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Plan of This Lecture

Confidence Interval Estimation: One Population
- One Normal Mean, Known Population Variance
- One Normal Mean, Unknown Population Variance
- One Proportion, Large Samples
- One Normal Variance
- Confidence Intervals in Finite Populations

Sample-Size Determination
- Large Populations
- Finite Populations

Confidence Interval Estimation: Two Populations
- Matched Pair: Two Means
- Independent Samples: Two Normal Means, Known Population Variances
- Independent Samples: Two Normal Means, Unknown Equal Population
Variances
- Independent Samples: Two Normal Means, Unknown Unequal Population
Variances
- Independent Samples: Two Proportions, Large Samples

The discussion of this lecture is parallel to that in the last lecture.
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Confidence Interval Estimation: One Population

Confidence Interval Estimation: One Population
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Confidence Interval Estimation: One Population

Confidence Interval (CI)

A confidence interval estimator of a population parameter is a rule for determining
(based on the sample) an interval that is likely to include the parameter. The
corresponding estimate is called a confidence interval estimate.
- This concept was introduced by Jerzy Neyman in 1937.
- The variability of a point estimator is not reflected in its estimate, but can be
reflected in a CI estimate – when the variability is smaller, the CI is typically
shorter.
- The textbook calls a confidence interval estimate as a confidence interval, but we
will use "confidence interval" to refer to both "confidence interval estimator" and
"confidence interval estimate", depending on the context.
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Confidence Interval Estimation: One Population

Confidence Level

Suppose the CI of θ takes the form [A,B], where A and B are random variables,
i.e., [A,B] is a random interval. If

P (A� θ � B) = 1�α,

then 100 (1�α)% is called the confidence level of the CI.
- We cannot say "θ falls in the CI with (1�α) probability" but only say "the CI
covers θ with (1�α) probability", i.e., in repeated samples, 100(1�α)%
(realized) intervals will cover θ , where note that given a realization of [A,B], say
[a,b], either θ 2 [a,b] or θ /2 [a,b], but we do not know which happens since θ is
unknown.

Analog: catch a butterfly using a net.
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Confidence Interval Estimation: One Population

Margin of Error

Because θ can be larger or smaller than a point estimator θ̂ of θ , the CI typically
takes the form

θ̂ �ME ,

where the error factor ME is called the margin of error (or sampling error).

The width of the CI is equal to twice the ME:

w = 2 (ME) ,

which is typically also random.

The upper confidence limit (UCL) of the CI is given by

UCL= θ̂ +ME .

The lower confidence limit (LCL) of the CI is given by

UCL= θ̂ �ME .

Either an open interval
�
θ̂ �ME , θ̂ +ME

�
or a closed interval

�
θ̂ �ME , θ̂ +ME

�
is

fine.
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Confidence Interval Estimation: One Population One Normal Mean, Known Population Variance

One Normal Mean, Known Population Variance

From the last lecture, for a random sample fxign
i=1, where xi � N

�
µ,σ2

�
with

unknown µ and known σ2, if µ0 is the true value of µ, then

z =
x̄ �µ0

σ/
p

n
� N (0,1) ,

which implies

1�α = P (�zα/2 � z � zα/2) = P
�
�zα/2 �

x̄ �µ0

σ/
p

n
� zα/2

�
= P

�
�zα/2

σp
n
� x̄�µ0 � zα/2

σp
n

�
= P

�
x̄ �zα/2

σp
n
� µ0 � x̄ + zα/2

σp
n

�
,

i.e., the interval
h
x̄ �zα/2

σp
n
, x̄ + zα/2

σp
n

i
will cover µ0 with probability 1�α, so it

is a CI with confidence level 100(1�α)% or a 100 (1�α)% CI.

In this example, θ = µ, θ̂ = x̄ and ME = zα/2
σp
n

.
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Confidence Interval Estimation: One Population One Normal Mean, Known Population Variance

A General Principle to Construct the CI: Inverting the Test Statistic

Re-examining the procedure of constructing the CI above, we are actually
inverting the test statistic in testing

H0 : µ = µ0 vs. H1 : µ 6= µ0.

