects drawn randomly.
- Recall the definition of random sampling in Lecture 1.

@ Random sampling with replacement means drawing a member from the
population by chance (i.e., with probability 1/N), putting it back to the population,
and then independently drawing the next one.

- This is the random sampling in Lecture 1.
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continue

@ Random sampling without replacement means randomly drawing each group of n
distinct items with probability 1/CN, which seems easier in practice.
- The first item is sampled with probability 1/N; conditional on the first item was
chosen, the second item is sampled with probability 1/ (N —1), etc.

Why Sample?
@ Less time consuming than a census.
@ Less costly to administer than a census.

@ Itis possible to obtain statistical results of a sufficiently high precision based on
samples.

@ Samples can be obtained from a table of random numbers or computer random
number generators.
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Sampling Distributions

@ The randomness of a random sample comes from the random drawing, i.e., not all
items are drawn (n < N) so the identities of the random sample are not determined
beforehand.

@ Let X be the population r.v. taking each value in {Xi}iN:1 with probability 1/N, and

{x;}[_, be arandom sample.!

@ The population mean u = E [X] = & N ; x;, and the sample mean X = 2 51" | x; is

a natural estimator of .

@ The population variance 62 = E [(X - u)z] = % ZiN:1 (i — ,u)z, and the sample
variance s? = 1. 51, (x; —x)? is a natural estimator of 62. [The reason of n—1
instead of n will be explained below]

- The population counterpart of s2 should be S2 = 1 SN (x; —u)?.
- The sample standard deviation is s = v/s2.
@ The sampling distribution of a statistic such as the sample mean and sample

variance is the probability distribution obtained from all possible samples of the
same number of observations drawn from the population.

1The textbook uses {Xi}"“:1 to emphasize the randomness of x;, but the notations are not consistent. In my
lectures, you can tell from the context whether {x;}|'_; are random or just realizations.
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Development of a Sampling Distribution

@ Assume there is a population. - -

@ Population size N = 4.

@ Random variable, X, is age of individuals.
@ Values of X: 18, 20, 22, 24 (years).
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continue

@ In this example the Population Distribution is uniform:

P(x)

257

18 20 22 24 X
A B C D

Uniform Distribution
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Sampling from a Population

continue

@ Now consider all possible samples of size n = 2:

1st
Obs

2" Observation

18

20 22 24

18

18,18|18,20 |18,22 |18,24

16 Sample
Means

I_

Ping Yu (HKU)

1st | 2nd Observation
20 |20,18(20,20 (20,22 20,24 | |
22 122,18|22,20 22,22 22,24 —\(18] 1819 /20| 21
24 124 .18|24,20 (24,22 [24,24 20 (19|20 | 21|22
L16 possible samples 22(20| 21|22 (23
(e il 24| 21| 22| 23| 24

replacement)
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continue

@ Sampling Distribution of All Sample Means:

16 Sample Means Distribution of
Sample Means

1st | 2nd Observation
Obs|18| 20 | 22 | 24 PX)

18 [ 18| 19 (20 | 21 3
2
20 |19]120 21|22 —
A
22 12012112223
0 -

24 1211 22|23 |24 18 19 20 21 22 23 24 Y

(no longer uniform)

- Notation: P (X) should be p (X) in our notations.

@ When N is large, it is impossible to list all possible outcomes, so the abstract
analysis in the next section is helpful.
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Comparing the Population with Its Sampling Distribution

Population Sample Means Distribution
N=4 n=2
u=21,0=2.236 Uy =21,05 =158
P(X) PX)
3 3

2
A

8 19 20 21 22 23 24 '—),

2
o =3 — 18420422424 _ 1 ang g = |/ Z0K) _ 5 236

° ux =E[X] =

SX _ 184194214424 _ 5q _
Nl_ile =21=uyu,and

oq = \/zr‘ﬂ(xﬂfui)z _ \/(18721)2+(19721)2+-~+(24721)2 _158_ 2236

16 =+ V2
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Sampling Distributions of Sample Means

Sampling Distributions of Sample Means
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Mean of the Sample Means

@ For random sampling with replacement,

8] =& [}t = 2

- In random sampling with replacement, x; (for each i) and X have the same
distribution because x; takes each value in {xJ} with probability 1 /N, which is

exactly the distribution of X. [check the N =4 and n = 2 example above]

- This means that if we draw n samples repeatedly, and for each draw we calculate
X, then the average of these X’s is the population mean.

