Lecture 08. Analysis of Variance (Chapter 15)

Ping Yu

HKU Business School The University of Hong Kong

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Comparison of Several Population Means
- One-Way ANOVA
- Two-Way ANOVA: One Observation per Cell, Randomized Blocks
- Two-Way ANOVA: More Than One Observation per Cell

・ロト ・回ト ・ヨト ・ヨト … ヨ

Comparison of Several Population Means

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Comparison of Several Population Means

- In Lecture 6, we tested whether two means are equal; sometimes we need to test whether more than two means are equal.
- In the two-level case, say, we want to compare the fuel consumption for two types of cars, *A*-cars and *B*-cars, we can either let each driver drive both types of cars (matched pair) or randomly assign drivers to drive each type of cars (independent samples).
- If there are more than two types of cars, how to test whether their mean fuel consumptions are equal?

 Table 15.1
 Fuel-Consumption Figures from Three Independent Random Samples, in

 Miles per Gallon
 Fuel-Consumption Figures from Three Independent Random Samples, in

	A-Cars	B-CARS	C-Cars
	22.2	24.6	22.7
	19.9	23.1	21.9
	20.3	22.0	23.2
	21.4	23.5	24.1
	21.2	23.6	22.1
	21.0	22.1	23.4
	20.3	23.5	_
Sums	146.3	162.4	137.4

Copyright 02013 Pearson Education, publishing as Prentice Hall

continue

• The mean fuel consumptions for the three types of cars are 20.9, 23.2 and 22.9, respectively, which are different, but do such differences arise by chance or not?

Figure: Two Sets of Sample Fuel-Consumption Data on Three Types of Cars

• Although the sample means in part (a) and part (b) are equal, part (a) suggests different population means while part (b) suggests the same population mean. The key point is the variability <u>around</u> the sample means vs. the variability <u>among</u> the sample means. If the former is small compared with the latter, then we doubt the population means are equal.

History of ANOVA

Ronald A. Fisher (1890-1962), UCL

E

ヘロト 人間 とくほ とくほとう

One-Way ANOVA

æ

ヘロア 人間 アメヨア 人間 アー

The Setup of One-Way ANOVA

Population								
1	2		K					
<i>x</i> ₁₁	<i>x</i> ₂₁	•••	<i>х</i> _{К1}					
<i>x</i> ₁₂	x ₂₂	•••	х _{К2}					
÷	÷	·	÷					
x _{1n1}	x _{2n2}		x _{Knĸ}					

Table 15.2: Independent (not paired) Random Samples from K Populations

- In the K populations of Table 15.2, we assume each population has <u>the same</u> <u>variance</u>. [so an extension of "Independent Samples: Two Normal Means, Unknown Equal Population Variances" in Lecture 7]
- $H_0: \mu_1 = \mu_2 = \cdots = \mu_K$ vs. $H_1: \mu_k \neq \mu_I$ for at least one pair (k, I), where μ_i is the population mean of population *i*.
- $\bar{x}_i = \frac{\sum_{j=1}^{n_i} x_{ij}}{n_i}$ is the sample mean of group *i*.
- $\overline{\overline{x}} = \frac{\sum_{i=1}^{K} \sum_{j=1}^{n_i} x_{ij}}{n} = \frac{\sum_{i=1}^{K} n_i \bar{x}_i}{n} = \sum_{i=1}^{K} w_i \bar{x}_i$ is the common mean of all groups, taking the form of weighted average of \overline{x}_i , where $n = \sum_{i=1}^{K} n_i$ is the total number of observations, and $w_i = \frac{n_i}{n}$ satisfies $w_i > 0$ and $\sum_{i=1}^{K} w_i = 1$.
 - In the example above, $n_1 = n_2 = 7$, $n_3 = 6$, n = 20, $K_1 = 3$, and $\overline{x} = 22.3$.

One-Way ANOVA

Sum of Squares

- From the example above, an appropriate test should be based on assessment of two types of variabilities: within-groups variability and between-groups variability.
- From Lecture 1, we know variability is well measured by the sum of squared deviations of the observations about the sample mean.
- As a result, we define the sum of squares within group *i* as

$$SS_i = \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2$$
,

the sum of squares within (all K) groups as

$$SSW = \sum_{i=1}^{K} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2 = \sum_{i=1}^{K} SS_i,$$

the sum of squares between groups as

$$SSG = \sum_{i=1}^{K} \sum_{j=1}^{n_i} \left(\bar{x}_i - \overline{\bar{x}} \right)^2 = \sum_{i=1}^{K} n_i \left(\bar{x}_i - \overline{\bar{x}} \right)^2,$$

[recall the measures of grouped data in Lecture 1]

and the total sum of squares as

$$SST = \sum_{i=1}^{K} \sum_{j=1}^{n_i} \left(x_{ij} - \overline{\overline{x}} \right)^2$$

where in SSG, a weight n_i is imposed on group *i*, i.e., larger groups are given larger weights.