Specifically, we try different µ0’s, and for each µ0 value, we conduct the two-sided
test with significance level α; if a µ0 value is not rejected, then this µ0 value is put
in our CI. The interval collecting all µ0 values that are not rejected is the CI with
confidence level (1�α).
Conversely, if a value µ0 /2CI, then we will reject H0 : µ = µ0 in favor of H1 : µ 6= µ0
at the level of (1�confidence level).
In summary, the hypothesis testing and CI construction are somewhat equivalent.

The reliability factor zα/2 is the critical value for z at the significance level α.
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Confidence Interval Estimation: One Population One Normal Mean, Known Population Variance

Example 7.3: Time at the Grocery Store

Suppose the shopping times for customers are normally distributed with population
standard deviation 20 minutes. A random sample of 64 shoppers had a mean time
of 75 minutes. Construct the 95% CI for the population mean shopping time.

Solution: Since
x̄ = 75 and σ x̄ = σ/

p
n = 20/

p
64= 2.5,

we have

ME = zα/2σ x̄ = 1.96�2.5= 4.9,

UCL = x̄ + zα/2σ x̄ = 75+4.9= 79.9,

LCL = x̄ �zα/2σ x̄ = 75�4.9= 70.1.

So the 95% CI for the population mean shopping time is [70.1,79.9].
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Confidence Interval Estimation: One Population One Normal Mean, Known Population Variance

Figure: Sample Distribution of x̄ and Schematic Description of 95% CI

Intuition: x̄ more likely appears around µ, so the fixed-length intervalh
x̄�zα/2

σp
n
, x̄ + zα/2

σp
n

i
more likely covers µ.
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Confidence Interval Estimation: One Population One Normal Mean, Known Population Variance

Reducing Margin of Error

ME = zα/2
σp
n

is decreasing in n and increasing in σ and (1�α).

- Decreasing in n: if we get more information about the location of the butterfly,
then we can use a smaller net.
- Increasing in σ : if the information about the location of the butterfly is more
vague, we must use a larger net.
- Increasing in (1�α): to catch with a higher probability, we must use a larger net.

To reduce the width of the CI (= 2 �ME) while maintain the confidence level, we
can either increase n or decrease σ (more information or more preciseness).
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Confidence Interval Estimation: One Population One Normal Mean, Known Population Variance

continue

Figure: Effects of n, σ and (1�α) on CIs
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Confidence Interval Estimation: One Population One Normal Mean, Unknown Population Variance

One Normal Mean, Unknown Population Variance

Inverting the test statistic

t =
x̄ �µ0

s/
p

n

in testing H0 : µ = µ0 vs. H1 : µ 6= µ0, we have the (1�α) CI for µ is�
µ0j

���� x̄ �µ0

s/
p

n

����� tn�1,α/2

�
=

�
x̄ � tn�1,α/2

sp
n
, x̄ + tn�1,α/2

sp
n

�
.

- ME = tn�1,α/2
sp
n

.

Compared with
h
x̄ �zα/2

σp
n
, x̄ + zα/2

σp
n

i
, this CI should be wider because

tn�1,α/2 > zα/2. This is the cost associated with replacing the unknown σ2 by s2.
- When n gets large, tn�1,α/2 � zα/2 and s � σ , so these two CIs are close.

It is suggested to check whether the data are normally distributed using the
normal probability plot whenever the CI construction employs this assumption.
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Confidence Interval Estimation: One Population One Proportion, Large Samples

One Proportion, Large Samples

We can invert the test statistic

z =
p̂�p0p

p0 (1�p0)/n

in testing H0 : p = p0 vs. H1 : p 6= p0, but z is a nonlinear function of p0, so instead
we replace p0 in the denominator by p̂ (which is consistent to p0 as n! ∞) to have
the test statistic

p̂�p0p
p̂ (1� p̂)/n

.

The (1�α) CI for p is(
p0j
����� p̂�p0p

p̂ (1� p̂)/n

������ zα/2

)
=

"
p̂�zα/2

r
p̂ (1� p̂)

n
, p̂+ zα/2

r
p̂ (1� p̂)

n

#
.

- ME = zα/2

q
p̂(1�p̂)

n .

