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Plan of This Lecture

Sampling from a Population

Sampling Distributions of Sample Means

Sampling Distributions of Sample Proportions

Sampling Distributions of Sample Variances

Properties of Point Estimators (Section 7.1)
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[Review] Descriptive and Inferential Statistics

Descriptive statistics: collecting, presenting, and describing data.

Inferential statistics: drawing conclusions and/or making decisions concerning a
population based only on sample data. [figure here]
- Estimation, e.g., estimate the population mean weight using the sample mean
weight.
- Hypothesis Testing, e.g., use sample evidence to test the claim that the
population mean weight is 120 pounds.
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Sampling from a Population

Sampling from a Population
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Sampling from a Population

Population and Simple Random Sample

Statistical analysis requires that we obtain a proper sample from a population of
items of interest that have measured characteristics.

Recall that a population means all (say, N) items of interest.
- If N is large enough, N can be treated as ∞.
- A population is generated by a process that can be modeled as a series of
random experiments (see Lecture 2).

A (simple) random sample is a sample of n objects drawn randomly.
- Recall the definition of random sampling in Lecture 1.

Random sampling with replacement means drawing a member from the
population by chance (i.e., with probability 1/N), putting it back to the population,
and then independently drawing the next one.
- This is the random sampling in Lecture 1.
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Sampling from a Population

continue

Random sampling without replacement means randomly drawing each group of n
distinct items with probability 1/CN

n , which seems easier in practice.
- The first item is sampled with probability 1/N; conditional on the first item was
chosen, the second item is sampled with probability 1/ (N�1), etc.

Why Sample?

Less time consuming than a census.

Less costly to administer than a census.

It is possible to obtain statistical results of a sufficiently high precision based on
samples.

Samples can be obtained from a table of random numbers or computer random
number generators.
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Sampling from a Population

Sampling Distributions

The randomness of a random sample comes from the random drawing, i.e., not all
items are drawn (n<N) so the identities of the random sample are not determined
beforehand.

Let X be the population r.v. taking each value in fxigN
i=1 with probability 1/N, and

fxign
i=1 be a random sample.1

The population mean µ = E [X ] = 1
N ∑N

i=1 xi , and the sample mean x̄ = 1
n ∑n

i=1 xi is
a natural estimator of µ.

The population variance σ2 = E
h
(X �µ)2

i
= 1

N ∑N
i=1 (xi �µ)2, and the sample

variance s2 = 1
n�1 ∑n

i=1 (xi � x̄)2 is a natural estimator of σ2. [The reason of n�1
instead of n will be explained below]
- The population counterpart of s2 should be S2 = 1

N�1 ∑N
i=1 (xi �µ)2.

- The sample standard deviation is s =
p

s2.

The sampling distribution of a statistic such as the sample mean and sample
variance is the probability distribution obtained from all possible samples of the
same number of observations drawn from the population.

1The textbook uses fXign
i=1 to emphasize the randomness of xi , but the notations are not consistent. In my

lectures, you can tell from the context whether fxign
i=1 are random or just realizations.
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Sampling from a Population

Development of a Sampling Distribution

Assume there is a population� � �
Population size N = 4.

Random variable, X , is age of individuals.

Values of X : 18, 20, 22, 24 (years).
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Sampling from a Population

continue

In this example the Population Distribution is uniform:
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Sampling from a Population

continue

Now consider all possible samples of size n = 2:
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Sampling from a Population

continue

Sampling Distribution of All Sample Means:

- Notation: P
�
X̄
�

should be p (x̄) in our notations.

When N is large, it is impossible to list all possible outcomes, so the abstract
analysis in the next section is helpful.
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Sampling from a Population

Comparing the Population with Its Sampling Distribution

Population
N = 4

µ = 21,σ = 2.236

Sample Means Distribution
n = 2

µ x̄ = 21,σ x̄ = 1.58

µ = ∑xi
N = 18+20+22+24

4 = 21, and σ =

q
∑N

i=1(xi�µ)2

N = 2.236.

µ x̄ = E [x̄ ] = ∑ x̄i
N = 18+19+21+���+24

16 = 21= µ, and

σ x̄ =

q
∑N

i=1(x̄i�µ x̄ )
2

N =

q
(18�21)2+(19�21)2+���+(24�21)2

16 = 1.58= 2.236p
2
= σp

n
.
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Sampling Distributions of Sample Means

Sampling Distributions of Sample Means
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Sampling Distributions of Sample Means

Mean of the Sample Means

For random sampling with replacement,

E [x̄ ] = E
�

1
n
(x1+ � � �+ xn)

�
=

nµ

n
= µ.