- A particular X value can be considerably far from p.

- Here, X is treated as a r.v. rather than a realization.

@ (*) For random sampling without replacement,

o112/ N
E[X]:ncan,Z(iZX’):n EPRh

where xi is the ith draw in the jth sampling, and the second equality is from
nC,’}l = NCN 1 (intuition? for rigorous analysis, see the next? slide).
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Variance of the Sample Means

@ For random sampling with replacement,
1 1 n/1\? , no? o2
Var (X) = Var | =X e =Xp ) = — f= — = —.

@ =var (et ) = 3 (5)

- Var (X) decreases with n, i.e., larger sample sizes result in more concentrated
sampling dlstrlbutlons
- Denote Var (X) as 62; then the standard deviation of X is o = \%

@ (*) For random sampling without replacement,

2 2
O -n_ S N-n_ _,/1 1
V) =Nt T N S <n N)'

- Why? the variances of a hypergeometric distribution and a binomial distribution
arenp(1— p) 7 and np (1—p), respectively. The difference term N 7 appears
due to the same reason as here. [for more details, see the next sllde]

Z
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(**) Rigorous Analysis for Random Sampling Without Replacement

@ Note that X = %ZiNzl R;x;j, where R;’s are exchangeable Bernoulli r.v.'s, and
SN Ri=n,so
1 n!(N-n)!

P((Rl’”.’RN):(rl""’rN)):CW: Ni

for any (ry,---,ry) such that gN r =n.
e Conditional on n, E [Ri] = & because 3N E[Rj] =N -E [Rj] =n, and
Var (Ri) =g (1-§)-
@ However, Rj’s are not independent. To study their covariances, note that for

1<j<k<N,
0= Var <% Ri> =N-Var (Rj)+N (N —1)Cov (Rj,Ry),
i=1
SO Vi R.
cou (8 R =51 =~y (1) <°
and n(n-1)
E [RjRk] =Cov (Rj,Rx) +E [R{] E [R¢] = N(N_1)’ 1)

where E [RjR] will be used in the future.
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Sampling Distributions of Sample Means

(**) continue

@ First,
1N 1N
- g X=H
T n. z N i;
@ After some calculation, we can show
) N 5 2 N N
NS =) x*— —— XiX;. 2)
igl 'ON-1 i;j:ZH
@ Therefore,
. N 2 N N
Var (x) = z (Ri)x2 + = > >C Vv (R, Rj) XiXj
=1 i=1j=i+1
1 V R ( 2 N N )
= — ar 1 X Xin
z n-1 |§lj:Zrl

1 2732 n
= 5Var(R)NS _7<1_N)'
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Sampling Distributions of Sample Means

Finite Population Correction Factor

° N ” is often called a finite population correction factor.
- When N is large, the differences between the two random sampling schemes
can be neglected: N ﬁ —lasN —wand I N — 0.

- In business applications such as auditing, N is indeed not Iarge.

- n rather than the fraction of the sample in the population, N+ is the dominant
factor of Var (X).

@ Without special mention, we always mean random sampling with replacement or
without replacement but N is large enough and n is a small proportion of N.
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_ sampligDistrioutions of Sample Means |
Sampling Distribution of the Sample Means

@ If the population follows the normal distribution, then X follows a normal
distribution N ( u, %2) since it is a linear combination of x;'s which follow the same
normal distribution as the population.

- Implicitly, N = o because the normal distribution is continuous.

- Recall that a normal distribution is determined only by its mean and variance.
- Both X and x follow the normal distribution with the same mean, but X has a
smaller variance (more so as n gets larger). [figure here]

@ The standardized normal random variable

X-E[X] X-u
z= o _G/ﬁNN(O'l)' (©)]
@ Terminology: the standard error (SE) of a statistic (usually an estimate of a
parameter) is the standard deviation of its sampling distribution or an estimate of
that standard deviation.
- In our case, 6/+/n and s/+/n are both called the SE of X.
- Usually, only the latter is called the SE of X because it is feasible and the former
already has a name — standard deviation.