The width of the CI can be reduced by either increasing n or decreasing (1�α).
[σ is

p
p (1�p) here, so out of control]
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Confidence Interval Estimation: One Population One Proportion, Large Samples

Example 7.6: Modified Bonus Plan

Management wants to know the proportion of the corporation’s employees who
favor a modified bonus plan. From a random sample of 344 employees, it was
found that 261 were in favor of the particular plan. What is the 90% CI of the true
proportion that favors this plan?

Solution: First, p̂ = 261/344= 0.759. Second, α = 0.1, so zα/2 = 1.645.
Therefore, the 90% CI for p is

0.759�1.645

r
0.759� (1�0.759)

344
= 0.759�0.038.

For the 99% CI for p, the ME increases from 0.038 to

2.58

r
0.759� (1�0.759)

344
= 0.059.
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Confidence Interval Estimation: One Population One Normal Variance

One Normal Variance

Inverting the test statistic

χ
2 =

(n�1)s2

σ2
0

,

in testing H0 : σ2 = σ2
0 vs. σ2 6= σ2

0, we have the (1�α) CI for σ2 is(
σ

2
0

�����χ2
n�1,1�α/2 �

(n�1)s2

σ2
0

� χ
2
n�1,α/2

)
=

"
(n�1)s2

χ2
n�1,α/2

,
(n�1)s2

χ2
n�1,1�α/2

#
.

This CI is not symmetric about s2 (which is the unbiased estimator of σ2), so ME
is not well defined.

(*) In general, we can construct the CI for µ and σ2 based on other tests (i.e.,
one-sided H1) in the last lecture. However, such a CI may have an infinite length.
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Confidence Interval Estimation: One Population Confidence Intervals in Finite Populations

Confidence Intervals in Finite Populations

n is not much smaller than N in random sampling without replacement, e.g.,
n > 0.05N.

n itself is large enough so that the CLT can be applied.

One Mean, Unknown Population Variance, Large Samples: the (1�α) CI for µ is

[x̄ � tn�1,α/2σ̂ x̄ , x̄ + tn�1,α/2σ̂ x̄ ] ,

where

σ̂
2
x̄ =

s2

n

�
N�n

N

�
1

rather than s2/n is an unbiased estimator of Var (x̄).
- Samples need not be drawn from a normal population, but with relatively large n,
we can treat the samples in this way.2

- ME = tn�1,α/2σ̂ x̄ < tn�1,α/2
sp
n

.

1(**) From slide 32 of Lecture 5, E
�
s2
�
= S2 = N

N�1 σ2 6= σ2 in random sampling without replacement, so the

unbiased estimator of Var (x̄) (= σ2
n

N�n
N�1 =

S2
n

N�n
N ) should be s2

n
N�n

N . Since N is usually large, replacing N by
N�1 in the textbook does not matter in practice.

2In this case, since n is large and xi � N
�
µ,σ2

�
, tn�1,α/2 should be changed to zα/2.
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Confidence Interval Estimation: One Population Confidence Intervals in Finite Populations

continue

The (1�α) CI for the population total Nµ (e.g., the total enrollment in business
statistics when µ is the mean enrollment) is

[Nx̄� tn�1,α/2Nσ̂ x̄ ,Nx̄ + tn�1,α/2Nσ̂ x̄ ] .

- ME = tn�1,α/2Nσ̂ x̄ is N times the ME of the CI for µ.

One Proportion, Large Samples: the (1�α) CI for p is�
p̂�zα/2σ̂ p̂, p̂+ zα/2σ̂ p̂

�
,

where

σ̂
2
p̂ =

p̂ (1� p̂)
n�1

�
N�n
N�1

�
is an unbiased estimator of Var (p̂). [see Problem 5(ii) of Assignment III]

- ME = zα/2σ̂ p̂ = zα/2

r
(N�n)n

(N�1)(n�1)

q
p̂(1�p̂)

n < zα/2

q
p̂(1�p̂)

n if n (n�1)> N�1

(or roughly n � N1/2).
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Sample-Size Determination

Sample-Size Determination
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Sample-Size Determination Large Populations

Large Populations

If we think the CI is too wide, we can narrow it by increasing n.

Fix the width of the CI, determine how large an n can achieve it.

Consider only two cases below.

