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Plan of This Lecture

Nonparametric tests are appropriate when the data used are qualitative data
(nominal or ordinal data) or numerical data without normality assumption.

Goodness-of-Fit Tests: Specified Probabilities

Goodness-of-Fit Tests: Population Parameters Unknown

Contingency Tables
- The above three sections are about good-of-fit tests, and the following three are
nonparametric counterparts of those in Lectures 6 and 8.
- Different from the usual test, we hope the null rather than the alternative is
correct, so we view accepting the null as an indication that using the null
distribution is not unreasonable, without interpreting it as sufficient proof that the
null distribution is the truth.

Nonparametric Tests for Paired or Matched Samples

Nonparametric Tests for Independent Random Samples

The Kruskal-Wallis Test (one-way ANOVA)

Spearman Rank Correlation
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Goodness-of-Fit Tests: Specified Probabilities

Goodness-of-Fit Tests: Specified Probabilities

Ping Yu (HKU) Nonparametric Statistics 3 / 45



Goodness-of-Fit Tests: Specified Probabilities

Testing Procedure

This test is also called (Karl) Pearson’s chi-squared test.
Assume the population can be partitioned into K categories.
H0 : P (Category k) = pk , k = 1, � � � ,K , where pk is known and ∑K

k=1 pk = 1.

Test Statistic: the chi-square r.v.

χ
2 =

K

∑
i=1

(Oi �Ei )
2

Ei

measures the goodness-of-fit of sample numbers observed to what would be
expected under H0, and follows the χ2

K�1 distribution under H0 when

min
�
fEigK

i=1

�
� 5.

Decision Rule: reject H0 if χ2 > χ2
K�1,α .
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Goodness-of-Fit Tests: Specified Probabilities

Why the Test Statistic Takes This Form?

Because
p

n (p̂i �pi )! N (0,pi (1�pi )), the test statistic should be

K�1

∑
i=1

 p
n (p̂i �pi )p
pi (1�pi )

!2

=
K�1

∑
i=1

n (p̂i �pi )
2

pi (1�pi )
=

K�1

∑
i=1

(Oi �Ei )
2

npi (1�pi )
,

which follows the χ2
K�1 distribution under H0 as n gets large, where the upper limit

of summation is K �1 because p̂K is implied by fp̂igK�1
i=1 .

Take K = 2. We will show this form of test statistic will reduce to the χ2 r.v.:

(O1�E1)
2

np1 (1�p1)
=

(O1�E1)
2 (1�p1)

np1 (1�p1)
+
(O1�E1)

2 p1

np1 (1�p1)

=
(O1�E1)

2

E1
+
(O2�E2)

2

E2
,

where note that O1�E1 = n�O2� (n�E2) = E2�O2.
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Goodness-of-Fit Tests: Specified Probabilities

Example 14.2: Is There a Change in Customer Preferences?

H0 : pA = 0.30, pB = 0.50, pC = 0.15 and pD = 0.05, where the four probabilities
are derived from historical preference data.

n = 200, so EA = npA = 60, etc.

The p-value is between 0.01 and 0.025, so we reject the null at level 5%.
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Goodness-of-Fit Tests: Population Parameters Unknown

Goodness-of-Fit Tests: Population Parameters
Unknown
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Goodness-of-Fit Tests: Population Parameters Unknown

Testing Procedure

H0 : the population follows a distribution (e.g., the binomial, the Poisson, or the
normal distributions) with unknown parameters.

Test Statistic:

χ
2 =

K

∑
i=1

(Oi �Ei )
2

Ei
,

which follows the χ2
K�m�1 distribution under H0, where Ei is the expected number

of category i under H0 with the unknown parameter estimated, and m is the
number of unknown parameters.

Decision Rule: reject H0 if χ2 > χ2
K�m�1,α .
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Goodness-of-Fit Tests: Population Parameters Unknown

A Test for the Poisson Distribution

One application of this test is to resolve disputed authorship by counting the
numbers of occurrences of particular words in blocks of text and then comparing
these numbers with those whose authorship is known, where the numbers of
occurrences are assumed to follow a Poisson distribution.

