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Plan of This Lecture

Continuous Random Variables

Expectations for Continuous Random Variables

The Normal Distribution

Normal Distribution Approximation for Binomial Distribution

The Exponential Distribution

Jointly Distributed Continuous Random Variables

Note: only this lecture and Lecture 8 involve some knowledge of calculus.
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Continuous Random Variables

Continuous Random Variables
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Continuous Random Variables

[Review] Continuous Random Variables

A continuous random variable is a random variable that can assume any value in
an interval.
- thickness of an item;
- time required to complete a task;
- temperature of a solution;
- height, in inches;

These can potentially take on any value, depending only on the ability to measure
accurately.
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Continuous Random Variables

Cumulative Distribution Function

The cumulative distribution function (cdf), F (x), for a continuous r.v. expresses
the probability that X does not exceed the value x , as a function of x , i.e.,

F (x) = P (X � x) .

This definition is the same as in the discrete r.v. case, but there F (x) is a step
function so is not differentiable.

This definition of cdf implies

P (a< X � b) = P (X � b)�P (X � a) = F (b)�F (a)

for a< b.
- Recall that the probability of a single value is zero for a continuous r.v., so
whether a and b are included in the interval or not does not affect the result.
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Continuous Random Variables

Probability Density Function

The counterpart of pmf for a continuous r.v. is the probability density function (pdf),
which is defined as

f (x) =
d
dx

F (x) . [figure here][review here]

- Notation: d
dx F (x) is often written as dF (x)

dx or F 0 (x).

Properties of PDF:

1 f (x)� 0 since F (x) is nondecreasing.
- We denote the area where f (x)> 0 as S , called the support of X .1

2 P (a� X � b) =
R b
a f (x)dx . [review here]

3
R ∞
�∞ f (x)dx =

R
S f (x)dx = 1. [figure here]

4 F (x0) =
R x0
�∞ f (x)dx =

R x0
xm

f (x)dx , where xm = inf (S ). [figure here]

1(**) Usually, S is defined as the closure of this area, but we will not distinguish this difference in this lecture.
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Continuous Random Variables

S-Shaped CDF Implies the
Bell-Shaped PDF at Right

P (a� X � b)
=
R b
a f (x)dx

R
S f (x)dx = 1 and F (x0) =

R x0
xm

f (x)dx
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Continuous Random Variables

[Review] Derivative and Integral

Intuitively, d
dx F (x) is the local slope at x , i.e.,

d
dx

F (x) = lim
∆!0

F (x +∆)�F (x)
∆

,

where ∆ can be positive or negative.

Intuitively,
R b
a f (x)dx is the area under f (x) between a and b, i.e.,Z b

a
f (x)dx = lim

∆!0

n

∑
i=0

f (xi )∆, [figure here]

where we partition (a,b) into small subintervals with length ∆, xi = a+
�

i+ 1
2

�
∆ is

the middle point of each subinterval, and n = (b�a)/∆�1.2

- ∑ !
R

, xi ! x , ∆! dx , i = 0! a, and i = n! b.

Fundamental Theorem of Calculus [figure here]: If d
dx F (x) = f (x) , then

F (b)�F (a) =
R b
a f (x)dx .

2 i = 0, a+ i∆ = a, and i = b�a
∆ �1, a+(i+1)∆ = a+ b�a

∆ ∆ = b.
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Continuous Random Variables

Figure: Definition of Integral of f from a to b

Ping Yu (HKU) Continuous Random Variables 9 / 52



Continuous Random Variables

Co-Inventers of Calculus

Isaac Newton (1642-1726), English Gottfried Leibniz (1646-1716), German

We usually say Newton and Leibniz invented calculus because they found the
fundamental theorem of calculus which links the concept of the derivative of a
function with the concept of the function’s integral.
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Continuous Random Variables

Uniform Distribution

The uniform distribution is a probability distribution that has equal probabilities for
all equal-width intervals within the range of the random variable.

Assume the density between xmin and xmax is f ; then

(xmax�xmin) f = 1=) f =
1

xmax�xmin
.