- In random sampling with replacement, xi (for each i) and X have the same
distribution because xi takes each value in

�
xj
	N

j=1 with probability 1/N, which is
exactly the distribution of X . [check the N = 4 and n = 2 example above]
- This means that if we draw n samples repeatedly, and for each draw we calculate
x̄ , then the average of these x̄ ’s is the population mean.
- A particular x̄ value can be considerably far from µ.
- Here, xi is treated as a r.v. rather than a realization.

(*) For random sampling without replacement,

E [x̄ ] =
1
n

1

CN
n

CN
n

∑
j=1

 
n

∑
i=1

x j
i

!
=

1
n

1

CN
n

CN�1
n�1

N

∑
i=1

xi =
1
N

N

∑
i=1

xi = µ,

where x j
i is the i th draw in the j th sampling, and the second equality is from

nCN
n = NCN�1

n�1 (intuition? for rigorous analysis, see the next2 slide).
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Sampling Distributions of Sample Means

Variance of the Sample Means

For random sampling with replacement,

Var (x̄) = Var
�

1
n

x1+ � � �+
1
n

xn

�
=

n

∑
i=1

�
1
n

�2

σ
2
i =

nσ2

n2 =
σ2

n
.

- Var (x̄) decreases with n, i.e., larger sample sizes result in more concentrated
sampling distributions.
- Denote Var (x̄) as σ2

x̄ ; then the standard deviation of x̄ is σ x̄ =
σp
n

.

(*) For random sampling without replacement,

Var (x̄) =
σ2

n
� N�n

N�1
=

S2

n
� N�n

N
= S2

�
1
n
� 1

N

�
.

- Why? the variances of a hypergeometric distribution and a binomial distribution
are np (1�p) N�n

N�1 and np (1�p), respectively. The difference term N�n
N�1 appears

due to the same reason as here. [for more details, see the next slide]
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Sampling Distributions of Sample Means

(**) Rigorous Analysis for Random Sampling Without Replacement

Note that x̄ = 1
n ∑N

i=1 Rixi , where Ri ’s are exchangeable Bernoulli r.v.’s, and

∑N
i=1 Ri = n, so

P ((R1, � � � ,RN ) = (r1, � � � , rN )) =
1

CN
n
=

n! (N�n)!
N !

for any (r1, � � � , rN ) such that ∑N
i=1 ri = n.

Conditional on n, E [Ri ] =
n
N because ∑N

i=1 E [Ri ] = N �E [Ri ] = n, and
Var (Ri ) =

n
N

�
1� n

N

�
.

However, Ri ’s are not independent. To study their covariances, note that for
1� j < k � N,

0= Var

 
N

∑
i=1

Ri

!
= N �Var (Ri )+N (N�1)Cov

�
Rj ,Rk

�
,

so

Cov
�
Rj ,Rk

�
= �Var (Ri )

N�1
= � n

N (N�1)

�
1� n

N

�
< 0,

and

E
�
RjRk

�
= Cov

�
Rj ,Rk

�
+E

�
Rj
�
E [Rk ] =

n (n�1)
N (N�1)

, (1)

where E
�
RjRk

�
will be used in the future.
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Sampling Distributions of Sample Means

(**) continue

First,

E [x̄ ] =
1
n

N

∑
i=1

E [Ri ]xi =
1
N

N

∑
i=1

xi = µ.

After some calculation, we can show

NS2 =
N

∑
i=1

x2
i �

2
N�1

N

∑
i=1

N

∑
j=i+1

xixj . (2)

Therefore,

Var (x̄) =
1
n2

N

∑
i=1

Var (Ri )x
2
i +

2
n2

N

∑
i=1

N

∑
j=i+1

Cov
�
Ri ,Rj

�
xixj

=
1
n2 Var (R1)

 
N

∑
i=1

x2
i �

2
n�1

N

∑
i=1

N

∑
j=i+1

xixj

!

=
1
n2 Var (R1)NS2 =

S2

n

�
1� n

N

�
.
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Sampling Distributions of Sample Means

Finite Population Correction Factor

N�n
N�1 is often called a finite population correction factor.
- When N is large, the differences between the two random sampling schemes
can be neglected: N�n

N�1 ! 1 as N ! ∞ and n
N ! 0.