Example 14.4: Federalist Papers

We want to test whether the population distribution of occurrences of the word
may is Poisson.
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Goodness-of-Fit Tests: Population Parameters Unknown

continue

Recall that the pmf of Poisson distribution is p (x jλ ) = e�λ λ
x

x ! ,x = 0,1,2, � � � .
Since λ is unknown, we estimate it by the sample mean λ̂ = 0.66, where recall
that the mean of a Poisson distribution is λ .

Then p (0) ,p (1) ,p (2) and p (> 2) = 1�∑2
i=0 p(i) can be estimated by p

�
0jλ̂
�

,

p
�

1jλ̂
�

, p
�

2jλ̂
�

and p
�
> 2jλ̂

�
= 1�∑2

i=0 p(i jλ̂ ), and the chi-square r.v. can be

constructed, where Ei ’s need not be rounded to integers.

χ2 = 16.08> 13.816= χ2
4�1�1,0.001, so the null is overwhelmingly rejected.

Ping Yu (HKU) Nonparametric Statistics 10 / 45



Goodness-of-Fit Tests: Population Parameters Unknown

Jarque-Bera Test for Normality

The normality assumption is very important for the tests in Lectures 6 and 8.

We can use normal probability plots in Lecture 4 to check for evidence of
nonnormality (by visually determining if the dots were "close" to the straight line).

Here we provide a more rigorous procedure, the Jarque-Bera test [figures here],
which is easy to carry out and likely to be more powerful.

Test Statistic:

JB= n

"
skewness2

6
+
(kurtosis�3)2

24

#
,

which follows the χ2
2 distribution under H0 as n gets large, where skewness and

kurtosis are sample skewness and sample kurtosis, respectively.

Decision Rule: reject H0 if χ2 > χ2
2,α .
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Goodness-of-Fit Tests: Population Parameters Unknown

History of the Jarque-Bera Test

Carlos M. Jarque (1954-), Mexican Anil K. Bera (1955-), UIUC
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Goodness-of-Fit Tests: Population Parameters Unknown

(**) Other Tests for Normality

Besides the Jarque-Bera test, there are many other tests for normality, such as the
Kolmogorov-Smirnov test, Anderson-Darling test, Rya-Joiner test, Shapiro-Wilk
test, and the Lilliefors test.
For example, the Kolmogorov-Smirnov test is based on the empirical distribution
function Fn of fxign

i=1, which is defined as

Fn (x) =
1
n
# (xi � x) =

1
n

n

∑
i=1

1 (xi � x) .[figures here]

By the LLN, Fn (x) converges to E [1 (xi � x)] = F (x) = Φ (x) under H0 as n! ∞.
The Kolmogorov-Smirnov statistic is the maximal distance between Fn and Φ,

KS = sup
x2R

jFn (x)�Φ (x)j .

We reject the null when KS is large; it is good to know that the distribution of KS is
the same for every continuous null distribution, e.g. Φ here, and is available in R.
For large n, under H0,

lim
n!∞

P
�

sup
x2R

jFn (x)�Φ (x)j> z/
p

n
�
= 2

∞

∑
j=1
(�1)j+1 e�j2z2

,

which can be used to obtain the critical value or p-value.
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Goodness-of-Fit Tests: Population Parameters Unknown
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Figure: Empirical Distribution Functions: 10 samples from N(0,1) with sample size n = 50
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Goodness-of-Fit Tests: Population Parameters Unknown

continue

As in the last section, if the null distribution of F depends on some unknown
parameters, e.g., µ and σ2 in the normal distribution, we can extend the
Kolmogorov-Smirnov statistic to

KS� = sup
x2R

����Fn (x)�Φ
�

x� µ̂

σ̂

�����
for an estimator of

�
µ̂, σ̂2

�
for
�

µ,σ2
�

, e.g., µ̂ = x̄ , and σ̂
2 = s2.

The null distribution of KS� is different from that of KS, depending on the null

distribution, the estimator
�

µ̂, σ̂2
�

used, and even on the true
�

µ,σ2
�

.