In summary, the uniform distribution on (a,b) has the pdf

f (x) =
1

b�a
�1(a� x � b),

and the cdf

F (x0) =
Z x0

a

1
b�a

dx =
x0�a
b�a

for x0 2 [a,b] ,

where 1(�) is the indicator function which equals 1 when the statement in the
parentheses is true and 0 otherwise.
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Continuous Random Variables

Example: Gasoline Sales

Assume the gasoline sales at a gasoline station is equally likely from 0 to 1,000
gallons during a day; then the gasoline sales follow a uniform (probability)
distribution:

F (x) =

8<:
0,
0.001x ,
1,

if x < 0,
if 0� x � 1000
if x > 1000,

whose pdf is

f (x) =

�
0.001,

0,
if 0� x � 1000
otherwise.

= 0.001 �1(0� x � 1000).

[figure here]
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Continuous Random Variables
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Degenerate S-shaped cdf and bell-shaped pdf?

We denote a r.v. X with a uniform distribution on (a,b) as X � U (a,b).
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Continuous Random Variables

Approximate PDF by PMF

Suppose S = (a,b), where a can be �∞ and b can be ∞. We can partition S into
small subintervals with length ∆, and then approximate the pdf f (x) by the pmf

p
�

a+
�

i+
1
2

�
∆
�
= P (a+ i∆ < X � a+(i+1)∆) =

Z a+(i+1)∆

a+i∆
f (x)dx ,

where i = 0,1, � � � , b�a
∆ �1.

Figure: PDF of Wage: wage � exp
�
N
�
µ,σ2

��
with N

�
µ,σ2

�
defined below, a= 0,b = ∞
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Expectations for Continuous Random Variables

Expectations for Continuous Random Variables
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Expectations for Continuous Random Variables

Mean

The mean (or expected value, or expectation) of a continuous r.v. can be defined
through an approximation of a discrete r.v. in the previous slide:

µX := E [X ] �
(b�a)/∆�1

∑
i=0

�
a+

�
i+ 1

2

�
∆
�

P (a+ i∆ < X � a+(i+1)∆)

�
(b�a)/∆�1

∑
i=0

�
a+

�
i+ 1

2

�
∆
�

f
�

a+
�

i+ 1
2

�
∆
�

∆

∆!0�!
R b
a xf (x)dx .

The mean is the center of gravity of a pole (a,b) with density at x being f (x).

In general, the mean of any function of X , g (X ), is

E [g (X )] =
Z
S

g(x)f (x)dx .

- Recall that E [g (X )] 6= g(E [X ]) unless g (X ) is linear in X .
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Expectations for Continuous Random Variables

Variance

The variance of X is defined as

σ
2
X = E

h
(X �µX )

2
i
= E

h
X2
i
�µ

2
X .

- µX measures the center of the distribution, while σ2
X measures the dispersion or

spread of the distribution.

The standard deviation of X , σX =
q

σ2
X .

Example: For the uniform distribution on (a,b),

µX =
Z b

a
x

1
b�a

dx =
a+b

2
,

σ
2
X =

Z b

a
x2 1

b�a
dx�

�
a+b

2

�2

=
(b�a)2

12
,

i.e., the mean is the center of the range, and when the range (a,b) is wider, the
variance is larger.
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Expectations for Continuous Random Variables

[Example] Mean and Variance of the Uniform Distribution

Suppose X � U (2,6).

f (x) = 1
6�2 = 0.25 for 2� x � 6.

µX =
a+b

2 = 2+6
2 = 4.

σ2
X =

(b�a)2

12 = (6�2)2

12 = 1.333.
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Expectations for Continuous Random Variables

Linear Functions of Random Variables

Let W = a+bX , where X has mean µX and variance σ2
X , and a and b are

constant fixed numbers.

Then the mean of W is
µW = a+bµX .

The variance of W is
σ

2
W = b2

σ
2
X .

The standard deviation of W is

σW = jbjσX .

An important special case of the result for the linear function of random variable is
z-score of X , Z = X�µX

σX
: µZ = 0 and σ2

Z = 1.
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The Normal Distribution

The Normal Distribution
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The Normal Distribution

The Normal Distribution

The pdf for a normally distributed r.v. X is

f
�

x jµ,σ2
�
=

1p
2πσ2

e�
(x�µ)2

2σ2 for x 2S = (�∞,∞) , (1)

where µ 2R, and σ2 2 (0,∞), e is Euler’s number, and π = 3.14159 � � � is
Archimedes’ constant (the ratio of a circle’s circumference to its diameter).
- Since the normal distribution depends only on µ and σ2, we denote a r.v. X with

pdf (1) as X � N
�

µ,σ2
�

.