- In business applications such as auditing, N is indeed not large.
- n rather than the fraction of the sample in the population, n

N , is the dominant
factor of Var (x̄).

Without special mention, we always mean random sampling with replacement or
without replacement but N is large enough and n is a small proportion of N.
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Sampling Distributions of Sample Means

Sampling Distribution of the Sample Means

If the population follows the normal distribution, then x̄ follows a normal

distribution N
�

µ, σ2

n

�
since it is a linear combination of xi ’s which follow the same

normal distribution as the population.
- Implicitly, N = ∞ because the normal distribution is continuous.
- Recall that a normal distribution is determined only by its mean and variance.
- Both X and x̄ follow the normal distribution with the same mean, but x̄ has a
smaller variance (more so as n gets larger). [figure here]

The standardized normal random variable

z =
x̄ �E [x̄ ]

σ x̄
=

x̄ �µ

σ/
p

n
� N (0,1) . (3)

Terminology: the standard error (SE) of a statistic (usually an estimate of a
parameter) is the standard deviation of its sampling distribution or an estimate of
that standard deviation.
- In our case, σ/

p
n and s/

p
n are both called the SE of x̄ .

- Usually, only the latter is called the SE of x̄ because it is feasible and the former
already has a name – standard deviation.
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Sampling Distributions of Sample Means
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Sampling Distributions of Sample Means

Example 6.3: Spark Plug Life

A spark plug manufacturer claims that the lives of its plugs follow

N
�

60,000,40002
�

. If we observed that the sample mean of a random sample of

size 16 is 58,500 miles. Do you think the manufacturer’s claim is credible?
Since

P (x̄ � 58,500) = P
�

x̄ �µ

σ/
p

n
� 58,500�60,000

4000/
p

16

�
= P (z ��1.50) = .0668,

which is quite small, so the claim of the manufacturer is skeptical.

Figure: (a) P (x̄ � 58,500); (b) P (z ��1.50)
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Sampling Distributions of Sample Means

The Law of Large Numbers (LLN)

Without normality, what is the distribution of x̄? When n is fixed, there is no
tractable description in general, while when n is large, we can say something.

First, the distribution of x̄ will degenerate at µ.

LLN: If xi , i = 1, � � � ,n, are independent and identically distributed (i.i.d.) with mean
µ (as in a random sample with replacement), then x̄ approaches µ as n! ∞.
- Not N ! ∞.
- Only requires E [xi ] = µ < ∞, regardless of what the distribution of xi is.
- This is different from E [x̄ ] = µ (which fixes n and repeatedly samples fxign

i=1): it
claims that if for any random sample fxig∞

i=1, we calculate x̄ for the first n samples
to obtain a sequence of numbers, say x̄n, then x̄n ! µ as n! ∞.
- Intuitively, µ = 1

N ∑N
i=1 xi involves all values of fxigN

i=1; in E [x̄ ] = µ, although n is
fixed, we repeatedly sampled so that all values of fxign

i=1 would be sampled; in
x̄n ! µ, by letting n! ∞, we potentially sampled all values fxigN

i=1.

(*) Rigorously, "approach µ" means "is consistent to µ", where consistency is
defined in the Appendix of Chapter 7, Page 330.

Jacob Bernoulli proved the first LLN with fxign
i=1 being Bernoulli trials (i.e.,

xi
iid�Bernoulli(p)); the current form of LLN is attributed to Khinchin [figure here], so

is called the Khinchin LLN.
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Sampling Distributions of Sample Means

History of the LLN

Aleksandr Khinchin (1894-1959),
Moscow State University
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Sampling Distributions of Sample Means

The Central Limit Theorem (CLT)

CLT: If xi , i = 1, � � � ,n, are i.i.d. with mean µ and variance σ2, then the distribution
of z = x̄�µ

σ/
p

n
approaches that of N (0,1) as n! ∞.

- The result of CLT is stronger than that of LLN since it not only claims that x̄
approaches µ, but also claims that the variance of x̄ approaches σ2/n (which is
expected), and the standardized x̄ is eventually bell-shaped as n! ∞ (which is
surprising). That is, the distribution of x̄ not only degenerates at µ, but
degenerates to µ in the rate

p
n and in the bell shape.