Sum of Squares Decomposition

It turns out that

SST = SSW + SSG.

Copyright @2013 Pearson Education, publishing as Prentice Hall

Figure: Sum of Squares Decomposition for One-Way ANOVA

One-Way ANOVA

Justification of Sum of Squares Decomposition

Note that

$$\begin{aligned} SST &= \sum_{i=1}^{K} \sum_{j=1}^{n_i} \left(x_{ij} - \overline{x} \right)^2 \\ &= \sum_{i=1}^{K} \sum_{j=1}^{n_i} \left(x_{ij} - \overline{x}_i + \overline{x}_i - \overline{\overline{x}} \right)^2 \\ &= \sum_{i=1}^{K} \sum_{j=1}^{n_i} \left(x_{ij} - \overline{x}_i \right)^2 + \sum_{i=1}^{K} \sum_{j=1}^{n_i} \left(\overline{x}_i - \overline{\overline{x}} \right)^2 + 2 \sum_{i=1}^{K} \sum_{j=1}^{n_i} \left(x_{ij} - \overline{x}_i \right) \left(\overline{x}_i - \overline{\overline{x}} \right) \\ &= \sum_{i=1}^{K} \sum_{j=1}^{n_i} \left(x_{ij} - \overline{x}_i \right)^2 + \sum_{i=1}^{K} \sum_{j=1}^{n_i} \left(\overline{x}_i - \overline{\overline{x}} \right)^2 + 2 \sum_{i=1}^{K} \left(\overline{x}_i - \overline{\overline{x}} \right) \sum_{j=1}^{n_i} \left(x_{ij} - \overline{x}_i \right) \\ &= \sum_{i=1}^{K} \sum_{j=1}^{n_i} \left(x_{ij} - \overline{x}_i \right)^2 + \sum_{i=1}^{K} n_i \left(\overline{x}_i - \overline{\overline{x}} \right)^2 \\ &= SSW + SSG, \end{aligned}$$

where $\sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i) = \sum_{j=1}^{n_i} x_{ij} - \sum_{j=1}^{n_i} \bar{x}_i = n_i \bar{x}_i - n_i \bar{x}_i = 0$ in the second-to-last equality.

One-Way ANOVA

Testing Procedure

- The basic idea is that under *H*₀, both SSW and SSG can be used to estimate the common population variance.
- Like $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \bar{x})^2$ is an unbiased estimator of σ^2 , we need to adjust the dfs for SSW and SSG. The df of SSW is n K because there are *n* summands and *K* estimated parameters (μ_1, \dots, μ_K) , and the df of SSW is K 1 because there are *K* summands and one estimate parameter (the common μ).
- Test Statistic:

$$f = \frac{MSG}{MSW} := \frac{SSG/(K-1)}{SSW/(n-K)},$$

which follows the $F_{K-1,n-K}$ distribution under H_0 and (i) the population variances are equal; (ii) the population distributions are normal. (i.e., $x_{ij} \sim N(\mu_i, \sigma^2)$) - MSW = SSW / (n-K) is called the within-groups mean square and is an

unbiased estimator of σ^2 regardless whether H_0 holds or not;

- MSG = SSG/(K-1) is called the between-groups mean square and is an unbiased estimator of σ^2 only under H_0 .

- (**) see Appendices 2 and 3 of Chapter 15 for detailed analyses.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

continue

• Why? Recall that $\frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{n-1}$ from Lecture 5. Similarly,

$$\frac{(K-1)MSG}{\sigma^2} \sim \chi^2_{K-1},$$
$$\frac{(n-K)MSW}{\sigma^2} \sim \chi^2_{n-K},$$

and these two chi-square distributions are independent [proof not required]. From the definition of the F distribution, we have

$$\frac{\frac{(K-1)MSG}{\sigma^2}/(K-1)}{\frac{(n-K)MSW}{\sigma^2}/(n-K)} = \frac{MSG}{MSW} \sim F_{K-1,n-K}.$$

- Decision Rule: reject H_0 if $f > F_{K-1,n-K,\alpha}$. [why? Under H_1 , $E[MSG] > \sigma^2$]
- The *p*-value is P(F > f), where $F \sim F_{K-1,n-K}$.
- Remark: the *F*-test is based on quotients of two sum of squares, also called "variances"; this explains the name "analysis of variance".