Ping Yu (HKU) Sampling Distribution Theory 19/49



of Sample Means

Normal Population
Distribution

Larger
sample size

Normal Sampling
Distribution sa?nm?e”:li'ze
P -

=
>
=
>

20/49
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Example 6.3: Spark Plug Life

@ A spark plug manufacturer claims that the lives of its plugs follow
N (60,000,40002). If we observed that the sample mean of a random sample of
size 16 is 58,500 miles. Do you think the manufacturer’s claim is credible?
@ Since
P (X < 58,500) — P ( X—u < 58,500 — 60,000
o/vn 4000/v/16

which is quite small, so the claim of the manufacturer is skeptical.

) =P (z < —1.50) = .0668,

0.0668 0.0668

1 1 1 1
57,000 60,000 63,000 X -3 -2 -1 0 1 2 3 Z
(a) (b)

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Figure: (a) P (X < 58,500); (b) P (z < —1.50)
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The Law of Large Numbers (LLN)

@ Without normality, what is the distribution of X? When n is fixed, there is no
tractable description in general, while when n is large, we can say something.

@ First, the distribution of X will degenerate at p.

@ LLN: Ifx,i=1,---,n, are independent and identically distributed (i.i.d.) with mean
u (as in a random sample with replacement), then X approaches u as n — .
-Not N — oo,

- Only requires E [xj] = u < , regardless of what the distribution of x; is.
- This is different from E [X] = p (which fixes n and repeatedly samples {x; }{._,): it
claims that if for any random sample {x; };~_;, we calculate X for the first n samples
to obtain a sequence of numbers, say Xn, then X, — p as n — oo,
- Intuitively, p = & 5N, x; involves all values of {x;}{\ ;; in E [X] = y, although n is
fixed, we repeatedly sampled so that all values of {x; }{'_, would be sampled; in
Xn — U, by letting n — o, we potentially sampled all values {xi}iNzl.

@ (*) Rigorously, "approach p" means "is consistent to u", where consistency is
defined in the Appendix of Chapter 7, Page 330.

@ Jacob Bernoulli proved the first LLN with {x;}/_; being Bernoulli trials (i.e.,

X iiNdBernouIIi(p)); the current form of LLN is attributed to Khinchin [figure here], so
is called the Khinchin LLN.
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History of the LLN

Aleksandr Khinchin (1894-1959),
Moscow State University
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The Central Limit Theorem (CLT)

@ CLT: If x,, i =1,---,n, are i.i.d. with mean u and variance 62, then the distribution
ofz= /\F approaches that of N (0,1) as n — .

- The result of CLT is stronger than that of LLN since it not only claims that X
approaches u, but also claims that the variance of x approaches ¢2/n (which is
expected), and the standardized x is eventually bell-shaped as n — o (which is
surprising). That is, the distribution of X not only degenerates at u, but
degenerates to u in the rate /n and in the bell shape.

- Require Var (x;) = 62 < o besides E [x] = u < , i.e., a stronger result need
stronger assumptions.

- It does not require x; to be normally distributed. [figure here]

- Intuitively, when n is large enough, the claim for the normally distributed x; in (3)
is roughly correct, or X ~ N(u, 52 /n).

- How large n is required for satisfactory approximation? If x; is symmetrically
distributed, then n = 20 to 25 is enough; otherwise, n needs to be much larger,
e.g., > 50.

@ The De Moivre-Laplace theorem is a special case of the CLT with {x;}{'_, being
Bernoulli trials; the current form of CLT is attributed to Lindeberg and Lévy [figure
here], so is called the Lindeberg-Lévy CLT.

- As mentioned in the De Moivre-Laplace theorem, we can use a continuous r.v. to
approximate a discrete r.v. when n is large.
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Sampling Distributions of Sample Means

Probabiley

vvvvvvvvvv

As n increases, the @i
sampling distribution of X~ The Sampling Distribution

becomes almost normal of Vn(x—u)/o
regardless of shape of Compared with N (0,1);
population (n = 1) X; is discrete

Intuition: /n — o, X —u — 0, but v/n (X — u) will not diverge or degenerate!
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History of the CLT

Jarl W. Lindeberg (1876-1932), Paul P. Lévy (1886-1971),
University of Helsinki Ecole Polytechnique
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[Example] Applying CLT

@ Suppose a large population has mean u = 8 and o = 3. Suppose a random
sample of size n = 36 is selected. What is the probability that the sample mean is
between 7.8 and 8.2?