- Require Var (xi ) = σ2 < ∞ besides E [xi ] = µ < ∞, i.e., a stronger result need
stronger assumptions.
- It does not require xi to be normally distributed. [figure here]
- Intuitively, when n is large enough, the claim for the normally distributed xi in (3)
is roughly correct, or x̄ � N(µ,σ2/n).
- How large n is required for satisfactory approximation? If xi is symmetrically
distributed, then n = 20 to 25 is enough; otherwise, n needs to be much larger,
e.g., > 50.
The De Moivre-Laplace theorem is a special case of the CLT with fxign

i=1 being
Bernoulli trials; the current form of CLT is attributed to Lindeberg and Lévy [figure
here], so is called the Lindeberg-Lévy CLT.
- As mentioned in the De Moivre-Laplace theorem, we can use a continuous r.v. to
approximate a discrete r.v. when n is large.
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Sampling Distributions of Sample Means

As n increases, the
sampling distribution of x̄
becomes almost normal
regardless of shape of

population (n = 1)

The Sampling Distribution
of
p

n (x̄ �µ)/σ

Compared with N (0,1);
xi is discrete

Intuition:
p

n! ∞, x̄ �µ ! 0, but
p

n (x̄ �µ) will not diverge or degenerate!
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Sampling Distributions of Sample Means

History of the CLT

Jarl W. Lindeberg (1876-1932),
University of Helsinki

Paul P. Lévy (1886-1971),
École Polytechnique
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Sampling Distributions of Sample Means

[Example] Applying CLT

Suppose a large population has mean µ = 8 and σ = 3. Suppose a random
sample of size n = 36 is selected. What is the probability that the sample mean is
between 7.8 and 8.2?

Solution: Even if the population is not normally distributed, the central limit
theorem can be used (n > 25), so the sampling distribution of x̄ is approximately

N
�

µ, σ2

n

�
= N

�
8, 32

36

�
.

As a result,

P (7.8< x̄ < 8.2) = P
�

7.8�µ

σ/
p

n
<

x̄ �µ

σ/
p

n
<

8.2�µ

σ/
p

n

�
= P (�0.4< z < 0.4) = 0.3108.
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Sampling Distributions of Sample Means

(**) CLT for Random Sampling Without Replacement

CLT for finite polulations: Consider a finite population fxN1, � � � ,xNNg with N units.
Define

µN =
1
N

N

∑
i=1

xNi ,

S2
N =

1
N�1

N

∑
i=1
(xNi �µN )

2

and
mN = max

1�i�N
(xNi �µN )

2 .

Assume that
1

min (n,N�n)
mN

S2
N

! 0 (4)

as N ! ∞. Then with x̄ = ∑n
i=1 RixNi we have

x̄ �µNr
S2

N

�
1
n �

1
N

� d�! N (0,1) .
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Sampling Distributions of Sample Means

(**) Discussion

Condition (4) implies n! ∞ and N�n! ∞ because mN
S2

N
� 1

N/(N�1) = 1� 1
N .

Suppose limN!∞
n
N =: α 2 [0,1], and we scale xNi as xNi /SN such that S2

N = 1.
Then when α = 0, (4) is equivalent to mN /n! 0; when α 2 (0,1), (4) is equivalent
to mN /N ! 0; when α = 1, (4) is equivalent to mN / (N�n)! 0. When
supi jxNi j � c < ∞, then (4) is equivalent to n! ∞ and N�n! ∞.
When α 2 (0,1), and limN!∞ S2

N = S2
∞, then

x̄ �µN
d�! N

�
0, (1�α)S2

∞

�
.

We can estimate S2
N by

Ŝ2
N =

1
n�1

N

∑
i=1

Ri (xNi � x̄)2 ,

which is shown to be unbiased below.
Actually, Ŝ2

N /S2
N

p�! 1 as N ! ∞ under condition (4). So

x̄ �µNr
Ŝ2

N

�
1
n �

1
N

� d�! N (0,1) .
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Sampling Distributions of Sample Proportions

Sampling Distributions of Sample Proportions
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Sampling Distributions of Sample Proportions

Sampling Distribution of the Sample Proportion

Everything is the same as in the last section except that xi can only take 0 or 1
and follows the Bernoulli(p) distribution.

Now, X := ∑n
i=1 xi �Binomial(n,p), and the sample proportion

p̂ =
X
n
.

