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R
Plan of This Lecture

@ Confidence Interval Estimation: One Population
- One Normal Mean, Known Population Variance
- One Normal Mean, Unknown Population Variance
- One Proportion, Large Samples
- One Normal Variance
- Confidence Intervals in Finite Populations

@ Sample-Size Determination
- Large Populations
- Finite Populations

@ Confidence Interval Estimation: Two Populations
- Matched Pair: Two Means
- Independent Samples: Two Normal Means, Known Population Variances
- Independent Samples: Two Normal Means, Unknown Equal Population
Variances
- Independent Samples: Two Normal Means, Unknown Unequal Population
Variances
- Independent Samples: Two Proportions, Large Samples

@ The discussion of this lecture is parallel to that in the last lecture.
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Confidence Interval Estimation: One Population

Confidence Interval Estimation: One Population
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Confidence Interval (ClI)

@ A confidence interval estimator of a population parameter is a rule for determining
(based on the sample) an interval that is likely to include the parameter. The
corresponding estimate is called a confidence interval estimate.

- This concept was introduced by Jerzy Neyman in 1937.

- The variability of a point estimator is not reflected in its estimate, but can be
reflected in a Cl estimate — when the variability is smaller, the Cl is typically
shorter.

- The textbook calls a confidence interval estimate as a confidence interval, but we
will use "confidence interval” to refer to both "confidence interval estimator" and
"confidence interval estimate", depending on the context.
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Confidence Level

@ Suppose the ClI of 6 takes the form [A, B], where A and B are random variables,
i.e., [A,B] is a random interval. If

P(A<6<B)=1-a,

then 100 (1 — a) % is called the confidence level of the CI.

- We cannot say "0 falls in the Cl with (1 — o) probability” but only say “the ClI
covers 6 with (1 — «) probability", i.e., in repeated samples, 100 (1 — o) %
(realized) intervals will cover 6, where note that given a realization of [A, B], say
[a,b], either 6 € [a,b] or 6 ¢ [a,b], but we do not know which happens since 6 is
unknown.

@ Analog: catch a butterfly using a net.
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Margin of Error

@ Because 6 can be larger or smaller than a point estimator 8 of 8, the Cl typically
takes the form
6+ ME,

where the error factor ME is called the margin of error (or sampling error).
@ The width of the Cl is equal to twice the ME:

w =2(ME),

which is typically also random.
@ The upper confidence limit (UCL) of the Cl is given by

UCL =6 +ME.
@ The lower confidence limit (LCL) of the Cl is given by
UCL =6 - ME.
@ Either an open interval (8§ —ME, 8 + ME) or a closed interval [§ —ME, 6 + ME] is

fine.
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One Normal Mean, Known Population Variance
One Normal Mean, Known Population Variance

@ From the last lecture, for a random sample {x; }{_;, where x; ~ N (u, 0-2) with
unknown u and known o2, if Wg is the true value of u, then

_X—Ho

~ o/yn

z N (0,1),

which implies

X —HUg
l-a = P(-2q2<2<2q/2)=P (_Za/z < = S 206/2)

o/vn
(o3 _ (o3
= P (*Za/ZW SX—pg < Za/zﬁ)

i.e., the interval [)‘( - za/z\%,x +2Zg/2 %] will cover g with probability 1 — ¢, so it
is a Cl with confidence level 100 (1 — o) % or a 100 (1 — &) % CI.
@ In this example, 6 = u, 8 = x and ME = Za/Z%-
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One Normal Mean, Known Population Variance
A General Principle to Construct the CI: Inverting the Test Statistic

@ Re-examining the procedure of constructing the Cl above, we are actually

inverting the test statistic in testing

Ho: it = po vs. Hy @ # po.

@ Specifically, we try different p4's, and for each ug value, we conduct the two-sided
test with significance level «; if a uq value is not rejected, then this pq value is put

in our CI. The interval collecting all i values that are not rejected is the ClI with
confidence level (1— o).

@ Conversely, if a value pg ¢ClI, then we will reject Hp : = g in favor of Hy : u # g
at the level of (1—confidence level).
@ In summary, the hypothesis testing and CI construction are somewhat equivalent.

Table 7.2 Selected Confidence Levels and Corresponding Values of z,,

CONFIDENCE LEVEL 90%

Za2

0.100
1.645

@ The reliability factor z/, is the critical value for z at the significance level a.
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One Normal Mean, Known Population Variance
Example 7.3: Time at the Grocery Store

@ Suppose the shopping times for customers are normally distributed with population
standard deviation 20 minutes. A random sample of 64 shoppers had a mean time
of 75 minutes. Construct the 95% CI for the population mean shopping time.

