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Plan of This Lecture

Continuous Random Variables

Expectations for Continuous Random Variables

The Normal Distribution

Normal Distribution Approximation for Binomial Distribution
The Exponential Distribution

Jointly Distributed Continuous Random Variables

(]

Note: only this lecture and Lecture 8 involve some knowledge of calculus.
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Continuous Random Variables

Continuous Random Variables
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[Review] Continuous Random Variables

@ A continuous random variable is a random variable that can assume any value in
an interval.
- thickness of an item;
- time required to complete a task;
- temperature of a solution;
- height, in inches;

@ These can potentially take on any value, depending only on the ability to measure
accurately.
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Continuous Random Variables

Cumulative Distribution Function

@ The cumulative distribution function (cdf), F (x), for a continuous r.v. expresses
the probability that X does not exceed the value x, as a function of x, i.e.,

F(x)=P(X<x).

@ This definition is the same as in the discrete r.v. case, but there F (x) is a step
function so is not differentiable.

@ This definition of cdf implies
Pa<X<b)=P(X<b)-P(X<a)=F(b)-F(a)

fora <b.
- Recall that the probability of a single value is zero for a continuous r.v., so
whether a and b are included in the interval or not does not affect the result.
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Probability Density Function

@ The counterpart of pmf for a continuous r.v. is the probability density function (pdf),
which is defined as

f(x)= &F (x). [figure here][review here]

- Notation: $-F (x) is often written as —dij(’() or F’(x).

@ Properties of PDF: )
@ f(x) >0since F (x) is nondecreasing.
- We denote the area where f(x) > 0 as ., called the support of X.*
Q@ P(a<X<h)= f;’f(x)dx. [review here]
Q /. f(x)dx = [, f(x)dx = 1. [figure here]
Q F(xo) = /X% f(x)dx = z°f(x)dx, where xm = inf(.#). [figure here]

1(*+) Usually, .7 is defined as the closure of this area, but we will not distinguish-this difference-in this-lecture.
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Continuous Random Variables
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Jof(x)dx =1 and F (xg) = fz°f(x)dx
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[Review] Derivative and Integral

@ Intuitively, (f—XF (x) is the local slope at x, i.e.,

d  F(x+A)—F(x)
—F (x) = lm ————~,
dx x) AITO A
where A can be positive or negative.
@ Intuitively, f;’f(x)dx is the area under f (x) between a and b, i.e.,

b n
/a f(x)dx = A“Lnoigof (xi) A, [figure here]

where we partition (a,b) into small subintervals with length A, x; =a+ (i + %) Ais

the middle point of each subinterval, and n= (b —a)/A — 1.2
-y = [,Xi—X,A—dx,i=0—a,andi=n—b.

@ Fundamental Theorem of Calculus [figure here]: If (f—XF (x) =f(x), then
F(b)—F (a) = /2 (x) dx.

%i=0,a+iA=a,andi="2 -1 a+(i+1)A=a+"BA=b.
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Continuous Random Variables

Figure: Definition of Integral of f from ato b
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Co-Inventers of Calculus

Isaac Newton (1642-1726), English  Gottfried Leibniz (1646-1716), German

@ We usually say Newton and Leibniz invented calculus because they found the
fundamental theorem of calculus  which links the concept of the derivative of a
function with the concept of the function’s integral.
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Continuous Random Variables

Uniform Distribution

@ The uniform distribution is a probability distribution that has equal probabilities for

all equal-width intervals within the range of the random variable.

Sx)

Total area under the
|+ uniform probability
LT | density function is 1.0

/

Xmin Frmax

@ Assume the density between Xpi, and Xmax is f; then

1
Xmax — Xmin
@ In summary, the uniform distribution on (a,b) has the pdf

f(x):bia-l(agxgb),

(Xmax —Xmin)f =1 =1 =

and the cdf -
Xo Xg—a
F = ——dx = f
(%o) /a b—adx b or Xg € [a,b],
where 1(-) is the indicator function which equals 1 when the statement in the
parentheses is true and 0 otherwise.
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Example: Gasoline Sales

@ Assume the gasoline sales at a gasoline station is equally likely from 0 to 1,000
gallons during a day; then the gasoline sales follow a uniform (probability)

distribution:
0, if x <0,
F(x)=< 0.001x, if0<x <1000
1, if x > 1000,
whose pdf is
fx) = 0.001, if0<x <1000
- 0, otherwise.