E [p̂] = p, and σ p̂ =
q

p(1�p)
n , where recall that Var (xi ) = p (1�p) is a function of

only p - its mean.

As n! ∞, p̂ approaches p by the LLN, and

z =
p̂�p

σ p̂

approaches N (0,1) by the CLT. [figure here]
- Recall that the approximation of normality is good if np (1�p)> 5.2

- Note that X �np = σ p̂ �nz =
p

np (1�p)z � N (0,np (1�p)), where
np (1�p)! ∞, so the difference between the observed number of success and
the expected number of success might increase with n.

2Since p (1�p) � 1
4 , n > 20.

Ping Yu (HKU) Sampling Distribution Theory 31 / 49



Sampling Distributions of Sample Proportions

Figure: Density for p̂ with p = 0.80

σ p̂ decreases with n, and p̂ is approximately normally distributed.
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Sampling Distributions of Sample Proportions

Example 6.8: Business Course Selection

Suppose 43% of business graduates believe that a course in business ethics is
very important. What is the probability of more than half of a random sample of 80
business graduates have this belief?

Solution: Given that

σ p̂ =

r
p (1�p)

n
=

r
0.43 (1�0.43)

80
= 0.055,

we have

P (p̂ > 0.5) = P
�

p̂�p
σ p̂

>
0.5�0.43

0.055

�
= P (z > 1.27)

= 1�Φ (1.27)

= 0.102,

where z � N (0,1) by the CLT.
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Sampling Distributions of Sample Variances

Sampling Distributions of Sample Variances
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Sampling Distributions of Sample Variances

Sampling Distribution of the Sample Variance

Variance is important nowadays because consumers care about whether the
particular item they bought works.

Also, a smaller population variance reduces the variance of the sample mean:
recall that σ2

x̄ = σ2/n, where we assume random sampling with replacement or N
is large.

Recall that s2 = 1
n�1 ∑n

i=1 (xi � x̄)2 is a natural estimator of σ2.

E
h
s2
i
= σ2, and if the population r.v. X is normally distributed, then

Var
�

s2
�
=

2σ4

n�1
,

and

χ
2 =

(n�1)s2

σ2 =
∑n

i=1 (xi � x̄)2

σ2 � χ
2
n�1, [proof not required]

the chi-square distribution with (n�1) degrees of freedom (df). [see the next slide
for the definition of the chi-square distribution]

Different from the CLT for the sample mean, the chi-square result is sensitive (i.e.,
not robust) to the normality assumption.
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Sampling Distributions of Sample Variances

χ2-Distribution

If Z1, � � � ,Zv are i.i.d. such that Zi � N (0,1), i = 1, � � � ,v , then

X =∑ν

i=1 Z 2
i � χ

2
v .

Figure: Density of the χ2
v Distribution with v = 4,6,8

The χ2 distribution can only take positive values (thinking of ∑v
i=1 Z 2

i > 0 and
s2 > 0). [Appendix Table 7 contains chi-square probabilities]
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Sampling Distributions of Sample Variances

History of the χ2 Distribution

Friedrich R. Helmert (1843-1917), University of Berlin

The χ2 distribution was first described by Friedrich Robert Helmert in papers of
1875-6, and was independently rediscovered by Karl Pearson in 1900.
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Sampling Distributions of Sample Variances

Mean and Variance of the Sample Variance

E
h
χ2

v

i
= v and Var

�
χ2

v

�
= 2v increase with v [refer to the figure in the last slide].

- Why? Var (Zi ) = E
h
Z 2

i

i
�E [Zi ]

2 implies E
h
Z 2

i

i
= E [Zi ]

2+Var (Zi ) = 02+1

= 1, and Var
�

Z 2
i

�
= E

h
Z 4

i

i
�E

h
Z 2

i

i2
= 3�12 = 2.

So E
h
(n�1)s2

σ2

i
= n�1 implies E

h
s2
i
= σ2.

- E
h
s2
i
= σ2 even if X is not normally distributed, i.e., (n�1)s2

σ2 � χ2
n�1. [(*) see the

next slide which follows Appendix 3 of Chapter 6, Page 287]

Also, Var
�
(n�1)s2

σ2

�
= (n�1)2

σ4 Var
�

s2
�
= 2 (n�1) implies Var

�
s2
�
=

2(n�1)σ4

(n�1)2

= 2σ4

n�1 , decreasing in n as in Var (x̄).