One Normal Mean, Known Population Variance: Solving

ME = zα/2
σp
n
,

we have

n =
z2

α/2σ2

ME2 , (1)

i.e., to make a (1�α) CI for µ extend a distance ME on each side of x̄ , we need
z2

α/2σ2

ME2 (or
�

z2
α/2σ2

ME2

�
if

z2
α/2σ2

ME2 is not an integer) samples.

One Proportion, Large Samples: We cannot solve

ME = zα/2

r
p̂ (1� p̂)

n
,

to have the required n, since p̂ is unobserved beforehand.
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Sample-Size Determination Large Populations

continue

Anyway, p̂ (1� p̂)� 0.25, so solving

ME = zα/2

r
0.25

n
,

we conclude that

n =
0.25z2

α/2

ME2

can guarantee that the CI extends no more than ME on each side of the p̂.
- For one normal mean with unknown population variance, ME = tn�1,α/2

sp
n

is not
easy to solve since both tn�1,α/2 and s depend on n.

Note that the ME reported in the media (such as "The poll has a 3% margin of
error") includes only the sampling error in p̂ and does not include any errors due to
biased or otherwise inadequate samples.

Example 7.14: Electoral College: If an opinion survey on changing the Electoral
College process reported that the poll has a 3% margin of error (with 95%
confidence), how many citizens of voting age need to be sampled?

Solution: n =
0.25z2

α/2

ME2 = 0.25�1.962

0.032 = 1067.11 =) n = 1068.
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Sample-Size Determination Finite Populations

Finite Populations

One Mean, Known Population Variance: If σ2
x̄ is the target, then solving

σ
2
x̄ =

σ2

n

�
N�n
N�1

�
,

we have

n =
Nσ2

(N�1)σ2
x̄ +σ2

.

- If ME is the target, then solving

ME = zα/2
σp
n

r
N�n
N�1

to have

n =
n0N

n0+(N�1)
� n0,

where n0 is given in (1). [Implicitly assume normality or the implied n is large]
- If the population total is of interest, then solve ME = zα/2Nσ x̄ .

With nonresponse or missing data, practitioners may add a certain percent (like
10%) to the implied size n.
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Sample-Size Determination Finite Populations

continue

One Proportion, Large Samples: Solving

σ
2
p̂ =

p (1�p)
n

�
N�n
N�1

�
to have

n =
Np (1�p)

(N�1)σ2
p̂+p (1�p)

.

- Since p (1�p) is unknown, the largest possible value of n is

nmax =
0.25N

(N�1)σ2
p̂+0.25

.

- A 95% CI for p will extend approximately 1.96σ p̂ on each side of p̂.
Example 7.16: Campus Survey: Suppose a random sample of the 1,395 U.S.
colleges is taken to estimate the proportion for which the business statistics
course is two semesters long. For a 95% CI to extend no further than 0.04 on
each side of the sample proportion, how many samples should be taken?
Solution: 1.96σ p̂ = 0.04=) σ p̂ = 0.020408. So

nmax =
0.25N

(N�1)σ2
p̂+0.25

= 0.25�1,395
1,394�0.0204082+0.25 = 419.88=) n = 420.
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Confidence Interval Estimation: Two Populations

Confidence Interval Estimation: Two Populations
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Confidence Interval Estimation: Two Populations Matched Pair: Two Means

Matched Pair: Two Means

Inverting the test statistic

t =
d̄ �µ0

sd /
p

n

in testing H0 : µd := µx �µy = µ0 vs. H1 : µd 6= µ0, we have the (1�α) CI for µd
is �

µ0j
���� d̄ �µ0

sd /
p

n

����� tn�1,α/2

�
= d̄ � tn�1,α/2

sdp
n
,

where d̄ = x̄� ȳ , and sd is the sample standard deviation of fdign
i=1 with

di = xi �yi .
- ME = tn�1,α/2

sdp
n

.

- If the CI contains 0, then we cannot reject µx = µy .
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Confidence Interval Estimation: Two Populations Independent Samples: Two Normal Means, Known Population Variances

Independent Samples: Two Normal Means, Known Population
Variances

Inverting the test statistic

z =
(x̄ � ȳ)�µ0r

σ2
x

nx
+

σ2
y

ny

in testing H0 : µd = µ0 vs. H1 : µd 6= µ0, we have the (1�α) CI for µd is8>><>>: µ0j

��������
(x̄� ȳ)�µ0r

σ2
x

nx
+

σ2
y

ny

��������� zα/2

9>>=>>;= (x̄� ȳ)�zα/2

s
σ2

x

nx
+

σ2
y

ny
.