The null distribution of KS� has been tabulated for a few special cases including
the normality case, but it is more convenient to simulate the critical value or
p-value.

Specifically, we simulate n samples from N
�

µ̂, σ̂2
�

, and then construct Fn (x) and

KS�; such a procedure can be repeated for (a large) B times to approximate the
null distribution of KS�.
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Contingency Tables

Contingency Tables
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Contingency Tables

Testing Association in Contingency Tables1

H0: there is no association between characteristics A and B, or A an B are
independent.

Under H0, the distribution of Ri among c columns should be same as the total
number n among the c columns, so the estimated expected number of
observations at cell (i, j) is Eij = Ri

Ci
n for i = 1, � � � , r and j = 1, � � � ,c, where Ci

n is
the proportion of column i in n.

1The term contingency table was first used by Karl Pearson.
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Contingency Tables

continue

Test Statistic:

χ
2 =

r

∑
i=1

c

∑
j=1

�
Oij �Eij

�2
Eij

,

which follows the χ2
(r�1)(c�1) distribution under H0 if no more than 20% of Eij is

less than 5,2 where

Eij =
RiCi

n
for i = 1, � � � , r and j = 1, � � � ,c

are the estimated expected numbers in the cross-classification.
- The df of χ2 should be rc�1� (r �1)� (c�1) = (r �1)(c�1), where
(r �1)+ (c�1) parameters are implicitly estimated.

Decision Rule: reject H0 if χ2 > χ2
(r�1)(c�1),α .

2Sometimes, adjacent classes can be combined to meet this assumption.
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Contingency Tables

Example 14.6: Market Differentiation

Consumers are exposed to different products (r = 3) and asked what comes to
their mind (c = 2) when they see or hear of this product.

χ2 = (256�233.5)2

233.5 + � � �= 26.8> χ2
2,0.001 = 13.816, so we can conclude that the

market is indeed differentiated.
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Nonparametric Tests for Paired or Matched Samples

Nonparametric Tests for Paired or Matched Samples
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Nonparametric Tests for Paired or Matched Samples

Sign Test

Data: f(xi ,yi )gn
i=1 with xi = yi discarded or fsign(di )gn

i=1, where xi and yi may be
nominal, and di = xi �yi , e.g., preferences of a product, and di is only known to be
positive or negative.

H0 : p = 0.5, where p = P (sign (D) = +) = P (X > Y ), where D, X and Y are the
r.v.’s generating di , xi and yi , respectively.

Test Statistic:

S = the number of pairs wih a positive difference,

which follows the Binomial(n,0.5) distribution under H0.

Decision Rule: let B �Binomial(n,0.5) .
- If H1 : p > 0.5, reject H0 if the p-value = P (B � S)< α.
- If H1 : p < 0.5, reject H0 if the p-value = P (B � S)< α.
- If H1 : p 6= 0.5, let S =max (S+,S�), and reject H0 if the p-value =
2P (B � S)< α, where S� =# (sign (di ) = �).
This test can also be used to test whether the median (not mean) of a r.v. X (i.e.,
one sample) is equal to a specified value µ, where xi �µ plays the role of di .
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Nonparametric Tests for Paired or Matched Samples

Example 14.8: Product Preference

A pizza store wants to know whether a new pizza sauce should be adopted. Eight
students are asked to rate the two sauces on a scale of 1 to 10 (a higher number
indicating a greater liking).

H1: p < 0.5. The p-value= P (B � 2) = 0.227, where B �Binomial(8�1,0.5). So
a change in the pizza sauce is not recommended.

Ping Yu (HKU) Nonparametric Statistics 22 / 45



Nonparametric Tests for Paired or Matched Samples

Wilcoxon Signed Rank Test

The sign test uses only a very limited amount of information, namely, which
product is preferred, but ignores the strengths of the preferences, so may not be
powerful when n is small.

The Wilcoxon signed rank test [figures here] uses also the magnitude of the
differences (ranks) besides their signs (so di is at least ordinal).

Assumption: di is symmetrically distributed.