= 0.001-1(0<x <1000).

[figure here]
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Continuous Random Variables
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@ Degenerate S-shaped cdf and bell-shaped pdf?
@ We denote ar.v. X with a uniform distribution on (a,b) as X ~ U (a,b).
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Approximate PDF by PMF

@ Suppose .¥ = (a,b), where a can be —» and b can be . We can partition .7 into
small subintervals with length A, and then approximate the pdf f (x) by the pmf

1 ) ) a+(i+1)A
p(a+(|—|——)A>:P(a+|A<X§a—|—(|+1)A):/ f(x)dx,
2 a+iA

where i =0,1,---, 058 — 1,

atid Tat(i+ LA

—
Figure: PDF of Wage: wage ~ exp (N (i, 52)) with N (11, 62) defined below, a =0,b = o
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Expectations for Continuous Random Variables

Expectations for Continuous Random Variables
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Expectations for Continuous Random Variables

@ The mean (or expected value, or expectation) of a continuous r.v. can be defined
through an approximation of a discrete r.v. in the previous slide:

fy = E [X] ~ (bszfl(aJr (i + %)A) Pat+id<X <a+(i+1)A)
< v (141)8) 1 (ak (1+3)4) o

i=0
A—H?j;.fxf(x)dx.

@ The mean is the center of gravity of a pole (a,b) with density at x being f (x).
@ In general, the mean of any function of X, g (X), is

Elg (X)) = [ g00f (x)ax.

5%
- Recall that E [g (X)] # g(E [X]) unless g (X) is linear in X.
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Expectations for Continuous Random Variables
Variance

@ The variance of X is defined as
0% =E (X —ux)?| =E [X?] - k.
- ux measures the center of the distribution, while 6>2( measures the dispersion or
spread of the distribution.
@ The standard deviation of X, ox = \/07.

@ Example: For the uniform distribution on (a,b),

= /bx ! dx—a—’—b
Hx o Ja b—a o 2

b, 1 a+b\? (b—a)?
2 — =
./aX b—aX ( 2 ) 2

2
Ox

i.e., the mean is the center of the range, and when the range (a, b) is wider, the
variance is larger.
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Expectations for Continuous Random Variables

[Example] Mean and Variance of the Uniform Distribution

@ Suppose X ~ U (2,6).
® f(x)=g5 =025for2<x <6.

Sx)
.25
2 6
_ atb 246
O ux = =5 =4
2 _ (b’ _ (6-2° _
002 =20 _ (62" _ 1333
Continuous Random Variables
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Linear Functions of Random Variables

@ LetW = a-+bX, where X has mean uy and variance o)2<, and aand b are
constant fixed numbers.

@ Then the mean of W is
Hw =a+Dbpy.
@ The variance of W is
62 — b252
W X-
@ The standard deviation of W is
ow = |b| Ox.

An important special case of the result for the linear function of random variable is

— X—px. _ 2 _
z-score of X, Z = =X uz =0and 05 = 1.
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The Normal Distribution

The Normal Distribution
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The Normal Distribution

@ The pdf for a normally distributed r.v. X is

f (x|u 62) — ! e torxes = (—o0, c0) 1)
' V2no? Y

where u € R, and 62 € (0,), e is Euler's number, and & = 3.14159-- - is
Archimedes’ constant (the ratio of a circle’s circumference to its diameter).
- Since the normal distribution depends only on u and 62, we denote a r.v. X with

pdf (1) as X ~N (u,GZ).

@ Since f (x\u,o-z) is symmetric and bell-shaped, its mean, median and mode are

equal (= p). Its spead is determined by ¢ [f (mu,oz) =_1 }

T V2no?
S
A
X
H
!
Mean
= Median
= Mode
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continue

@ By varying the parameters u and o, we obtain different normal distributions:
Variance = 0.0625

Variance = 1

1 1 1 1 1 1 1 1 I\ 1 Il
1.5 2.5 3.5 4.5 55 6.5 7.5 85 9.5 x 15 25 3.5 45 55 6.5 7.5 85 x
(a) (b)

Figure: f (x|, 62): (a) same o2, different u’s; (b) same u = 5, different 62’s.