- ME = zα/2

r
σ2

x
nx
+

σ2
y

ny
.
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Confidence Interval Estimation: Two Populations
Independent Samples: Two Normal Means, Unknown Equal Population

Variances

Independent Samples: Two Normal Means, Unknown Equal Population
Variances

Inverting the test statistic

t =
(x̄ � ȳ)�µ0r

s2
p

nx
+

s2
p

ny

in testing H0 : µd = µ0 vs. H1 : µd 6= µ0, we have the (1�α) CI for µd is8>><>>: µ0j

��������
(x̄� ȳ)�µ0r

s2
p

nx
+

s2
p

ny

��������� tn�2,α/2

9>>=>>;= (x̄� ȳ)� tn�2,α/2

s
s2

p

nx
+

s2
p

ny
,

where n = nx +ny , and the pooled sample variance

s2
p =

(nx �1)s2
x +(ny �1)s2

y

nx +ny �2
.

- ME = tn�2,α/2

r
s2

p
nx
+

s2
p

ny
.
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Confidence Interval Estimation: Two Populations
Independent Samples: Two Normal Means, Unknown Unequal Population

Variances

Independent Samples: Two Normal Means, Unknown Unequal
Population Variances

Inverting the test statistic

t =
(x̄ � ȳ)�µ0r

s2
x

nx
+

s2
y

ny

in testing H0 : µd = µ0 vs. H1 : µd 6= µ0, we have the (1�α) CI for µd is8>><>>: µ0j

��������
(x̄� ȳ)�µ0r

s2
x

nx
+

s2
y

ny

��������� tv ,α/2

9>>=>>;= (x̄� ȳ)� tv ,α/2

s
s2

x

nx
+

s2
y

ny
,

where v =

��
s2
x

nx

�
+

�
s2
y

ny

��2

�
s2
x

nx

�2

/(nx�1)+
�

s2
y

ny

�2

/(ny�1)

is defined in the last lecture.

- ME = tv ,α/2

r
s2

x
nx
+

s2
y

ny
.

- Whether σ2
x = σ2

y or not can be tested using the test in the last lecture.
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Confidence Interval Estimation: Two Populations Independent Samples: Two Proportions, Large Samples

Independent Samples: Two Proportions, Large Samples

Recall that the test statistic is

t =
p̂x � p̂yq

p̂0(1�p̂0)
nx

+
p̂0(1�p̂0)

ny

,

in testing H0 : px �py = 0 vs. H1 : px �py 6= 0, which employs the null information
px = py in estimating the variance of p̂x � p̂y .
In testing H0 : px �py = p0 vs. H1 : px �py 6= p0, the proper test statistic is

t =
(p̂x � p̂y )�p0r

p̂x (1�p̂x )
nx

+
p̂y (1�p̂y )

ny

,

inverting which to have the (1�α) CI for px �py as8>><>>:p0j

��������
(p̂x � p̂y )�p0r

p̂x (1�p̂x )
nx

+
p̂y (1�p̂y )

ny

��������� zα/2

9>>=>>;= (p̂x � p̂y )�zα/2

s
p̂x (1� p̂x )

nx
+

p̂y (1� p̂y )

ny
.

- ME = zα/2

r
p̂x (1�p̂x )

nx
+

p̂y (1�p̂y )
ny

.
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Confidence Interval Estimation: Two Populations Independent Samples: Two Proportions, Large Samples

Comparison of the Neyman-Pearson Approach, Fisher’s p-Value
Approach and Neyman’s CI

Consider testing H0 : µ = µ0 vs. H1 : µ 6= µ0 at the significance level α.

The Neyman-Pearson approach can only make a decison for a fixed µ0 and a
fixed α each time.

Fisher’s p-value approach can make a decision for any α but a fixed µ0 each time.

Neyman’s CI can make a decision for any µ0 but a fixed α each time.
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