@ Solution: Even if the population is not normally distributed, the central limit
theorem can be used (n > 25), so the sampling distribution of X is approximately

N (u%z) =N (8,%).

@ As aresult,
_ 7.8— X — 82—
P(78<%<82) = P £ X7R 227k
o/vh ~o/vn  o/vn
— P(-04<z<04)=0.3108.
Population Sampling Standard Normal
Distribution Distribution 7 Distribution 1554
2 7% 0 X +.1554
27 7, Sample Standardize
7! 2 :
T 04, _ 04 5
=8 X =% X ;=0 z
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(**) CLT for Random Sampling Without Replacement

@ CLT for finite polulations: Consider a finite population {xy1,---,Xnn } With N units.

Define
1
N = N_ZXNL
i=1
2 — 1 Yo 2
N = mi;(XM—HN)
and

Assume that
1 my

min (n,N —n) S2 @
as N — . Then with X = 3! ; Rjxy; we have
_X7BNn d (0,1).
2(1_1
SK (ﬁ - N)
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Sampling Distributions of Sample Means
** H i
(**) Discussion

=1-%.

@ Condition (4) implies n — e« and N —n — « because Ty > N

s2 = N/(l%l—l)
@ Suppose limy_., iy =: & € [0,1], and we scale xy; as xy; /Sy such that S2 =1.
Then when o = 0, (4) is equivalent to my /n — 0; when « € (0, 1), (4) is equivalent
to my/N — O; when o = 1, (4) is equivalent to my / (N —n) — 0. When
sup; [Xni| < ¢ < o, then (4) is equivalentton — co and N —n — co.
@ When a € (0,1), and limy ., S§ = S2, then

%y N (o,(lfa)s;i).
@ We can estimate S2 by
1
n-1.

Ri (xni —%)?,

(09}

2 _
N=

M=

which is shown to be unbiased below.
o Actually, S /S% 2,1 as N — o under condition (4). So

_XTEN . 4 N(o,1).
& (:-%)
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Sampling Distributions of Sample Proportions

Sampling Distributions of Sample Proportions
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Sampling Distribution of the Sample Proportion

Everything is the same as in the last section except that x; can only take 0 or 1
and follows the Bernoulli(p) distribution.

Now, X := 3! , x; ~Binomial(n, p), and the sample proportion

=2
P=1
E[p] =p,and op = M, where recall that Var (x;) = p (1—p) is a function of

only p - its mean.
As n — oo, p approaches p by the LLN, and

p—p
Op

7 =

approaches N (0,1) by the CLT. [figure here]

- Recall that the approximation of normality is good if np (1 —p) > 5.2

- Note that X —np = 65-nz = \/np(1—p)z ~N (0,np (1 —p)), where

np (1—p) — =, so the difference between the observed number of success and
the expected number of success might increase with n.

2Since p(1—p) < %, n > 20.
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Sampling Distributions of Sample Proportions

n =100

| | |
0.65 0.75 0.85 0.95 P

Figure: Density for p with p = 0.80

@ op decreases with n, and p is approximately normally distributed.
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Example 6.8: Business Course Selection

@ Suppose 43% of business graduates believe that a course in business ethics is
very important. What is the probability of more than half of a random sample of 80
business graduates have this belief?

@ Solution: Given that

Gﬁ:\/p(l—p):\/0.43(1—0.43)20.055'

n 80
we have
Pp>05) = p (P> 20a®)
P(z>1.27)
= 1-9(1.27)
= 0.102,

where z ~ N (0,1) by the CLT.
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Sampling Distributions of Sample Variances

Sampling Distributions of Sample Variances
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Sampling Distribution of the Sample Variance

@ Variance is important nowadays because consumers care about whether the
particular item they bought works.

@ Also, a smaller population variance reduces the variance of the sample mean:
recall that 0% = 02/n, where we assume random sampling with replacement or N
is large.

o Recall that s2 = L 5, (x; —X)? is a natural estimator of 62.

e E [52] = 62, and if the population r.v. X is normally distributed, then

Var (52) = nzi

and 5

2_(n-1)s 3L, (x—%)
- o2 o2

the chi-square distribution with (n — 1) degrees of freedom (df). [see the next slide

for the definition of the chi-square distribution]

o Different from the CLT for the sample mean, the chi-square result is sensitive (i.e.,
not robust) to the normality assumption.
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Sampling Distributions of Sample Variances

x2-Distribution

@ IfZy,---,Zy arei.i.d. suchthat Z; ~N (0,1),i=1,---,v, then
X = zivzlziz ~ -

foAT

w

(@]