@ The cdf of the normal distribution, F (xo|u,c72) = [*of <x|,u,c:2) dx, does not
have an analytic form (i.e., a closed-form expression), but computation of
probabilities based on the normal distribution is direct nowadays. [see below]

@ This distribution has many applications in business and economics, e.g., the
dimensions of parts, the heights and weights of human beings, the test scores, the
stock prices, etc. all roughly follow normal distributions.

@ As will be discussed in Lecture 5, the distribution of sample mean will converge to
a normal distribution when the sample size gets large.
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History of the Normal Distribution

@ Normal Distribution is also called Gaussian Distribution.

Carl F. Gauss (1777-1855), Géttingen®

3He is also referred to as the "prince of mathematics", known for many things, e:g., the least squares:
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The Normal Distribution

Properties of the Normal Distribution: Mean, Variance and Skewness

@ For X ~N ([J,62>,

Ly = u [easy] and 6% = 62 [proof not required],

so a normal distribution is determined completely by its mean and variance.
- (**) It can be shown that o =IQR/1.349, which can be treated as a robust
representation of o because IQR does not involve the two tails of X.

@ Because f (x|u, 62) is symmetric, the skewness of X is 0.
- Recall from Lecture 1 that the (population) skewness is

E[(x —1x)?] n

3 * 53’
oy o

SkeWX =

and the sample skewness is

Tilg (Xi -%)°

skewness = 3
ns

where 5 is the third central moment, and s is the sample standard deviation.
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Properties of the Normal Distribution: Kurtosis

@ The tail of f <x|u, 02) is approximately e~** which shrinks to zero very quickly.
The (population) kurtosis is often used to measure the heaviness of a distribution’s
tail [why?]:

4
e[|y,

4 C 4
% o

Kurty =
where 1, is the fourth central moment.
- It can be shown that the kurtosis of N ([J, 02> is 3, which is chosen as a

benchmark, i.e., if a distribution’s kurtosis is larger than 3, it is called heavy tailed,
and if less than 3, called light tailed. Heavy-tailed phenomena seem more frequent
than light-tailed ones since the tail of a normal distribution is already very thin.

@ The sample kurtosis is
Sy (6 —%)*

kurtosis = 7
ns

Ping Yu (HKU) Continuous Random Variables 25/52



The Standard Normal Distribution

@ If X ~N(0,1), then we call X follows the standard normal distribution.
@ The pdf (cdf) of N (0,1) is often denoted as ¢ (-) (@ (-))*.

@ Because Z = % has mean 0 and variance 1 for X ~ N (u, 62), and the normal
distribution is completely determined by its mean and variance, we conclude that
N (0,1) if X ~N (u,GZ).S

P2

0 Z

4The textbook uses f (z) and F (z), while we use ¢ (z) ®(z), for the standard normal pdf and cdf; f (-) and
F (-) are reserved for the pdf and cdf of N (i, 62).
5(**) Linear transformations maintain normality, but nonlinear ones need not.
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The Normal Distribution

Relationship Between X and Z

@ If X is distributed normally with mean of 100 and standard deviation of 50, the Z

value for X =200 is
_ X—p 200-100

c 50
which says that X = 200 is two standard deviations (2 increments of 50 units)
above the mean of 100.

4 =2.0,

100 200 X (u=100,0=50)
0 2.0 Z (w=0,0=1)

@ Note that the distribution is the same, only the scale has changed. We can
express the problem in original units (X) in standardized units (Z).
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continue

@ Finding Normal Probabilities:

Sx)

0o =~ z

@ The relationship between F (x|u, 6?) (f(x|u, 2)) and ®(z) (¢ (2)):

Fxo?) = Pxsx)=p (YR <X ) o (X0H),

O (xlu.o?) = %F(x\u,oz):%¢(x‘“):lq)(";“),[check!]

o o

where the second result is from the chain rule and @' (-) = ¢ ().
@ The Standard Normal Distribution table in the textbook (Appendix Table 1) shows

values of ®(z), which imply values of F (u +oz|u, 02)(: ®(z)) for any u and
c>0.
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Summary: General Procedure for Finding Normal Probabilities

@ Tofind P (a< X <b)whenX ~N (u,oz).