Example Continued

Table 15.3 General Format of One-Way Analysis of Variance Table

• The test can be conveniently summarized in a one-way anova table:

F	Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F Ratio
	Between groups	SSG	K - 1	$MSG = \frac{SSG}{K - 1}$	$\frac{MSG}{MSW}$
	Within groups	SSW	n - K	$MSW = \frac{SSW}{n - K}$	
	Total	SST	n - 1		

Copyright 02013 Pearson Education, publishing as Prentice Hall

• In the example above, the one-way anova table is as follows:

Table 15.4 One-Way Analysis of Variance Table for Fuel-Consumption Data

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F Ratio
Between groups	21.55	2	10.78	15.05
Within groups	12.18	17	0.7165	
Total	33.73	19		

Copyright 02013 Pearson Education, publishing as Prentice Hall

• Because $F_{2,17,0.01} = 6.112$ and 15.05 > 6.112, we reject H_0 at the 1% level.

Ping Yu (HKU)

One-Way ANOVA

(*) Multiple Comparisons Between Subgroup Means

- If we reject H₀, a natural question followed is that which subgroup means are different from others. Specifically, we want a minimal interval that could be used to decide if any two subgroup means are different in a statistical sense.
- In the two-level case, we know when $|\bar{x} \bar{y}|$ is larger than a critical value, called a minimum significant difference (MSD), we can conclude that $\mu_x \neq \mu_y$ in a statistical sense, e.g., if $\sigma_x^2 = \sigma_y^2$, then

$$MSD = t_{n-2,\frac{\alpha}{2}} s_p \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}.$$
 (1)

- This MSD does not work for the K > 2 case because there are C^K₂ comparisons of sample means such that the probability of error α would no longer hold.
- Intuitively, the correct MSD should be increasing in K, i.e., a larger MSD is required than the two-level case when K > 2.

• We use a procedure proposed by John Tukey [figure here] to deal with this multiple-comparisons question:

$$MSD(K) = Q \frac{s_p}{\sqrt{n}},$$

where the factor Q depends on K, n - K (df of SSW, like n - 2 in (1)), and α , i.e., $Q = Q_{K,n-K,\alpha}$, and is listed in Appendix Table 13, and s_p is the pooled standard deviation, i.e., $s_p = \sqrt{MSW}$.

- *Q* is also decreasing in n - K and α (like $t_{n-2,\alpha/2}$ is decreasing in n-2 and α) besides increasing in *K*.

• The Tukey procedure is often referred to as the Q method.

・ロト ・回ト ・ヨト ・ヨト … ヨ

History of MSD(K) with K > 2

John W. Tukey (1915-2000), Princeton¹

Henry Scheffé (1907-1977), UC-Berkeley

¹Recall that the box-and-whisker plot in Lecture 1 was also invented by him.

э

(**) More Procedures for MSD

• Another MSD for pairwise differences of means is based on the Bonferroni Inequality, where the MSD for groups *k* and *l* is

$$MSD_{kl} = t_{n-K, \frac{\alpha}{K(K-1)}} s_p \sqrt{\frac{1}{n_k} + \frac{1}{n_l}}$$
 with $s_p = \sqrt{MSW}$.

- When K = 2, this reduces to (1).
- If we are interested in the <u>simultaneous</u> CIs on <u>all contrasts</u> $\sum_{i=1}^{K} a_i \mu_i$ with $\sum_{i=1}^{K} a_i = 0$ (pairwise differences are special cases with (a_1, a_2, \dots, a_K) taking the form $(1, -1, 0, \dots, 0)$), then Scheffé's [figure here] S method can be applied, where the CI for the contrast $\sum_{i=1}^{K} a_i \mu_i$ is

$$\left[\sum_{i=1}^{K} a_i \bar{x}_i - S \cdot s_p \sqrt{\sum_{i=1}^{K} \frac{a_i^2}{n_i}}, \sum_{i=1}^{K} a_i \bar{x}_i + S \cdot s_p \sqrt{\sum_{i=1}^{K} \frac{a_i^2}{n_i}}\right]$$

with $S = \sqrt{(K-1) F_{K-1,n-K,\alpha}} \ge t_{n-K,\alpha/2}$ (equality achieved at K = 2).

 The Scheffé procedure would be preferred if a larger number of contrasts are to be examined. If the number of contrasts is small, the Bonferroni bound will almost certainly be smaller.

Population Model for One-Way ANOVA

 Let X_{ij} be the r.v. corresponding to the *j*th observation from the *i*th population, and decompose X_{ij} as

$$X_{ij} = \mu_i + \varepsilon_{ij}$$
,

where the error $\varepsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$.