Since f
�

x jµ,σ2
�

is symmetric and bell-shaped, its mean, median and mode are

equal (= µ). Its spead is determined by σ

h
f
�

µjµ,σ2
�
= 1p

2πσ2

i
.
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The Normal Distribution

continue

By varying the parameters µ and σ , we obtain different normal distributions:

Figure: f
�
x jµ,σ2

�
: (a) same σ2, different µ ’s; (b) same µ = 5, different σ2’s.

The cdf of the normal distribution, F
�

x0jµ,σ2
�
=
R x0
�∞ f

�
x jµ,σ2

�
dx , does not

have an analytic form (i.e., a closed-form expression), but computation of
probabilities based on the normal distribution is direct nowadays. [see below]
This distribution has many applications in business and economics, e.g., the
dimensions of parts, the heights and weights of human beings, the test scores, the
stock prices, etc. all roughly follow normal distributions.
As will be discussed in Lecture 5, the distribution of sample mean will converge to
a normal distribution when the sample size gets large.
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The Normal Distribution

History of the Normal Distribution

Normal Distribution is also called Gaussian Distribution.

Carl F. Gauss (1777-1855), Göttingen3

3He is also referred to as the "prince of mathematics", known for many things, e.g., the least squares.
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The Normal Distribution

Properties of the Normal Distribution: Mean, Variance and Skewness

For X � N
�

µ,σ2
�

,

µX = µ [easy] and σ
2
X = σ

2 [proof not required],

so a normal distribution is determined completely by its mean and variance.
- (**) It can be shown that σ =IQR/1.349, which can be treated as a robust
representation of σ because IQR does not involve the two tails of X .

Because f
�

x jµ,σ2
�

is symmetric, the skewness of X is 0.

- Recall from Lecture 1 that the (population) skewness is

SkewX =
E
h
(X �µX )

3
i

σ3
X

=:
µ3

σ3 ,

and the sample skewness is

skewness=
∑n

i=1 (xi � x̄)3

ns3 ,

where µ3 is the third central moment, and s is the sample standard deviation.
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The Normal Distribution

Properties of the Normal Distribution: Kurtosis

The tail of f
�

x jµ,σ2
�

is approximately e�x2
which shrinks to zero very quickly.

The (population) kurtosis is often used to measure the heaviness of a distribution’s
tail [why?]:

KurtX =
E
h
(X �µX )

4
i

σ4
X

=:
µ4

σ4 ,

where µ4 is the fourth central moment.

- It can be shown that the kurtosis of N
�

µ,σ2
�

is 3, which is chosen as a

benchmark, i.e., if a distribution’s kurtosis is larger than 3, it is called heavy tailed,
and if less than 3, called light tailed. Heavy-tailed phenomena seem more frequent
than light-tailed ones since the tail of a normal distribution is already very thin.

The sample kurtosis is

kurtosis=
∑n

i=1 (xi � x̄)4

ns4 .
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The Normal Distribution

The Standard Normal Distribution

If X � N (0,1), then we call X follows the standard normal distribution.

The pdf (cdf) of N (0,1) is often denoted as φ (�) (Φ (�))4.

Because Z = X�µ

σ
has mean 0 and variance 1 for X � N

�
µ,σ2

�
, and the normal

distribution is completely determined by its mean and variance, we conclude that

Z � N (0,1) if X � N
�

µ,σ2
�

.5

4The textbook uses f (z) and F (z), while we use φ (z) Φ (z), for the standard normal pdf and cdf; f (�) and
F (�) are reserved for the pdf and cdf of N

�
µ,σ2

�
.

5(**) Linear transformations maintain normality, but nonlinear ones need not.
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The Normal Distribution

Relationship Between X and Z

If X is distributed normally with mean of 100 and standard deviation of 50, the Z
value for X = 200 is

Z =
X �µ

σ
=

200�100
50

= 2.0,

which says that X = 200 is two standard deviations (2 increments of 50 units)
above the mean of 100.