@ Draw the normal curve for the problem in terms of X.
@ Translate X -values to Z-values.
© Use the Cumulative Normal Table.

e Suppose X ~ N (8,52). Find P (X < 8.6).

X 8 86 X 00.12 4
P(X < 8.6) P(Z<0.12)

_ X-p _ 8.6-8 _
Z =558 =%5==012.
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The Normal Distribution

continue

P(X <8.6)

z gb(z) =P(Z<0.12)
.10 | .5398 $(0.12)=0.5478
A1 | 5438

e M
13 | 5517 o

® P(X>86)=1-P(X<86)=1-P(Z<012)=1-d(0.12).
owa<1®:P(z<L%%:442<—am):¢p@1ail—¢mam.

- By symmetry of @ (-), ®(—z) =1—-®(z) for z > 0 [figure here]; this is also why
Appendix Table 1 only reports & (z) for z > 0.
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Upper ath Quantile of Standard Normal

@ The upper ath quantile of N (0,1), i.e., the solutionto P (Z >z) =1-®(z) = a,
is denoted as z,,.
- The ath quantile of N (0,1) is the solution to ®(z) = a, i.e., @1 (a).
- Because 1 - ®(z) = ®(-2), solving ®(-z) = a we have zo = —® 1 (a).
-IfX ~N (u, 0'2), then its upper ath quantile is u + 6z, because
P(X>u+0zq)=P(Z>2z4) =0

(=) =(=1) = 0.1587

1-0(+2) = 1 —5(+1) = 0.1587

Figure: Normal Density Function with Symmetric Upper and Lower Values
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Normal Probability Plot

(]

Since the normal distribution is most-used, we often need a way to check whether
the data in hand are approximately normally distributed.

Normal probability plots (or QQ-plots with Q for "quantile”) provide an easy way to
achieve this goal.

If the data are indeed from a normal distribution, then the plot will be a straight
line. [figure here]

(**) Justification for QQ-plots: Suppose we order the data {x;}{'_; from the
n
smallest to the largest, and denote the order statistics as {x(i)}_ R If x; is from

. n
the standard normal distribution, we expect the points {(ﬁ@ (x(i>)) }i:l in the
Xy-plane to lie approximately on the line y = x. The same must then hold for the
. —1 n . -y 2
points {(@ (n+1) X )) }i . More generally, if x; ~ N (,u,o ) then
X(iy = 1+ cd 1 < AT ) So we expect the points meantioned above to lie on the

liney = u+ox.
- In the normal probability plot, we invert the x and y axes [so if X; ~ N (u 02)

then &~ <n+1> =

—u » N
')G ] and mark the position &1 <n+1) on the y axis as n+1
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The Normal Distribution

99.99

99+
95+
80+

50

Percent

20+

14

0.011— T T T T
0 50 100 150 200
Data

Copyright ©2013 Pearson Ecucation, publishing s Prentice all

Figure: Normal Probability Plot for Data Simulated from N (100, 252): n = 1000

@ The horizontal axis indicates the data points ranked in order from the smallest to
the largest.

@ The vertical axis indicates the cumulative normal probabilities of the ranked data
values if the sample data were obtained from a "normal” population; it has a
transformed cumulative normal scale [What transformation? see Justification].