H0: median(D) = 0.3

Test Statistic:

W =
n

∑
i=1

sign (di ) ri = T+�T�,

where as in the sign test, di ’s with di = 0 are discarded, ri is the rank of jdi j when
jdi j, i = 1, � � � ,n, are sorted in ascending order, with ties assigned the average of
the ranks they occupy, T+ = ∑n

i=1 ri1(di > 0) and T� = ∑n
i=1 ri1(di < 0).

- An equivalent test statistic in the textbook is T =min (T+,T�).

3When the matched pair xi and yi are drawn from populations having the same distribution, then di is
symmetrically distributed with center at 0, so this test can also be used to test whether xi and yi are drawn from
the same distribution.
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Nonparametric Tests for Paired or Matched Samples

History of Wilcoxon Tests

Frank Wilcoxon (1892-1965), Irish American4

He contributed two tests, the Wilcoxon signed-rank test and the Wilcoxon
rank-sum test, which are nonparametric alternatives to the paired and unpaired
Student’s t-tests, respectively.

4He is also a chemist besides a statistician.
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Nonparametric Tests for Paired or Matched Samples

Example 14.9: Product Preference

Decision Rule: T < cn,α , where the critical value depends on n and α is available
from Appendix Table 10.
- An advantage of T over W is that the decision rule of W depends on H1 being
one-sided or two-sided but T does not [if two sided, α ! α/2].

T = 3< 4= c7,0.05 (G is discarded, so n = 7; implicitly, H1: median(D)< 0), so we
reject the null and draw a different conclusion from the sign test that the new
sauce should be adopted.
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Nonparametric Tests for Paired or Matched Samples

Normal Approximation to the Sign Test

When n > 20,

Z =
S��µ

σ
=

S��0.5n
0.5
p

n

approximately follows N (0,1), where under H0, µ = np = 0.5n,
σ =

p
np (1�p) = 0.5

p
n, and S� is the test statistic corrected for continuity:

if H1 : p > 0.5, then S� = S�0.5;

if H1 : p < 0.5, then S� = S+0.5;

if H1 : p 6= 0.5, then S� = S+0.5 if S < µ or S� = S�0.5 if S > µ.

The continuity correct factor in S� compensates for estimating discrete data with a
continuous distribution and provide a closer approximation to the p-value.
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Nonparametric Tests for Paired or Matched Samples

Normal Approximation to the Wilcoxon Signed Rank Test

When n > 20,

Z =
T �µT

σT

approximately follows N (0,1), where under H0,

µT = E [T ] =
n (n+1)

4
,

σ
2
T = Var (T ) =

n (n+1) (2n+1)
24

.

- It can be shown that µW = 0 and σ2
W =

n(n+1)(2n+1)
6 under H0, and the

corresponding normal approximation for W can be applied.

Decision Rule:
- If H1 is one-sided, no matter median(D)> 0 or < 0, reject H0 if Z <�zα .
- If H1 is two-sided, i.e., median(D) 6= 0, reject H0 if Z <�zα/2.
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Nonparametric Tests for Independent Random Samples

Nonparametric Tests for Independent Random
Samples
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Nonparametric Tests for Independent Random Samples

Mann-Whitney U Test

The Mann-Whitney test [figures here] is a nonparametric test based on two
independent samples fxign1

i=1 and
�

yj
	n2

j=1.

H0: X and Y have the same distribution vs. H1: X and Y do not have the same
distribution, where X and Y are the population r.v.’s generating xi and yj .
- When the scale and shape of the distributions of X and Y are the same, H0
reduces to test whether the medians of X and Y are the same or not, which

corresponds to µx �µy = 0 in Lecture 6 where xi � N
�

µx ,σ
2
�

, yj � N
�

µy ,σ
2
�

.