Note that the distribution is the same, only the scale has changed. We can
express the problem in original units (X ) in standardized units (Z ).
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The Normal Distribution

continue

Finding Normal Probabilities:

The relationship between F (x jµ,σ2) (f (x jµ,σ2)) and Φ (z) (φ (z)):

F
�

x jµ,σ2
�

= P (X � x) = P
�

X �µ

σ
� x �µ

σ

�
= Φ

�
x �µ

σ

�
,

(*) f
�

x jµ,σ2
�

=
d
dx

F
�

x jµ,σ2
�
=

d
dx

Φ
�

x �µ

σ

�
=

1
σ

φ

�
x �µ

σ

�
, [check!]

where the second result is from the chain rule and Φ0 (�) = φ (�).
The Standard Normal Distribution table in the textbook (Appendix Table 1) shows

values of Φ (z), which imply values of F
�

µ+σzjµ,σ2
�

(= Φ (z)) for any µ and

σ > 0.
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The Normal Distribution

Summary: General Procedure for Finding Normal Probabilities

To find P (a< X < b) when X � N
�

µ,σ2
�

.

1 Draw the normal curve for the problem in terms of X .
2 Translate X -values to Z -values.
3 Use the Cumulative Normal Table.

Suppose X � N
�

8,52
�

. Find P (X < 8.6).

Z = X�µ

σ
= 8.6�8

5 = 0.12.
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The Normal Distribution

continue

P (X > 8.6) = 1�P (X < 8.6) = 1�P (Z < 0.12) = 1�Φ (0.12).

P (X < 7.4) = P
�

Z < 7.4�8
5

�
= P (Z <�0.12) = Φ (�0.12)

?
= 1�Φ (0.12).

- By symmetry of Φ (�), Φ (�z) = 1�Φ (z) for z > 0 [figure here]; this is also why
Appendix Table 1 only reports Φ (z) for z > 0.
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The Normal Distribution

Upper αth Quantile of Standard Normal

The upper αth quantile of N (0,1), i.e., the solution to P (Z > z) = 1�Φ (z) = α,
is denoted as zα .
- The αth quantile of N (0,1) is the solution to Φ (z) = α, i.e., Φ�1 (α).
- Because 1�Φ (z) = Φ (�z), solving Φ (�z) = α we have zα = �Φ�1 (α).

- If X � N
�

µ,σ2
�

, then its upper αth quantile is µ+σzα because

P (X > µ+σzα ) = P (Z > zα ) = α.

Figure: Normal Density Function with Symmetric Upper and Lower Values
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The Normal Distribution

Normal Probability Plot

Since the normal distribution is most-used, we often need a way to check whether
the data in hand are approximately normally distributed.

Normal probability plots (or QQ-plots with Q for "quantile") provide an easy way to
achieve this goal.

If the data are indeed from a normal distribution, then the plot will be a straight
line. [figure here]

(**) Justification for QQ-plots: Suppose we order the data fxign
i=1 from the

smallest to the largest, and denote the order statistics as
n

x(i)
on

i=1
. If xi is from

the standard normal distribution, we expect the points
n�

i
n+1 ,Φ

�
x(i)
��on

i=1
in the

xy -plane to lie approximately on the line y = x . The same must then hold for the

points
n�

Φ�1
�

i
n+1

�
,x(i)

�on

i=1
. More generally, if xi � N

�
µ,σ2

�
, then

x(i) � µ+σΦ�1
�

i
n+1

�
. So we expect the points meantioned above to lie on the

line y = µ+σx .

- In the normal probability plot, we invert the x and y axes [so if xi � N
�

µ,σ2
�

,

then Φ�1
�

i
n+1

�
=

x(i)�µ

σ
] and mark the position Φ�1

�
i

n+1

�
on the y axis as i

n+1 .
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The Normal Distribution

Figure: Normal Probability Plot for Data Simulated from N
�
100,252

�
: n = 1000

The horizontal axis indicates the data points ranked in order from the smallest to
the largest.
The vertical axis indicates the cumulative normal probabilities of the ranked data
values if the sample data were obtained from a "normal" population; it has a
transformed cumulative normal scale [What transformation? see Justification].
Two dotted lines provide an interval within which data points from a normal
distribution would occur most cases.
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The Normal Distribution

Nonlinear Plots Indicate Nonnormality

0.01

50

99.99

0.01

50

99.99

0.01
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99.99

0.01

50

99.99

Figure: Normal Probability Plot for Different Types of Data with n = 1000: the red line is the plot
from normal distribution with the same mean and variance

(**) Why are the normal probability plots like those above? [Take the uniform
distribution as an example]

Ping Yu (HKU) Continuous Random Variables 34 / 52



Normal Distribution Approximation for Binomial Distribution

Normal Distribution Approximation for Binomial
Distribution
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Normal Distribution Approximation for Binomial Distribution

Normal Distribution Approximation for Binomial Distribution

Recall that a binomial r.v. X = ∑n
i=1 Xi , where Xi

iid�Bernoulli(p) with iid meaning
"independent and identically distributed".
When np (1�p)> 5, N (np,np (1�p)) provides a good approximation of
Binomial(n,p), which is known as the De Moivre-Laplace theorem. [figure here]
- Because normal distributions are easier to handle, this approximation can
simplify the analysis of some problems.
- A more rigorous justification when p is fixed and n! ∞ is provided in Lecture 5.
- Interestingly, we are using a continuous r.v. to approximate a discrete r.v..