©
SISE =

Figure: Density of the x2 Distribution with v = 4,6,8

@ The x2 distribution can only take positive values (thinking of iy Zi2 >0 and
s2 > 0). [Appendix Table 7 contains chi-square probabilities]
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History of the x? Distribution

Friedrich R. Helmert (1843-1917), University of Berlin

@ The 2 distribution was first described by Friedrich Robert Helmert in papers of
1875-6, and was independently rediscovered by Karl Pearson in 1900.
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Mean and Variance of the Sample Variance

o E [x\z,} =v and Var <x5) = 2v increase with v [refer to the figure in the last slide].
- Why? Var (Z;) = E [zﬁ] —E[z;)? implies E [ziz] —E[Z]?+Var (z) =02 +1
=1, and Var (ziz) =E [z;‘] -E [ziz}2 =3-12=2

@ SoE [('1_6712)52] =n-—1implies E [32] =62
-E [sz] = o2 even if X is not normally distributed, i.e., (“;12)52
next slide which follows Appendix 3 of Chapter 6, Page 287]

@ Also, Var (M) = (”;#Var <sz) =2(n-1) implies Var (52) = 2n-1)¢*

= ﬁ‘ decreasing in n as in Var (X).

%2 . [(*) see the

@ (*) Why lose one dfin 3!, (xj — %)2? Because the n values {(x; —x)}"_; have
only (n—1) "independent" or “free" values: if we know {(x; fi)}i”;ll, then
(Xn—X) = — 31 (x; —X) because 3§ ; (xi —X) = 3" ;X — N X =nx —nx =0.
- The df of {(x; — u)}[_; is n, so we lose one df when we estimate p by X. [see
more details in the next slide]

- In general, the number of df lost equals the number of parameters estimated.
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(*) The Mean of s2 Without Normality

@ Note that
Sy (6 =%)2 =31y [ — ) — (X = )]
=50 06— 1) = 2(%—p) (5 — ) + (R = )]
=¥ (i) —2(R—p) 3y (% — ) + 31y (R —p)?
=30y (=2 =20 (X —p)® +n (X — p)?
=3 (% —p)?—n(x—u)?,
)

E[S1y (06— %)?] = €[5 (6 — )] —nE [~ 0)’] =no?-nS = (n-1)02
@ As aresult, E [52] =E [nfll s (X _)-()2] =1 (n-1)c2=oc2.

@ We lose one df in 31, (x —x)? because of the extra term n (X — u)? since

where z; = X-E is the z-score of x; and follows N (0, 1).
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[Example] Applying the x?2 Distribution

@ A commercial freezer must hold a selected temperature with little variation.
Specifications call for a standard deviation of no more than 4 degrees. A sample of
14 freezers is to be tested. What is the upper limit (K) for the sample variance
such that the probability of exceeding this limit, given that the population standard
deviation is 4, is less than 0.05?
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continue
@ Solution: The our target is to find K such that
P (52 > K) = 0.05,

which implies

b ((n—l)s2 - (n—l)K> :P(%%s>%) =0.05,

o2 c? 16
S0 13K 22.36 x 16
.36 x
probability

/ a= .05

2

I A3

22.36

@ If s2 from the sample of size n = 14 is greater than 27.52, there is strong evidence
to suggest the population variance exceeds 16.
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(**) Further Results

@ In random sampling without replacement, E [sz] =52 = M;02 [see the next
slide for details]

@ So in random sampling with replacement, an unbiased estimator of Var (X) = %2 is

52

n
and in random sampling without replacement, an unbiased estimator of

Var (x) = $2. N js ,
s? N—n
@ N-n_ (1 1Y)
n N n N

n
where unbiasedness will be defined in the next section.
@ In random sampling with replacement and X is not normally distributed,

2 7&7 n-3 4 fapk
Var (s)_ ;. 7n(n_1)o,[exer0|se]

which reduces to r%’i when X is normally distributed because the fourth central

moment u, :=E [(X fu)“} =30* now.?