@ Two dotted lines provide an interval within which data points from a normal
distribution would occur most cases.
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The Normal Distribution

Nonlinear Plots Indicate Nonnormality

Left-Skewed

Data

Right-Skewed

99.99 99.99
g .
g 50 50
8
&
AR
0.01 0.01
Data Data
Uniform Distribution (light-tailed) Heavy-Tailed
99.99 99.99
%
&
g 50 50
g
o o
0.01 0.01

Data

Figure: Normal Probability Plot for Different Types of Data with n = 1000: the red line is the plot
from normal distribution with the same mean and variance

@ (**) Why are the normal probability plots like those above? [Take the uniform
distribution as an example]
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Normal Distribution Approximation for Binomial Distribution

Normal Distribution Approximation for Binomial
Distribution
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Normal Distribution Approximation for Binomial Distribution

Normal Distribution Approximation for Binomial Distribution

@ Recall that a binomial r.v. X =3 ; X;, where X; "quernouIIi(p) with iid meaning
"independent and identically distributed".

@ Whennp(1—p)>5,N(np,np(1—p)) provides a good approximation of
Binomial(n, p), which is known as the De Moivre-Laplace theorem. [figure here]
- Because normal distributions are easier to handle, this approximation can
simplify the analysis of some problems.
- A more rigorous justification when p is fixed and n — o is provided in Lecture 5.
- Interestingly, we are using a continuous r.v. to approximate a discrete r.v..

@physicsfum

Figure: Galton Board (or quincunx, or bean machine): X = $7; X;, where X; iiAdJ(symmetric)
Bernoulli(0.5) € {-1,1}

Ping Yu (HKU) Continuous Random Variables 36 /52



Normal Distribution Approximation for Binomial Distribution

History of the De Moivre-Laplace Theorem

Abraham de Moivre (1667-1754), French®  Pierre-Simon Laplace (1749-1827), French’

@ The phonomenon of de Moivre—Laplace theorem was first observed by de Moivre
in a private manuscript circulated in 1733 and published in 1738 with the title "The
Doctrine of Chances". Later, Laplace formally proved the theorem in 1810.

8He was exiled to England due to religious persecution, and became a friend of Newton there. To make a
living, he became a private tutor of mathematics.
"He was referred to as the French Newton. His students include Poisson and Napoleon.
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Continuity Correction

@ Because we are using a continuous distribution to approximate a discrete one, we

often conduct a continuity correction to improve the approximation quality.
@ Specifically,

P(X<x)~P(X<x+05).

-SinceP(X <x)=P(X <x+1),P(X <x+1)~P (X <x+0.5).

@ For example,
P(a<X <b) P(X<b)-P(X<a)

~ P(X<b+05)-P(X<a-05)

X —np b+0.5—np
N P(x/np(lp)<\/np(1p)>
P( X —np <a—0.5—np>
Vip(1-p) = v/np(1-p)
~ (D<b+0.5—np>q><a—0.5—np>.
Vp (1-p) Vp(1-p)

@ (*) The continuity correction can provide a more accurate approximation
particularly when n is not very large or p is not close to 0.5.
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Normal Distribution Approximation for Binomial Distribution

[Example] Approximating X

@ If X is the number of customers after n = 200 people browsed a store’s website,
and based on past experiences, the probability of visiting the store after browsing
is p = 0.4, the manager wants to predict the probability of the number of
customers falling in an interval, say, [76,80].

@ Solution: From the normal approximation,

80.5— 80 75.5—80
P -
/200 x 0.4 % (1—0.4) /200 x 0.4 % (1—0.4)

= ®(0.0722)— ®(—0.6495) = 0.5288 — 0.2580 = 0.2708.

Q

P (76 < X < 80)

@ For comparison, the exact probability
P (76 <X <80)=0.2717.

@ The textbook does not apply the continuity correction and approximates
P (76 <X <80) by

® 80— 80 e 7680 _ o210,
V/200x 0.4 x (1—0.4) V/200x 0.4 x (1—0.4)
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Normal Distribution Approximation for Binomial Distribution

[Example] Approximating X /n

@ The normal approximation can also be applied to the proportion (or percentage) r.v.,

p=X/n:
< approx. (NP np(1-p) P(1-p) s P(1-P)
~ N[ —, ———)=N(p—— ) ~N(p—*"
P ( n' n? S S '
where the last approximation is from using p to substitute p, i.e., p is estimated rather than
known a priori.
@ In the example above, suppose we observe 80 customers after 200 browsings, then the

proportion

p=

X approx. 0.4x(1-0.4)
- N <0.4, oo

) =N (0.4,0.0012).