Figure: Galton Board (or quincunx, or bean machine): X = ∑n
i=1 Xi , where Xi

iid�(symmetric)
Bernoulli(0.5) 2 f�1,1g
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Normal Distribution Approximation for Binomial Distribution

History of the De Moivre-Laplace Theorem

Abraham de Moivre (1667-1754), French6 Pierre-Simon Laplace (1749-1827), French7

The phonomenon of de Moivre–Laplace theorem was first observed by de Moivre
in a private manuscript circulated in 1733 and published in 1738 with the title "The
Doctrine of Chances". Later, Laplace formally proved the theorem in 1810.

6He was exiled to England due to religious persecution, and became a friend of Newton there. To make a
living, he became a private tutor of mathematics.

7He was referred to as the French Newton. His students include Poisson and Napoleon.
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Normal Distribution Approximation for Binomial Distribution

Continuity Correction

Because we are using a continuous distribution to approximate a discrete one, we
often conduct a continuity correction to improve the approximation quality.

Specifically,
P (X � x)� P (X � x +0.5) .

- Since P (X � x) = P (X < x +1), P (X < x +1)� P (X � x +0.5).
For example,

P (a� X � b) = P (X � b)�P (X < a)

� P (X � b+0.5)�P (X � a�0.5)

= P

 
X �npp
np (1�p)

� b+0.5�npp
np (1�p)

!

�P

 
X �npp
np (1�p)

� a�0.5�npp
np (1�p)

!

� Φ

 
b+0.5�npp

np (1�p)

!
�Φ

 
a�0.5�npp

np (1�p)

!
.

(*) The continuity correction can provide a more accurate approximation
particularly when n is not very large or p is not close to 0.5.
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Normal Distribution Approximation for Binomial Distribution

[Example] Approximating X

If X is the number of customers after n = 200 people browsed a store’s website,
and based on past experiences, the probability of visiting the store after browsing
is p = 0.4, the manager wants to predict the probability of the number of
customers falling in an interval, say, [76,80].

Solution: From the normal approximation,

P (76� X � 80) � Φ

 
80.5�80p

200�0.4� (1�0.4)

!
�Φ

 
75.5�80p

200�0.4� (1�0.4)

!
= Φ (0.0722)�Φ (�0.6495) = 0.5288�0.2580= 0.2708.

For comparison, the exact probability

P (76� X � 80) = 0.2717.

The textbook does not apply the continuity correction and approximates
P (76� X � 80) by

Φ

 
80�80p

200�0.4� (1�0.4)

!
�Φ

 
76�80p

200�0.4� (1�0.4)

!
= 0.219.
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Normal Distribution Approximation for Binomial Distribution

[Example] Approximating X /n

The normal approximation can also be applied to the proportion (or percentage) r.v.,
p̂ = X /n:

p̂
approx .� N

�
np
n
,

np (1�p)
n2

�
= N

�
p,

p (1�p)
n

�
� N

�
p̂,

p̂ (1� p̂)
n

�
,

where the last approximation is from using p̂ to substitute p, i.e., p is estimated rather than
known a priori.
In the example above, suppose we observe 80 customers after 200 browsings, then the
proportion

p̂ =
X
n

approx .� N
�

0.4,
0.4� (1�0.4)

200

�
= N (0.4,0.0012) .

So for 0< p < p < 1,

P
�
p � p̂ � p

�
= P

0@ p�pq
p(1�p)

n

� p̂�pq
p(1�p)

n

� p�pq
p(1�p)

n

1A
� Φ

0@ p� p̂q
p̂(1�p̂)

n

1A�Φ

0@ p� p̂q
p̂(1�p̂)

n

1A= Φ
�

p�0.4p
0.0012

�
�Φ

�
p�0.4
p

0.0012

�
.