3304 _ (n-3)c* _ 3(-1)-(n-3) 4 _ 2n0% _ 20%
n nin-1) — n(n—1 ~—n(n-1) — n-1°
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Sampling Distributions of Sample Variances

(**) Mean of s? in Random Sampling Without Replacement

@ First,
2
12 1N 1
A2 212 2
& :H.Z (xj — X) = ZRIXI _(n ZR|X|)
i=1 i=1 i=1
1N , 1N , 2 NN
= - Y RXx"——= ) Rx*—— RiR;jXiX;
”i; I nzi; I nzi;j:uzﬂ
@ Therefore, from E [R;] =  and (1),
in-1N 2 n-1N N
El6?2] = ——= 2 —_— XiX
[ ] N n 4 N(N-1) n i;j:%l
-1
- o8y

@ As a result,
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Sampling Distributions of Sample Variances

Summary
Parameter Estimator Mean and Var of the Est. Dist. of Normalized Est.
(Normalized?) With Rep Without Rep Normality n — o
- u u
u X a2 o2 N-n i i
E] n n N-1
z="%") %9—21% o N(0.1) N(0,1)f
2 N -2
52 52 %, S°= [0 . .
#rT4 B n{]n—l) 641
_ Z
(%2 =0 ,:,12)S ) t—%5—) N'jl i Xﬁfl ?

@ (0) When studying the distributions of normalized estimators, assume x;’s are iid,

i.e., randomly sampling x; with replacement.
@ (1) If X is sample proportion, i.e., x; ~Bernoulli(p) (not normal), then E [X] = p, and

P D(ln—P).
@ (1) The variance reduces to ﬁ%i ifx; ~N (u, 02).
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Estimator and Estimate

@ We mentioned "estimator" above, and here we provide a rigorous definition.

@ An estimator of a population parameter is a function of the sample whose value
provides an approximation to this unknown parameter. If the sample is {x; }{L,
then an estimator is f (x1,---,Xn) Which is also a random variable given that x; is
random.

@ An estimate is a realized value of the estimator. So an estimate is just a number.

@ A point estimator of a population parameter is a function of the sample that
produces a single number called a point estimate.

@ An interval estimator of a population parameter is a function of the sample that
produces an interval.
- An example of the interval estimator is the confidence interval that will be
discussed in Lecture 7.

@ No single mechanism exists for the determination of a uniquely "best" point
estimator in all circumstances.

@ What is available instead is a set of criteria under which particular estimators can
be evaluated.

@ Two criteria discussed here are unbiasedness and efficiency.
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Unbiasedness
@ A point estimator 8 is said to be an unbiased estimator of a population parameter
6 if E [8] = 6 for any possible value of 6.
@ We show above that E [X] = u, E [p] =p, and E [sz] =02, s0X,p and s? are

unbiased estimators of i, p and 62, respectively.

5=
D> -

Figure: Density of an Unbiased Estimator 8, and a Biased Estimator 8,

@ Bias(#) = E [8] — 6. So the bias of an unbiased estimator is 0.
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Most Efficient

@ There may be many unbiased estimators. To choose among them, we use
variance as a criterion.

@ The unbiased estimator with the smallest variance is preferred, and is called the
most efficient estimator, or the minimum variance unbiased estimator (MVUE).

@ For two unbiased estimators of 8 based on the same sample, 8, and 6, 8, is
said to be more efficient than 8 if Var (8;) < Var (8;).

@ The relative efficiency of 8; with respect to (w.r.t.) 8, is Var (8,) /Var (8,), i.e., if

Var (83) > Var (81), then 8, is more efficient, so its relative efficiency w.r.t. 85 is
greater than 1.

@ Given a random sample {x;}/_; with x; ~N (u, 02). Both the sample mean x and
sample median x 5 are unbiased estimator of .

@ ButVar (X) = %2 and Var (x5) = g%z = 1-5,Z“2 when n is large [proof not

required], so the sample mean is more efficient than the sample median, and the
relative efficiency of the former to the latter is

relative efficiency = L(XB) =1.57.

Var (X)



Properties of Point Estimators

Table 7.1 Properties of Selected Point Estimators

PoruLatioN

PARAMETER POINT ESTIMATOR PROPERTIES

Mean, p X Unbiased, most efficient (assuming normality)

Mean, p Median Unbiased (assuming normality), but not most efficient
Proportion, P p Unbiased, most efficient

Variance, o s? Unbiased, most efficient (assuming normality)
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@ (**) Proof for the efficiency properties are not required.
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