@ SoforO<p<p<i,

P(p<p<p)

P( p-p < p-p < p-p )
1- 1- 1-
\/p(np) \/p(np) \/p(np)

p-p p—p p-04 > < p-04 >
| —— |- — | =2 ~® :
( B m) ( ( ﬁ)) <\/o.0012 10.0012

n n

Q

- The continuity correction can also be applied here by replacing p by p + 0?5 and p by
[ % [presumably, p and p take the form of m/n for some integer m; otherwise, correction
is not required].
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Normal Distribution Approximation for Binomial Distribution

Summary of Approximations of Binomial(n,p)

Conditions

Approximating Distributions

n large and p < 0.05 such thatnp <7

N large and § small
n large such thatnp(1—p) >5

Poisson(np)
Hypergeometric(n,N,S) with § ~p
N (np,np (1-p))

@ (**) If n large and p < 0.05 such that np <7 and np (1—p) > 5, then Binomial
(n,p) can be approximated by both Poisson(np) and N (np,np (1—p)).
- This indicates that the Poisson(A) distribution can be approximated by a normal
distribution, e.g., when A is large (say A > 100), then Poisson(A) ~ N (4,1).

@ When approximating a discrete distribution by a continuous one, we may conduct
the continuity correction to reduce the approximation error. For example,
P (Binomial (n,p) <x)~P (N (np,np(1—p)) <x+1/2), and
P (Poisson(4) <x)=P (N (A,A) <x+1/2).

Ping Yu (HKU) Continuous Random Variables
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The Exponential Distribution

The Exponential Distribution
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The Exponential Distribution

@ The pdf for an exponentially distributed r.v. T is
f(tjA) =Ae 2. 1(t>0),

denoted as T ~ Exponential(1), i.e., T can take only positive values, and the
distribution is not symmetric — the right tail is heavier than that of the normal
distribution, and the left tail is thinner. [figure here]

@ The cdf of Exponential(1) is
t
F(tIA) = / re*tdr = <17e"“) -1(t > 0).[figure here]
0

@ F (t|A) can be used to model the waiting time, i.e., the probability that an arrival
will occur during an interval of time t (T is the waiting time before the first arrival),
so is particularly useful for waiting-line, or queuing, problems.

@ Examples:

- Time between trucks arriving at an unloading dock.
- Time between transactions at an ATM Machine.
- Time between phone calls to the main operator.
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The Exponential Distribution

ft)
0.2 =1
wn
s
—=Fam
01 L —s(\)
’ 05
0.0
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e . % 10 20

f(t|A) with A = 0.2
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Properties of the Exponential Distribution

@ The cdf F (t|A) implies that the survivor function is
S(tA):=P(T>t)=1-F (tj1) =e M

fort > 0.
- In survival analysis, S (t|A) is more popular than F (t|1) since it can be used to
model the survival time, i.e., the probability that a patient can survive for time t.

@ The exponential distribution is closely related to the Poisson distribution: If
T, Th id Exponential(1), then

max{n| Zinlei < 1} ~ Poisson (1) ; [proof not required]

i.e., Poisson(A) is the number of arrivals in a unit time.
@ For T ~ Exponential(1),
1 , 1
uT:xandcT:P,
so an exponential distribution is determined completely by its mean.

- U = % is expected from the mean of Poisson(A) which is A from Lecture 4.
- A in Exponential(4) is the mean number of arrivals in a unit time.
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[Example] Exponential CDF

@ Customers arrive at the service counter at the rate of 15 per hour. What is the
probability that the arrival time between consecutive customers is less than three
minutes?

Solution: The mean number of arrivals per hour is 15, so A = 15.
Three minutes is .05 hours.
P (arrival time < 0.05) =1 —e* =1 ¢15%005 — 0. 5276.

So there is a 52.76% probability that the arrival time between successive
customers is less than three minutes.
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Jointly Distributed Continuous Random Variables

Jointly Distributed Continuous Random Variables
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Jointly Distributed Continuous R.V.'s

@ This section is parallel to the section on multivariate discrete r.v.s.
@ Let Xq,---, Xk be continuous r.v.'s.