- The continuity correction can also be applied here by replacing p by p+ 0.5
n and p by

p� 0.5
n [presumably, p and p take the form of m/n for some integer m; otherwise, correction

is not required].
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Normal Distribution Approximation for Binomial Distribution

Summary of Approximations of Binomial(n,p)

Conditions Approximating Distributions
n large and p � 0.05 such that np � 7 Poisson(np)
N large and n

N small Hypergeometric(n,N,S) with S
N � p

n large such that np (1�p)> 5 N (np,np (1�p))

(**) If n large and p � 0.05 such that np � 7 and np (1�p)> 5, then Binomial
(n,p) can be approximated by both Poisson(np) and N (np,np (1�p)).
- This indicates that the Poisson(λ ) distribution can be approximated by a normal
distribution, e.g., when λ is large (say λ > 100), then Poisson(λ )� N (λ ,λ ).

When approximating a discrete distribution by a continuous one, we may conduct
the continuity correction to reduce the approximation error. For example,
P (Binomial (n,p)� x)� P (N (np,np (1�p))� x +1/2), and
P (Poisson (λ )� x)� P (N (λ ,λ )� x +1/2).
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The Exponential Distribution

The Exponential Distribution

The pdf for an exponentially distributed r.v. T is

f (t jλ ) = λe�λ t �1(t > 0),

denoted as T � Exponential(λ ), i.e., T can take only positive values, and the
distribution is not symmetric – the right tail is heavier than that of the normal
distribution, and the left tail is thinner. [figure here]

The cdf of Exponential(λ ) is

F (t jλ ) =
Z t

0
λe�λτ dτ =

�
1�e�λ t

�
�1(t > 0).[figure here]

F (t jλ ) can be used to model the waiting time, i.e., the probability that an arrival
will occur during an interval of time t (T is the waiting time before the first arrival),
so is particularly useful for waiting-line, or queuing, problems.

Examples:
- Time between trucks arriving at an unloading dock.
- Time between transactions at an ATM Machine.
- Time between phone calls to the main operator.

Ping Yu (HKU) Continuous Random Variables 43 / 52



The Exponential Distribution

0 10 20
0

0.5

1

f (t jλ ) with λ = 0.2 F (t jλ ) and S(t jλ ) with λ = 0.2

Ping Yu (HKU) Continuous Random Variables 44 / 52



The Exponential Distribution

Properties of the Exponential Distribution

The cdf F (t jλ ) implies that the survivor function is

S(t jλ ) := P (T > t) = 1�F (t jλ ) = e�λ t

for t > 0.
- In survival analysis, S (t jλ ) is more popular than F (t jλ ) since it can be used to
model the survival time, i.e., the probability that a patient can survive for time t .

The exponential distribution is closely related to the Poisson distribution: If

T1, � � � ,Tn
iid� Exponential(λ ), then

max
n

nj∑n
i=1 Ti � 1

o
� Poisson (λ ) ; [proof not required]

i.e., Poisson(λ ) is the number of arrivals in a unit time.

For T � Exponential(λ ),

µT =
1
λ

and σ
2
T =

1

λ
2 ,

so an exponential distribution is determined completely by its mean.

- µT =
1
λ

is expected from the mean of Poisson(λ ) which is λ from Lecture 4.
- λ in Exponential(λ ) is the mean number of arrivals in a unit time.
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The Exponential Distribution

[Example] Exponential CDF

Customers arrive at the service counter at the rate of 15 per hour. What is the
probability that the arrival time between consecutive customers is less than three
minutes?

Solution: The mean number of arrivals per hour is 15, so λ = 15.

Three minutes is .05 hours.

P (arrival time< 0.05) = 1�e�λ t = 1�e�15�0.05 = 0.5276.

So there is a 52.76% probability that the arrival time between successive
customers is less than three minutes.
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Jointly Distributed Continuous Random Variables

Jointly Distributed Continuous R.V.’s

This section is parallel to the section on multivariate discrete r.v.’s.
Let X1, � � � ,XK be continuous r.v.’s.

1 Their joint cdf
F (x1, � � � ,xK ) = P (X1 � x1\�� �\XK � xK ) .

2 The cdf, F (x1) , � � � ,F (xK ), of individual r.v.’s are called their marginal distributions.
3 The r.v.’s are independent iff for all x1, � � � ,xK ,

F (x1, � � � ,xK ) = F (x1) � � �F (xK ) .