• Let μ be the overall (or grand) mean of the *K* combined populations, and $G_i := \mu_i - \mu$ be the deviation from the overall mean, called the main effect; then

$$X_{ij} = \mu + G_i + \varepsilon_{ij},$$

i.e., an observation is made up of the sum of an overall mean μ , a group-specific term G_i , and a random error ε_{ij} , [figure here] and H_0 can be equivalently stated as

$$H_0: G_1 = \cdots = G_K = 0.$$

- SSW is also called the error sum of squares because it can be used to estimate the "error" variance σ^2 .
- This is a <u>one-to-one correspondence</u> between the decomposition $X_{ij} \mu = G_i + \varepsilon_{ij}$ and the sum of squares decomposition SST = SSG + SSW.
 - This result can be extended to more general cases below.

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Figure: Illustration of the Population Model for the One-Way ANOVA

Ping Yu (HKU	Pin	g Yu	(H	KU
--------------	-----	------	----	----

E

・ロト ・回ト ・ヨト ・ヨト

Two-Way ANOVA: One Observation per Cell, Randomized Blocks

イロト イヨト イヨト イヨト

Example Continued

• If we can isolate other factors from ε_{ij} , e.g., driver habits, then we can reduce the variance of the error term and improve the test power.

 Table 15.7
 Sample Observations on Fuel Consumption Recorded for Three Types of Automobiles Driven by Drivers in Six Classes

	AUTOMOBILE TYPE							
DRIVER CLASS	α-Cars	β -Cars	γ-Cars	Sum				
1	25.1	23.9	26.0	75.0				
2	24.7	23.7	25.4	73.8				
3	26.0	24.4	25.8	76.2				
4	24.3	23.3	24.4	72.0				
5	23.9	23.6	24.2	71.7				
6	24.2	24.5	25.4	74.1				
Sum	148.2	143.4	151.2	442.8				

Copyright 02013 Peanon Education, publishing as Prentice Hall

- The data in Table 15.7 are like matched pairs in Lecture 6, where the additional variable, drivers (or driver ages), is called a block variable and the experiment is said to be arranged in six blocks.
- This kind of design is called a randomized blocks design because a driver is randomly selected from each (randomized) age class to drive each type of car (i.e., 18 drivers are randomly drawn but belong to only 6 classes).

The Setup of Two-Way ANOVA

Table 15.8 Sample Observation on K Groups and H Blocks			Gr	ROUP	
	Block	1	2		Κ
	1	<i>x</i> ₁₁	<i>x</i> ₂₁		x_{K1}
	2	<i>x</i> ₁₂	<i>x</i> ₂₂		x_{K2}
	10				
	H	x_{1H}	x_{2H}		x_{KH}

Copyright @2013 Pearson Education, publishing as Prentice Hall

• H_0^G : K group means $\{\mu_i\}_{i=1}^K$ are the same or H_0^B : H block means $\{\mu_i\}_{i=1}^K$ are the same vs. H_1 : negation of H_0 • $\bar{x}_{i.} = \frac{\sum_{j=1}^{H} x_{ij}}{H}$ is the sample mean of group *i* (estimator of $\mu_i = E[X_{ij}|\text{group } i]$). • $\bar{x}_{,i} = \frac{\sum_{i=1}^{K} x_{ij}}{\kappa}$ is the sample mean of block *j* (estimator of $\mu_i = E[X_{ij}|\text{block } j]$). • $\overline{\overline{x}} = \frac{\sum_{i=1}^{K} \sum_{j=1}^{H} x_{ij}}{n} = \frac{\sum_{i=1}^{K} \overline{x}_{i}}{K} = \frac{\sum_{j=1}^{H} \overline{x}_{j}}{H}$ is the common mean of all groups (estimator of the "overall" mean $\mu = E[X_{ii}]$, where n = HK is the total number of observations. - In the example above, $K = 3, H = 6, n = 18, \bar{x}_{1.} = \frac{148.2}{6} = 24.7, \bar{x}_{.1} = \frac{75}{3} = 25$, etc. and $\overline{\overline{x}} = 24.6$.

Population Model for Two-Way ANOVA

• Let X_{ij} be the r.v. corresponding to the observation for the *i*th group and *j*th block, and decompose X_{ij} as

$$X_{ij} = \mu + G_i + B_j + arepsilon_{ij}$$
 ,

where $G_i = \mu_i - \mu$ and $B_j = \mu_j - \mu$ are two main effects, and the error $\varepsilon_{ij} \stackrel{iid}{\sim} N\left(0, \sigma^2\right)$.