@ Their joint cdf
F(xg, -, Xc) =P (Xg <xgN---NXg <xg)-
@ Thecdf, F (x1), - ,F (x¢), of individual r.vs are called their marginal distributions.
© The r.v’s are independent iff for all xq,---, Xk,
F(Xg,x) =F (xq) - F (X ) -

@ The counterparts of the joint and marginal probability distributions for multivariate
discrete r.vs are the joint pdf

dK

F
Xm-“dXK (le ’XK)

f(xl’...,XK):

and the marginal pdf

f(x)= / /f Xq, e, X ) AXq - dXj_qgdXjpq - dXg

- The independence of Xq,---, Xk can be equivalently defined as
f(X1,~~~ ,XK) :f(Xl)f (XK) for all Xq,---, Xk -
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Conditional Mean and Variance

@ For two continuous r.v.s (X,Y ), the conditional pdf of Y given X =x is

Flyx) = ==37
@ The conditional mean of Y given X =x is
Hyix—x =EYIX =x] = [yt (ylx)dy.
@ The conditional variance of Y given X =x is
) 2
Oy x—x = Var (Y|X =Xx) :/(y */JY\X:X) f(y|x)dy.
@ These concepts can be extended to multivariate continuous r.v.'s in an obvious
way.

@ Theresults such as E[a+bY|X =x]=a+bE[Y|X =x] and
Var (a+bY|X =x) =b?Var (Y |X =x) for constants a and b also hold.
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Mean and Variance of (Linear) Functions

@ For a function of Xy,---, Xk, g (Xg,-+-, Xk ), its mean, E [g (Xq,---, Xk )], is defined
as

Elg0 - X)] = [ @0 )T b, ) da .
e IfW =3K aX;, then
K
pw =E W] =% au,
i=1

and
2 K2 2 K-1
oy =Var (W) = zi=1 a’ o —|—22i:1 Zj>i a;a;ojj,
which reduces to 1 ; 62 if o =0 for all i #j and a; = 1 for all i.
@ Actually, all the results on mean and variance for discrete r.v.'s apply to continuous

r.v.s.
@ The covariance and correlation between two continuous r.v's (X,Y ) are similarly
defined as
Cov(X,Y) = oxy =E[(X—ux)(Y—uy)|=EXY]-puxuy,
oxy
X, Y) = = .
Corr (X,Y) PXY = 5 oy
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Linear Combinations of Normal Random Variables

@ If X and Y are jointly normally distributed random variables [see the next slide for
its pdf], then the linear combination, W = aX +bY, is also normally distributed.

@ Example: Two tasks must be performed by the same worker,

X = minutes to complete task 1, uy = 20,0x =5,
Y = minutes to complete task 2, uy = 30,0y =8,
X and Y are normally distributed and independent.8

@ What is the mean and standard deviation of the time to complete both tasks?
oW =X+Y,80 uy =y +py =20+30=50.
@ Since X and Y are independent, Cov (X,Y) =0, thus

0§ = 0% +05 +2Cov (X,Y) =5%+8%2 =289, and oy = /89 =9.434.

@ Because a linear combination of jointly normal r.v.'s is also normally distributed,
and a normal distribution is determined completely by its mean and variance, we
have W ~ N (50, 89).

8This assumption may not be valid since time cannot be negative while normal distributions can take
negative values, and X and Y may not be independent because the same worker finishes both tasks; anyway,
we hope this assumption is approximately satisfied.
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(**) Bivariate Normal Distribution

@ The bivariate normal pdf is

1
fx,x, (X1, X2| [, M2, 01,02,p) = 276109 /1p?

—u\2 —u\2 _ _
op{ ot | (M) () - zplotyensal] |,

where i,y €R, 61,02 >0,and p € (—1,1).

Figure: Two Bivariate Normal Density Functions: left: p = 0; right: p = 0.7

@ Corr (Xq,X2) = p; when p =0, fx, x, (X1,X2) = fx, (X111, 61) fx, (X2|tt2,02), so no
correlation implies independence for the bivariate normal distribution!
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