(*) Why lose one df in ∑n
i=1 (xi � x̄)2? Because the n values f(xi � x̄)gn

i=1 have

only (n�1) "independent" or "free" values: if we know f(xi � x̄)gn�1
i=1 , then

(xn� x̄) = � ∑n�1
i=1 (xi � x̄) because ∑n

i=1 (xi � x̄) = ∑n
i=1 xi �∑n

i=1 x̄ = nx̄ �nx̄ = 0.
- The df of f(xi �µ)gn

i=1 is n, so we lose one df when we estimate µ by x̄ . [see
more details in the next slide]
- In general, the number of df lost equals the number of parameters estimated.
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(*) The Mean of s2 Without Normality

Note that

∑n
i=1 (xi � x̄)2 = ∑n

i=1 [(xi �µ)� (x̄ �µ)]2

= ∑n
i=1

h
(xi �µ)2�2 (x̄�µ) (xi �µ)+ (x̄ �µ)2

i
= ∑n

i=1 (xi �µ)2�2 (x̄�µ)∑n
i=1 (xi �µ)+∑n

i=1 (x̄ �µ)2

= ∑n
i=1 (xi �µ)2�2n (x̄ �µ)2+n (x̄ �µ)2

= ∑n
i=1 (xi �µ)2�n (x̄�µ)2 ,

so

E
h
∑n

i=1 (xi � x̄)2
i
= E

h
∑n

i=1 (xi �µ)2
i
�nE

h
(x̄ �µ)2

i
= nσ2�n σ2

n = (n�1)σ2.

As a result, E
h
s2
i
= E

h
1

n�1 ∑n
i=1 (xi � x̄)2

i
= 1

n�1 (n�1)σ2 = σ2.

We lose one df in ∑n
i=1 (xi � x̄)2 because of the extra term n (x̄�µ)2 since

∑n
i=1 (xi �µ)2

σ2 =
n

∑
i=1

�
xi �µ

σ

�2

=
n

∑
i=1

z2
i � χ

2
n,

where zi =
xi�µ

σ
is the z-score of xi and follows N (0,1).
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[Example] Applying the χ2 Distribution

A commercial freezer must hold a selected temperature with little variation.
Specifications call for a standard deviation of no more than 4 degrees. A sample of
14 freezers is to be tested. What is the upper limit (K ) for the sample variance
such that the probability of exceeding this limit, given that the population standard
deviation is 4, is less than 0.05?
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continue

Solution: The our target is to find K such that

P
�

s2 > K
�
= 0.05,

which implies

P

 
(n�1)s2

σ2 >
(n�1)K

σ2

!
= P

�
χ

2
13 >

13K
16

�
= 0.05,

so
13K
16

= 22.36=) K =
22.36�16

13
= 27.25.

If s2 from the sample of size n = 14 is greater than 27.52, there is strong evidence
to suggest the population variance exceeds 16.
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(**) Further Results

In random sampling without replacement, E
h
s2
i
= S2 = N

N�1 σ2. [see the next

slide for details]

So in random sampling with replacement, an unbiased estimator of Var (x̄) = σ2

n is

s2

n
,

and in random sampling without replacement, an unbiased estimator of

Var (x̄) = S2

n �
N�n

N is
s2

n
� N�n

N
= s2

�
1
n
� 1

N

�
,

where unbiasedness will be defined in the next section.
In random sampling with replacement and X is not normally distributed,

Var
�

s2
�
=

µ4
n
� n�3

n (n�1)
σ

4, [exercise�]

which reduces to 2σ4

n�1 when X is normally distributed because the fourth central

moment µ4 := E
h
(X �µ)4

i
= 3σ4 now.3

3 3σ4
n � (n�3)σ4

n(n�1) =
3(n�1)�(n�3)

n(n�1) σ4 = 2nσ4
n(n�1) =

2σ4
n�1 .
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(**) Mean of s2 in Random Sampling Without Replacement

First,

σ̂
2 : =

1
n

n

∑
i=1
(xi � x̄)2 =

1
n

N

∑
i=1

Rix
2
i �

 
1
n

N

∑
i=1

Rixi

!2

=
1
n

N

∑
i=1

Rix
2
i �

1
n2

N

∑
i=1

Rix
2
i �

2
n2

N

∑
i=1

N

∑
j=i+1

RiRjxixj .