Rewrite this as

$$X_{ij} - \mu = G_i + B_j + \varepsilon_{ij}$$
,

where μ , G_i and B_j are estimated by $\overline{\overline{x}}, \overline{x}_{i.} - \overline{\overline{x}}$ and $\overline{x}_{.j} - \overline{\overline{x}}$, respectively, so

$$\left(\mathbf{x}_{ij}-\overline{\overline{\mathbf{x}}}\right)-\left(\overline{\mathbf{x}}_{i.}-\overline{\overline{\mathbf{x}}}\right)-\left(\overline{\mathbf{x}}_{.j}-\overline{\overline{\mathbf{x}}}\right)=\mathbf{x}_{ij}-\overline{\mathbf{x}}_{.i}-\overline{\mathbf{x}}_{.j}+\overline{\overline{\mathbf{x}}}$$

which implies

$$\mathbf{x}_{ij} - \overline{\overline{\mathbf{x}}} = \left(\overline{\mathbf{x}}_{i.} - \overline{\overline{\mathbf{x}}} \right) + \left(\overline{\mathbf{x}}_{.j} - \overline{\overline{\mathbf{x}}} \right) + \left(\mathbf{x}_{ij} - \overline{\mathbf{x}}_{.i} - \overline{\mathbf{x}}_{.j} + \overline{\overline{\mathbf{x}}} \right),$$

where the last term is an estimator of ε_{ij} , which, compared with the one-way ANOVA case, excludes the block effect $\bar{x}_{.j} - \overline{\bar{x}}$ from the error term.

- We have decomposed the deviation of x_{ij} from $\overline{\overline{x}}$ into the group effect $\overline{x}_{i} - \overline{\overline{x}}$, the block effect $\overline{x}_{j} - \overline{\overline{x}}$, and the random error due to chance variability or experimental error.

Sum of Squares Decomposition

• By similar arguments as in one-way ANOVA, we can show

SST = SSG + SSB + SSE,

where

$$SST = \sum_{i=1}^{K} \sum_{j=1}^{H} (x_{ij} - \overline{\overline{x}})^2 \text{ is the total sum of squares,}$$

$$SSG = \sum_{i=1}^{K} \sum_{j=1}^{H} (\overline{x}_{i.} - \overline{\overline{x}})^2 = H \sum_{i=1}^{K} (\overline{x}_{i.} - \overline{\overline{x}})^2 \text{ is the between-groups SS,}$$

$$SSB = \sum_{i=1}^{K} \sum_{j=1}^{H} (\overline{x}_{.j} - \overline{\overline{x}})^2 = K \sum_{j=1}^{H} (\overline{x}_{.j} - \overline{\overline{x}})^2 \text{ is the between-blocks SS,}$$

$$SSE = \sum_{i=1}^{K} \sum_{j=1}^{H} (x_{ij} - \overline{x}_{.i} - \overline{x}_{.j} + \overline{\overline{x}})^2 \text{ is the error sum of squares.}$$

- The analysis is called two-way ANOVA because the data are categorized in two ways, accordingly to groups and blocks.
- In one-way ANOVA, $x_{ij} \overline{\overline{x}} = (\overline{x}_i \overline{\overline{x}}) + (x_{ij} \overline{x}_i)$, so SST = SSG + SSE, where SSE is termed as SSW, and n_i in SSG need not be the same so cannot be taken out of the summation.

continue

• Compared with one-way ANOVA, the extra component arises because we can extract from the data about differences among blocks.

	1	< 🗗 🕨	4	₹)	1 2 1	 *) Q (*
ANOVA						26 / 39

Testing Procedure

• The basic idea is the same as in one-way ANOVA.

Source of Variation	SUM OF SQUARES	Degrees of Freedom	MEAN SQUARES	F RATIO
Between groups	SSG	K - 1	$MSG = \frac{SSG}{K - 1}$	MSG MSE
Between blocks	SSB	H - 1	$MSB = \frac{SSB}{H - 1}$	$\frac{MSB}{MSE}$
Error	SSE	(K-1)(H-1)	$MSE = \frac{SSE}{(K-1)(H-1)}$	
Total	SST	n - 1		

Table 15.9 General Format of Two-Way Analysis of Variance Table

- Why is the df of SSE (K-1)(H-1)?
 - We can derive it indirectly by (n-1) (K-1) (H-1) with n = KH.