@ Solution: Since

X =75and 6z = 6/v/n=20/v64 =25,

we have

ME = Zz,/00x=196x25=4.9,
UCL = X+2Z4/p0x=75+4.9=79.09,
LCL = X—-2Z4/205x=75-49=70.1.

So the 95% CI for the population mean shopping time is [70.1,79.9].
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Confidence Interval Estimation: One Population One Normal Mean, Known Population Variance

0.95 I

0.025 : 0.025 oo —
¥ -
) . 2 : |
- < Z <z x
u" 1.96\/; W+ 1'96\/7 I

Figure: Sample Distribution of X and Schematic Description of 95% CI

@ Intuition: X more likely appears around u, so the fixed-length interval
[)‘( - za/Z%,X +2Z4/2 \%] more likely covers u.
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Confidence Interval Estimation: One Population One Normal Mean, Known Population Variance
Reducing Margin of Error

e ME = Za/2% is decreasing in n and increasing in o and (1— o).
- Decreasing in n: if we get more information about the location of the butterfly,
then we can use a smaller net.
- Increasing in o: if the information about the location of the butterfly is more
vague, we must use a larger net.
- Increasing in (1 — «): to catch with a higher probability, we must use a larger net.
@ To reduce the width of the CI (= 2- ME) while maintain the confidence level, we
can either increase n or decrease o (more information or more preciseness).
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Confidence Interval Estimation: One Population One Normal Mean, Known Population Variance
continue

) n=250c=12,1-a=.95 )
19.33 19.80 20.27

n=64,0=121-a=.95

19.51 19.80 20.09

n=250=201-a=.95
19.02 19.80 20.58

n=250c=12,1-a=.99 )
19.18 19.80 20.42

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Figure: Effects of n, o and (1—«) on Cls
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One Normal Mean, Unknown Population Variance
One Normal Mean, Unknown Population Variance

@ Inverting the test statistic .
t— X "Ho
s/vn
intesting Hp : 0 = pg vs. Hy : u # ng, we have the (1— o) Cl for p is

{u ||Fto
%l's/vn
-ME =tn71,a/2\%-

_ s _ s
< tn—l,a/Z} = {X _tnfl,a/Zva ""tn—l,oc/ZW .

@ Compared with [X - za/Z%,X +Z4/2 %] , this ClI should be wider because

th_1.a/2 > Zg/2- This is the cost associated with replacing the unknown o2 by s2.
- When n gets large, t,_1 o/2 = Z¢/2 and s = o, so these two Cls are close.

@ Itis suggested to check whether the data are normally distributed using the
normal probability plot whenever the CI construction employs this assumption.
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One Proportion, Large Samples
One Proportion, Large Samples

@ We can invert the test statistic
P —Po
Po(1—pg)/n

in testing Hg : p = pg Vs. Hy : p # pg, but z is a nonlinear function of pg, so instead
we replace pg in the denominator by p (which is consistent to pg as n — ) to have
the test statistic

@ The (1—a) Clforpis

(o

515
'ME:Za/Z M

P—po
p(1-p)/n

. [b(1-p) . p(1—p
Sza/2}2|:pza/2 wyp-ﬂa/z M

@ The width of the Cl can be reduced by either increasing n or decreasing (1 — o).

[ois v/p(1—p) here, so out of control]
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One Proportion, Large Samples
Example 7.6: Modified Bonus Plan

@ Management wants to know the proportion of the corporation’s employees who
favor a modified bonus plan. From a random sample of 344 employees, it was
found that 261 were in favor of the particular plan. What is the 90% CI of the true
proportion that favors this plan?

@ Solution: First, p =261/344 = 0.759. Second, a = 0.1, s0 z,/, = 1.645.
Therefore, the 90% CI for p is

0.759 x (1—0.759)
344

For the 99% ClI for p, the ME increases from 0.038 to

0.759 x (1—0.759)
2.58\/ 342 —0.059.

=0.759+0.038.

0.759+ 1.645\/
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Confidence Interval Estimation: One Population One Normal Variance

One Normal Variance

@ Inverting the test statistic
» (n-1)s?

s

%%

in testing Hy : 62 = 63 vs. 62 # 63, we have the (1 a) Cl for 62 is

5| (n—1)s? 2 (n—1)s? (n—1)s?
00 |Xn-11-a/2 < 2 < Xn-1,0/2 ( = 2 )
Sh) Xn-t,0/2 %n-11-a/2

@ This Cl is not symmetric about s2 (which is the unbiased estimator of 62), so ME
is not well defined.