The basic idea of the Mann-Whitney test is that under H0, P (X < Y ) = P (Y < X ).
So define

S (X ,Y ) =

8<:
1,

1/2,
0,

if Y < X ,
if Y = X ,
if Y > X ,

and the test statistic is

U1 =
n1

∑
i=1

n2

∑
i=1

S
�
xi ,yj

�
,

which is a U-statistic, so the name "U test".
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Nonparametric Tests for Independent Random Samples

History of the Mann-Whitney Test

Henry B. Mann (1905-2000), OSU Donald R. Whitney (1915-2007), OSU5

5He was a student of Mann at OSU.
Ping Yu (HKU) Nonparametric Statistics 30 / 45



Nonparametric Tests for Independent Random Samples

Two Alternative Forms of the Mann-Whitney Test

The form in the textbook: U = n1n2+
n1(n1+1)

2 �R1, where we pool the two
samples and rank the observations in ascending order with ties assigned the
average of the next available ranks (or adjacent ranks), and R1 is the sum of the
ranks of fxign1

i=1.

- It can be shown that U1 = R1�
n1(n1+1)

2 , where n1(n1+1)
2 is R1 in the worst

scenario.
- We can parallelly define U2 = R2�

n2(n2+1)
2 , where R2 is the sum of the ranks of�

yj
	n2

j=1.

- Because R1+R2 = ∑n
i=1 i = n(n+1)

2 , where n = n1+n2, we have
U1+U2 = n1n2, so U = U2.
- It can be shown that for both U1 and U2, the mean is µU =

n1n2
2 (> 0) and the

variance is σ2
U =

n1n2(n+1)
12 , so

z =
U�µU

σU

is approximately N (0,1) when min (n1,n2)� 10, and the p-value is P (jZ j> jzj)
with Z � N (0,1).
- In practice, the smaller of U1 and U2 is used to compare with the critical value.
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Nonparametric Tests for Independent Random Samples

continue

Wilcoxon Rank Sum Test: T = R1.
- From the mean and variance of U, we can see

µT =
n1 (n1+1)

2
+

n1n2

2
=

n1 (n+1)
2

,

σ
2
T = σ

2
U =

n1n2 (n+1)
12

;

therefore,

z =
U�µT

σT

is approximately N (0,1) when min (n1,n2)� 10.
- The formulae of σ2

T and σ2
U need to be corrected when there are a large number

of ties.
(*) Denote ri , i = 1, � � � ,n1, as the ranks of xi , then R1 = ∑n1

i=1 ri . Under H0,
x1, � � � ,xn1 ,y1, � � � ,yn2 can be viewed as a sample of size n1+n2 from a fixed
(unknown) distribution. The ranks r1, � � � , rn1 , can then be viewed as an arbitrary
selection of n1 numbers out of the numbers f1,2, � � � ,n1+n2g. The distribution of
R1 under H0 is therefore independent of this unknown distribution, and can be
determined using combinatorial arguments. This distribution has been tabulated
and is available through R.
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The Kruskal-Wallis Test

The Kruskal-Wallis Test

(Section 15.3)

Ping Yu (HKU) Nonparametric Statistics 33 / 45



The Kruskal-Wallis Test

The Kruskal-Wallis H Test

This Kruskal-Wallis H test [figure here] is a nonparametric counterpart of the
one-way ANOVA where normality is not assumed; it is also an extension of the
Mann-Whitney test to the K > 2 case.
The null is that all subgroups have the same distribution which will reduce to the
same median when all other aspects of the K distributions except the central
location are the same.
Like the Mann-Whitney test, we pool all samples and rank them in ascending
order with the rank of xij being rij , and define

Ri =
ni

∑
j=1

rij , i = 1, � � � ,K ,

as the sum of the ranks for subgroup i .
Also define

r̄i =
Ri

ni
and

r =
1
n

K

∑
i=1

ni

∑
j=1

rij ,

which are the counterparts of x̄i and x .
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The Kruskal-Wallis Test

History of the Kruskal-Wallis Test

William H. Kruskal (1919-2005), Chicago Wilson A. Wallis (1912-1998), Rochester
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The Kruskal-Wallis Test

continue

The test statistic is

H = (n�1)
∑K

i=1 ni

�
r̄i � r

�2

∑K
i=1 ∑ni

j=1

�
rij � r

�2 := (n�1)
SSG
SST

.

- Since SST = SSG+SSW , H is an increasing function of SSG and a large H will
induce rejection of H0,

When there are no ties, it is not hard to show that the denominator of H is equal to
(n�1)n(n+1)

2 and r = n+1
2 , which implies the W on Page 663:

H =
12

n (n+1)

K

∑
i=1

R2
i

ni
�3 (n+1) .