- We can also derive it directly by KH - K - H + 1. Here, x_{ij} contains KH values, but we estimate $\bar{x}_{i.}$, losing K dfs, and estimate $\bar{x}_{.j}$, losing H dfs; anyway, $\{\bar{x}_{i.}\}_{i=1}^{K}$ and $\{\bar{x}_{.j}\}_{j=1}^{H}$ are not independent, but related by $\frac{\sum_{i=1}^{K} \bar{x}_{i.}}{K} = \frac{\sum_{i=1}^{H} \bar{x}_{.j}}{H} (= \overline{x})$, so we save back one df.

continue

• Test Statistic: If $\varepsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$, then

$$f^{G} = \frac{MSG}{MSE} := \frac{SSG/(K-1)}{SSE/(K-1)(H-1)}$$

will follow the $F_{K-1,(K-1)(H-1)}$ distribution under H_0^G , and

$$f^{B} = \frac{MSB}{MSE} := \frac{SSB/(H-1)}{SSE/(K-1)(H-1)}$$

will follow the $F_{H-1,(K-1)(H-1)}$ distribution under H_0^B .

- Decision Rule: reject H_0^G if $f^G > F_{K-1,(K-1)(H-1),\alpha}$ and reject H_0^B if $f^B > F_{H-1,(K-1)(H-1),\alpha}$.
- The *p*-value in testing H_0^G is $P(F^G > f^G)$ and in testing H_0^B is $P(F^B > f^B)$, where $F^G \sim F_{K-1,(K-1)(H-1)}$ and $F^B \sim F_{H-1,(K-1)(H-1)}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example Continued

• In the example above, the two-way anova table is as follows:

Two-way ANOVA: Mileage versus Car, Driver

Source	DF	SS	MS	F	P
Car	2	5.16	2.580	14.83	0.001
Driver	5	4.98	0.996	5.72	0.009
Error	10	1.74	0.174		
Total	17	11.88			

• Because both *p* values are less than 1%, we reject both H_0^G and H_0^B at the 1% level, where note that K = 3, H = 6 so (K - 1)(H - 1) = 10.

・ロン ・四 と ・ 回 と ・ 回 と

(**) More Comments

- This two-way ANOVA is often called one-way ANOVA with block effects.
- Usually, *i* indexes the treatments, *j* indexes the blocks, and we are mainly interested in whether the treatment effects are equal, i.e., H_0^G , given that the block effects are different by construction.
- ε_{ij} is assumed to be independent across j, but need not be independent across i in general.
- Anyway, Corr (ε_{ij}, ε_{i'j}) should be the same for any pair of (i, i'). In this case, we need to be sure the order in which treatments are administered to (the same) subject is ranomized in order to assume equal correlation.

Two-Way ANOVA: More Than One Observation per Cell

イロト イヨト イヨト イヨト

Example Continued

 If there are more than one observation for each group and block (or each cell), i.e., each type of cars are driven by more than one drivers from each age class, we have two advantages: (i) more data mean more precise estimation and thus higher power; (ii) allow the isolation of a further source of variability – the interaction between groups and blocks.

 Table 15.10
 Sample Observations on Fuel Consumption Recorded for Three Types of

 Automobiles Driven by Five Classes of Drivers; Three Observations per Cell

		Automobile Type								
DRIVER CLASS		X-Cars			Y-Cars			Z-cars		
1	25.0	25.4	25.2	24.0	24.4	23.9	25.9	25.8	25.4	
2	24.8	24.8	24.5	23.5	23.8	23.8	25.2	25.0	25.4	
3	26.1	26.3	26.2	24.6	24.9	24.9	25.7	25.9	25.5	
4	24.1	24.4	24.4	23.9	24.0	23.8	24.0	23.6	23.5	
5	24.0	23.6	24.1	24.4	24.4	24.1	25.1	25.2	25.3	

Copyright 02013 Pearson Education, publishing as Prentice Hall

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

More on Interaction

- The interactions occur when differences in block (group) effects are not distributed uniformly across groups (blocks).
- Mathematically, this means that $\mu_{ij} \mu_i \neq \mu_j \mu$ for some *i* and *j*, where μ_{ij} is the population mean in the *ij*th cell, and μ_i , μ_j and μ are defined similarly as in the last section.
- Note that $\mu_j = \frac{\sum_{i=1}^{K} \mu_{ij}}{K}$ and $\mu = \frac{\sum_{i=1}^{K} \mu_i}{K}$, so $\mu_j \mu = \frac{\sum_{i=1}^{K} (\mu_{ij} \mu_i)}{K}$.

•
$$\mu_{ij} - \mu_i \neq \mu_j - \mu$$
 for some *i* and *j* implies there exist *j*, *i* and *i'* such that
$$\left(\mu_{ij} - \mu_i\right) - \left(\mu_j - \mu\right) > 0 > \left(\mu_{i'j} - \mu_i\right) - \left(\mu_j - \mu\right).$$

- That is what the following sentence in the textbook means, "drivers who achieve better-than-average fuel consumption figures may be considerably more successful in getting better fuel economy than other drivers when driving an α -car than when driving a β -car".
- Alternatively, if µ_{ij} = µ_i + µ_j µ for all *i* and all *j*, then the impacts of the *i* factor (group here) and the *j* factor (block here) on the mean of the *ij* cell are separate; if µ_{ij} ≠ µ_i + µ_j µ, then the impact of the *i* factor depends on the level of the *j* factor.
 (*) Mathematically, if f (x, y) = c + f_g(x) + f_b(y), then ∂f(x,y)/∂x∂y = 0, ∂f(x,y)/∂x depends only on x, and ∂f(x,y)/∂y depends only on y; but here x and y are fixed and un-ordered so the partial derivatives are not well defined.