Therefore, from E [Ri ] =
n
N and (1),

E
h
σ̂

2
i

=
1
N

n�1
n

N

∑
i=1

x2
i �

2
N (N�1)

n�1
n

N

∑
i=1

N

∑
j=i+1

xixj

=
n�1

n
S2 by (2).

As a result,

E
h
s2
i
=

n
n�1

E
h
σ̂

2
i
= S2.
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Summary

Parameter Estimator Mean and Var of the Est. Dist. of Normalized Est.
(Normalized�) With Rep Without Rep Normality n! ∞

µ x̄
µ

σ2

n

µ

σ2

n
N�n
N�1

- -

(z = x̄�E [x̄ ]
σ x̄

) (0,1) (0,1) N (0,1) N (0,1)y

σ2 s2 σ2

µ4
n �

n�3
n(n�1)σ4z

S2 = N
N�1 σ2

?
- -

(χ2 = (n�1)s2

σ2 ) (n�1, � � � )
�

N
N�1 (n�1) ,?

�
χ2

n�1 ?

(�) When studying the distributions of normalized estimators, assume xi ’s are iid,
i.e., randomly sampling xi with replacement.

(y) If x̄ is sample proportion, i.e., xi �Bernoulli(p) (not normal), then E [x̄ ] = p, and

σ x̄ =
q

p(1�p)
n .

(z) The variance reduces to 2σ4

n�1 if xi � N
�

µ,σ2
�

.
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Properties of Point Estimators
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Estimator and Estimate

We mentioned "estimator" above, and here we provide a rigorous definition.

An estimator of a population parameter is a function of the sample whose value
provides an approximation to this unknown parameter. If the sample is fxign

i=1,
then an estimator is f (x1, � � � ,xn) which is also a random variable given that xi is
random.

An estimate is a realized value of the estimator. So an estimate is just a number.

A point estimator of a population parameter is a function of the sample that
produces a single number called a point estimate.

An interval estimator of a population parameter is a function of the sample that
produces an interval.
- An example of the interval estimator is the confidence interval that will be
discussed in Lecture 7.

No single mechanism exists for the determination of a uniquely "best" point
estimator in all circumstances.

What is available instead is a set of criteria under which particular estimators can
be evaluated.

Two criteria discussed here are unbiasedness and efficiency.
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Unbiasedness

A point estimator θ̂ is said to be an unbiased estimator of a population parameter
θ if E

�
θ̂
�
= θ for any possible value of θ .

We show above that E [x̄ ] = µ, E [p̂] = p, and E
h
s2
i
= σ2, so x̄ , p̂ and s2 are

unbiased estimators of µ,p and σ2, respectively.

Figure: Density of an Unbiased Estimator θ̂ 1 and a Biased Estimator θ̂ 2

Bias
�
θ̂
�
= E

�
θ̂
�
�θ . So the bias of an unbiased estimator is 0.

Ping Yu (HKU) Sampling Distribution Theory 47 / 49



Properties of Point Estimators

Most Efficient

There may be many unbiased estimators. To choose among them, we use
variance as a criterion.

The unbiased estimator with the smallest variance is preferred, and is called the
most efficient estimator, or the minimum variance unbiased estimator (MVUE).

For two unbiased estimators of θ based on the same sample, θ̂1 and θ̂2, θ̂1 is
said to be more efficient than θ̂2 if Var

�
θ̂1
�
< Var

�
θ̂2
�
.

The relative efficiency of θ̂1 with respect to (w.r.t.) θ̂2 is Var
�
θ̂2
�

/Var
�
θ̂1
�
, i.e., if

Var
�
θ̂2
�
> Var

�
θ̂1
�
, then θ̂1 is more efficient, so its relative efficiency w.r.t. θ̂2 is

greater than 1.

Given a random sample fxign
i=1 with xi � N

�
µ,σ2

�
. Both the sample mean x̄ and

sample median x.5 are unbiased estimator of µ.

But Var (x̄) = σ2

n , and Var (x.5) = π

2
σ2

n = 1.57σ2

n when n is large [proof not
required], so the sample mean is more efficient than the sample median, and the
relative efficiency of the former to the latter is

relative efficiency=
Var (x.5)
Var (x̄)

= 1.57.
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(**) Proof for the efficiency properties are not required.
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