Under H0, SST
n�1 ! σ2 and SSG

σ2 ! χ2
K�1, where σ2 is the variance of rij , so H

approximately follow the χ2
K�1 distribution. As a result, the decision rule is to reject

H0 if H > χ2
K�1,α .

(**) The counterpart of MSD is Dunn’s test which can be used to detect which of
the sample pairs are different.
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The Kruskal-Wallis Test

Example Continued

R1 = 32,R2 = 101.5 and R3 = 76.5, so

H =
12

20�21

"
322

7
+

101.52

7
+

76.52

6

#
�3�21= 11.10.

Since χ2
2,0.01 = 9.210, we reject H0 at the 1% level, same conclusion as the

one-way ANOVA.
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Spearman Rank Correlation

Spearman Rank Correlation
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Spearman Rank Correlation

Testing No Correlation Between X and Y [Section 11.7]

Assumption: X and Y are jointly normally distributed, i.e.,�
X
Y

�
� N (µ,Σ) ,

where

µ =

�
µX
µY

�
and Σ =

�
σ2

X ρσX σY
ρσX σY σ2

Y

�
.

H0 : ρ = 0.

Test Statistic:

t =
r
p

n�2p
1� r2

,

which follows the tn�2 distribution under H0.

If H1 : ρ > 0, then the decision rule: reject H0 if t > tn�2,α .

If H1 : ρ < 0, then the decision rule: reject H0 if t < tn�2,α .

If H1 : ρ 6= 0, then the decision rule: reject H0 if jt j> tn�2,α/2.

Rule of Thumb: set tn�2,α/2 = 2, then jt j> tn�2,α/2 is approximately jr j> 2p
n

.
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Spearman Rank Correlation

Spearman Rank Correlation

The above test suffers from two problems: (i) it is a parametric test depending on
the normality assumption; (ii) it is based on r so can be seriously affected by odd
extreme observations.

The test based on the Spearman rank correlation coefficient [figures here] can
avoid these two problems.

For a random sample f(xi ,yi )gn
i=1, define the ranks of fxign

i=1 as frxign
i=1 and

fyign
i=1 as

�
ryi
	n

i=1. Then the Spearman rank correlation coefficient rs is the

sample correlation between frxign
i=1 and

�
ryi
	n

i=1. If neither frxign
i=1 nor

�
ryi
	n

i=1
contain tied ranks, then

rs = 1�
6∑n

i=1 d2
i

n
�
n2�1

� ,
where di = rxi � ryi .

It assesses how well the relationship between two random variables can be
described using a monotone function. [figures here]
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Spearman Rank Correlation

History of the Spearman Rank Correlation

Charles E. Spearman (1863-1945), UCL6

6He is a pioneer of factor analysis. His statistical work was not appreciated by his University College
colleague Karl Pearson and there was a long feud between them.
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Spearman Rank Correlation

Figure: A Spearman correlation of 1 results when the two variables being compared are
monotonically related, even if their relationship is not linear.
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Spearman Rank Correlation

When the data are roughly elliptically
distributed and there are no prominent
outliers, the Spearman correlation and
Pearson correlation give similar values.

The Spearman correlation is less
sensitive than the Pearson correlation
to strong outliers that are in the tails

of both samples.

The robustness of the Spearman correlation to outliers in the right figure is
because it limits the outlier to the value of its rank.

Ping Yu (HKU) Nonparametric Statistics 43 / 45



Spearman Rank Correlation

Testing No Association Between X and Y

If the population Spearman rank correlation coefficient is denoted as ρs, then

H0 : ρs = 0.

Decision Rule:
- If H1 : ρs > 0, reject H0 if rs > rs,α .
- If H1 : ρs < 0, reject H0 if rs < rs,α .
- If H1 : ρs 6= 0, reject H0 if jrsj> rs,α/2.

The critical values can be found from Appendix Table 11.
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Summary: Correspondence Between Parametric Tests and
Nonparametric Tests
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