The Setup of Two-Way ANOVA: More Than One Observation per Cell

Table 15.11Sample Observationson K Groups and HBlocks; m Observa-tions per Cell

	Group							
Block	1	2		K				
1	$x_{111}x_{112}\ldots x_{11m}$	$x_{211}x_{212}\ldots x_{21m}$		$x_{K11}x_{K12} \dots x_{K1m}$				
2	$x_{121}x_{122}\ldots x_{12m}$	$x_{221}x_{222}\ldots x_{22m}$		$x_{K21}x_{K22}\ldots x_{K2m}$				
1.0								
•								
Н	$x_{1H1}x_{1H2}\ldots x_{1Hm}$	$x_{2H1}x_{2H2}\ldots x_{2Hm}$		$x_{KH1}x_{KH2} \dots x_{KHm}$				

Copyright 0.2013 Pearson Education, publishing as Prentice Hall

Note: there are *m* observations in the *ij*th cell, $\{x_{ijl}\}_{l=1}^{m}$

*H*₀^G: {μ_i}^K_{i=1} are the same or *H*₀^B: {μ_j}^H_{j=1} are the same or *H*₀^J: μ_{ij} - μ_i = μ_j - μ for all *i* and *j* (i.e., no group-block interaction) vs. *H*₁: negation of *H*₀.
Group means: x
{i.} = Σ^H{i=1}Σ^m_{i=1}x_{ij}/Hm
is the sample mean of group *i*.
Block means: x
{j.} = Σ^K{i=1}Σ^m_{i=1}x_{ij}/Km
is the sample mean of block *j*.
Cell means: x
{ij.} = Σ^K{i=1}Σ^m_{i=1}x_{ij}/Km
is the sample mean of cell (*i*, *j*).
Overall mean: x
i = Σ^K{i=1}Σ^m_{i=1}x_{ij}/Km
is the sample mean of cell (*i*, *j*).
Overall mean: x
i = Σ^K{i=1}Σ^m_{i=1}x_{ij}/Km
is the sample mean of cell number of observations.

Population Model for Two-Way ANOVA with More Than One Observation per Cell

• Let X_{ijl} be the r.v. corresponding to the *I*th observation in the *ij*th cell, and decompose X_{ijl} as

$$X_{ijl} = \mu + G_i + B_j + L_{ij} + \varepsilon_{ijl},$$

where $L_{ij} = \mu_{ij} - \mu_i - \mu_j + \mu$, G_i and B_j are defined similarly as in the last section, and the error $\varepsilon_{ijl} \stackrel{iid}{\sim} N(0, \sigma^2)$.

Rewrite this as

$$X_{ijl} - \mu = G_i + B_j + L_{ij} + \varepsilon_{ijl};$$

the corresponding sample version is

$$\mathbf{x}_{ijl} - \overline{\overline{\mathbf{x}}} = \left(ar{\mathbf{x}}_{i \dots} - \overline{\overline{\mathbf{x}}}
ight) + \left(ar{\mathbf{x}}_{.j \dots} - \overline{\overline{\mathbf{x}}}
ight) + \left(ar{\mathbf{x}}_{ij} - ar{\mathbf{x}}_{.i \dots} - ar{\mathbf{x}}_{.j \dots} + \overline{\overline{\mathbf{x}}}
ight) + \left(\mathbf{x}_{ijl} - ar{\mathbf{x}}_{ij}
ight),$$

where the last term is an estimator of ε_{ijl} .

• (*) If $f(x,y) = c + f_g(x) + f_b(y) + f_l(x,y)$, then H_0^G , H_0^B and H_0^l correspond to $f_g(x) = 0$, $f_b(y) = 0$, and $f_l(x,y) = 0$, respectively, where we have normalized $c = \frac{1}{KH} \sum_x \sum_y f(x,y), \sum_x f_g(x) = 0, \sum_y f_b(y) = 0, \sum_x f_l(x,y) = 0 \forall y$, and $\sum_y f_l(x,y) = 0 \forall x$ for identification.