The counterparts of the joint and marginal probability distributions for multivariate
discrete r.v.’s are the joint pdf

f (x1, � � � ,xK ) =
dK

dx1 � � �dxK
F (x1, � � � ,xK )

and the marginal pdf

f (xi ) =
d

dxi
F (xi ) =

Z
� � �
Z

f (x1, � � � ,xK )dx1 � � �dxi�1dxi+1 � � �dxK .

- The independence of X1, � � � ,XK can be equivalently defined as
f (x1, � � � ,xK ) = f (x1) � � � f (xK ) for all x1, � � � ,xK .
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Jointly Distributed Continuous Random Variables

Conditional Mean and Variance

For two continuous r.v.’s (X ,Y ), the conditional pdf of Y given X = x is

f (y jx) = f (x ,y)
f (x)

.

The conditional mean of Y given X = x is

µY jX=x = E [Y jX = x ] =
Z

yf (y jx)dy .

The conditional variance of Y given X = x is

σ
2
Y jX=x = Var (Y jX = x) =

Z �
y �µY jX=x

�2
f (y jx)dy .

These concepts can be extended to multivariate continuous r.v.’s in an obvious
way.

The results such as E [a+bY jX = x ] = a+bE [Y jX = x ] and
Var (a+bY jX = x) = b2Var (Y jX = x) for constants a and b also hold.
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Jointly Distributed Continuous Random Variables

Mean and Variance of (Linear) Functions

For a function of X1, � � � ,XK , g (X1, � � � ,XK ), its mean, E [g (X1, � � � ,XK )], is defined
as

E [g(X1, � � � ,XK )] =
Z
� � �
Z

g (x1, � � � ,xK ) f (x1, � � � ,xK )dx1 � � �dxK .

If W = ∑K
i=1 aiXi , then

µW = E [W ] =
K

∑
i=1

ai µ i ,

and
σ

2
W = Var (W ) =∑K

i=1 a2
i σ

2
i +2∑K�1

i=1 ∑j>i aiaj σ ij ,

which reduces to ∑K
i=1 σ2

i if σ ij = 0 for all i 6= j and ai = 1 for all i .

Actually, all the results on mean and variance for discrete r.v.’s apply to continuous
r.v.’s.

The covariance and correlation between two continuous r.v.’s (X ,Y ) are similarly
defined as

Cov (X ,Y ) = σXY = E [(X �µX ) (Y �µY )] = E [XY ]�µX µY ,

Corr (X ,Y ) = ρXY =
σXY

σX σY
.
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Linear Combinations of Normal Random Variables

If X and Y are jointly normally distributed random variables [see the next slide for
its pdf], then the linear combination, W = aX +bY , is also normally distributed.

Example: Two tasks must be performed by the same worker,

X =minutes to complete task 1, µX = 20,σX = 5,
Y =minutes to complete task 2, µY = 30,σY = 8,
X and Y are normally distributed and independent.8

What is the mean and standard deviation of the time to complete both tasks?

W = X +Y , so µW = µX + µY = 20+30= 50.

Since X and Y are independent, Cov (X ,Y ) = 0, thus
σ2

W = σ2
X +σ2

Y +2Cov (X ,Y ) = 52+82 = 89, and σW =
p

89= 9.434.

Because a linear combination of jointly normal r.v.’s is also normally distributed,
and a normal distribution is determined completely by its mean and variance, we
have W � N (50,89).

8This assumption may not be valid since time cannot be negative while normal distributions can take
negative values, and X and Y may not be independent because the same worker finishes both tasks; anyway,
we hope this assumption is approximately satisfied.
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(**) Bivariate Normal Distribution

The bivariate normal pdf is

fX1X2
(x1,x2jµ1,µ2,σ1,σ2,ρ) =

1
2πσ1σ2

p
1�ρ2

�exp
�
� 1

2(1�ρ2)

��
x1�µ1

σ1

�2
+
�

x2�µ2
σ2

�2
�2ρ

(x1�µ1)(x2�µ2)
σ1σ2

��
,

where µ1,µ2 2R, σ1,σ2 > 0, and ρ 2 (�1,1).

Figure: Two Bivariate Normal Density Functions: left: ρ = 0; right: ρ = 0.7

Corr (X1,X2) = ρ; when ρ = 0, fX1X2
(x1,x2) = fX1

(x1jµ1,σ1) fX2
(x2jµ2,σ2), so no

correlation implies independence for the bivariate normal distribution!
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