Sum of Squares Decomposition

 By similar arguments as in two-way ANOVA with one observation per cell, we can show

$$SST = SSG + SSB + SSI + SSE$$
,

	Sum of Squares	Degrees of Freedom	
Total:	$SST = \sum_{i} \sum_{j} \sum_{l} (x_{ijl} - \overline{\overline{x}})^2$	<i>KHm</i> – 1	(15.20
Between groups:	$SSG = Hm \sum_{i=1}^{K} (\overline{x}_{i} \dots - \overline{\overline{x}})^2$	K – 1	(15.21
Between blocks:	$SSB = Km \sum_{i=1}^{H} (\overline{x}_{.j.} - \overline{\overline{x}})^2$	H - 1	(15.22
Interaction:	$SSI = m \sum_{i=1}^{K} \sum_{j=1}^{H} (\overline{x}_{ij}, -\overline{x}_{i}, -\overline{x}_{ij}, +\overline{\overline{x}})$	(K-1)(H-1)	(15.23
Error:	$SSE = \sum_{i} \sum_{j} \sum_{l} (x_{ijl} - \overline{x}_{ij*})^2$	HK(m - 1)	(15.24

where

- The summands in SSI should be squared.
- The dfs of all sums of squares can be derived similarly as before.
- (**) If the numbers of observations in each cell are not the same (i.e., the design is not balanced), then the decomposition here does not hold, the tests below cannot apply, and some general theory is required.

continue

Copyright ©2013 Pearson Education, publishing as Prentice Hall

• Compared with the sum of squares decomposition for the two-way ANOVA with one observation per cell, the extra component arises because we can isolate an interaction sum of squares.

	•	< ₽	- ₹ ♪	 ₹ 👌	 4) Q (4
ANOVA					37 / 39

Testing Procedure

The basic idea is the same as in two-way ANOVA with one observation per cell.

Table 15.12 General Format of the Two-Way Analysis of	Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F Ratio
Variance Table with m Observations per Cell	Between groups	SSG	K - 1	$MSG = \frac{SSG}{K - 1}$	MSG MSE
	Between blocks	SSB	H - 1	$MSB = \frac{SSB}{H - 1}$	MSB MSE
	Interaction	SSI	(K - 1)(H - 1)	$MSI = \frac{SSI}{(K-1)(H-1)}$	MSI MSE
	Error	SSE	KH(m - 1)	$MSE = \frac{SSE}{KH(m-1)}$	
	Total	SST			

Copyright 02013 Pearson Education, publishing as Prentice Hall

• Test Statistic: If $\varepsilon_{ijl} \stackrel{iid}{\sim} N(0, \sigma^2)$, then

$$\begin{split} f^{G} &= \frac{\text{MSG}}{\text{MSE}} := \frac{\text{SSG}/(K-1)}{\text{SSE}/\text{KH}(m-1)}, f^{B} &= \frac{\text{MSB}}{\text{MSE}} := \frac{\text{SSB}/(H-1)}{\text{SSE}/\text{KH}(m-1)}, \\ f^{I} &= \frac{\text{MSI}}{\text{MSE}} := \frac{\text{SSI}/(K-1)(H-1)}{\text{SSE}/\text{KH}(m-1)} \end{split}$$

will follow the $F_{K-1,KH(m-1)}$, $F_{H-1,KH(m-1)}$ and $F_{(K-1)(H-1),KH(m-1)}$ distributions under H_0^G , H_0^B and H_0^I , respectively. ・ロン ・四 と ・ 回 と ・ 回 と

continue

- Decision Rule: reject H_0^G , H_0^B and H_0^I if $f^G > F_{K-1,KH(m-1),\alpha}$, $f^B > F_{H-1,KH(m-1),\alpha}$ and $f^I > F_{(K-1)(H-1),KH(m-1),\alpha}$, respectively.
- The *p*-values in testing H_0^G , H_0^B and H_0^I are $P(F^G > f^G)$, $P(F^B > f^B)$, and $P(F^I > f^I)$, where $F^G \sim F_{K-1,KH(m-1)}$, $F^B \sim F_{H-1,KH(m-1)}$ and $F^I \sim F_{(K-1)(H-1),KH(m-1)}$.
- In the example above, the two-way anova table is as follows:

Two-way ANOVA: Mileage versus Car, Driver

Source	DF	SS	MS	F	P
Car	2	7.156	3.57800	92.53	0.000
Driver	4	13.148	3.28700	85.01	0.000
Interaction	8	6.604	0.82550	21.35	0.000
Error	30	1.160	0.03867		
Total	44	28.068			

• Because all *p* values are zero, we strongly reject all nulls, especially, we conclude that there exists an interaction effect, where note that K = 3, H = 5 and m = 3.