@ (*) In general, we can construct the Cl for 4 and o2 based on other tests (i.e.,
one-sided H,) in the last lecture. However, such a Cl may have an infinite length.

Ping Yu (HKU) Confidence Interval Estimation 16/30



Confidence Intervals in Finite Populations
Confidence Intervals in Finite Populations

@ n is not much smaller than N in random sampling without replacement, e.g.,
n > 0.05N.

@ n itself is large enough so that the CLT can be applied.
@ One Mean, Unknown Population Variance, Large Samples: the (1—«) Cl for u is

X —th-1,6/26%, X +th_1,64/26%],

_s®(N-n\,
n N
rather than s /n is an unbiased estimator of Var ().

- Samples need not be drawn from a normal population, but with relatively large n,
we can treat the samples in this way.?

-ME =ty 14/265% <tn-1,0/2 75-

where

6

XIN

1(**) From slide 32 of Lecture 5, E [s?] =82 = o2 # 02 in random sampling without replacement, so the

unbiased estimator of Var (X) (= % N—” = an N-1y should be = N Since N is usually large, replacing N by
N — 1 in the textbook does not matter in practlce

2In this case, since n is large and x; »= N (i, 62), th_1,4/2 should be changed to z, 5.
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Confidence Interval Estimation: One Population Confidence Intervals in Finite Populations

@ The (1— «) Cl for the population total Nu (e.g., the total enroliment in business
statistics when u is the mean enrollment) is

[NX _tnfl,a/ZNf’f(xN)_( Jr'[nfl,oc/Zl\lé-)'(]-

- ME =ty_1 /2N6% is N times the ME of the Cl for u.
@ One Proportion, Large Samples: the (1— «) Cl for p is

where

ag:wm::)

is an unbiased estimator of Var ( ). [see Problem 5(ii) of Assignment I11]

-ME =24,265 = Zq 2 V" PAD) 7,00/ PP ifn(n—1)>N-1

(or roughly n > N1/2),
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Sample-Size Determination

Sample-Size Determination
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Large Populations
Large Populations

@ If we think the Cl is too wide, we can narrow it by increasing n.
@ Fix the width of the ClI, determine how large an n can achieve it.
@ Consider only two cases below.

@ One Normal Mean, Known Population Variance: Solving

o
ME =2z —,
a/Z\/ﬁ
we have 5 5
z% ,,0
a/2
n= , 1
MEZ (1)

i.e., to make a (1—a) Cl for u extend a distance ME on each side of X, we need

22,02 22,02 | . 72,02 . .
vz (or [ vEs 1 if &>~ is not an integer) samples.

@ One Proportion, Large Samples: We cannot solve

5(1—p
ME:ZO(/Z M’

to have the required n, since p is unobserved beforehand.
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Sample-Size Determination Large Populations
continue

@ Anyway, p(1—p) <0.25, so solving

10.25
ME =Zg/2 Tv

2
_ 0.25z; ,
ME?

can guarantee that the Cl extends no more than ME on each side of the p.
- For one normal mean with unknown population variance, ME = tnfl,a/Z% is not

easy to solve since both t,_; 4, and s depend on n.

we conclude that

@ Note that the ME reported in the media (such as "The poll has a 3% margin of
error") includes only the sampling error in p and does not include any errors due to
biased or otherwise inadequate samples.

@ Example 7.14: Electoral College: If an opinion survey on changing the Electoral
College process reported that the poll has a 3% margin of error (with 95%
confidence), how many citizens of voting age need to be sampled?

0.2522

e a/2 _ 0.25x1.96% _ _
@ Solution: n = —=52 = 503~ — 1067.11 = n=1068.
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Finite Populations
Finite Populations

@ One Mean, Known Population Variance: If 0')2( is the target, then solving
2 (72 N—n
of=— ,
n \N-1

N o2
(N-1)02 + 02

we have

- If ME is the target, then solving

c N—n

ME =22 BV N=T

to have
n= L < n
- np+(N-1) — o
where ng is given in (1). [Implicitly assume normality or the implied n is large]
- If the population total is of interest, then solve ME =z, N ox.
@ With nonresponse or missing data, practitioners may add a certain percent (like
10%) to the implied size n.
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Sample-Size Determination Finite Populations
continue

@ One Proportion, Large Samples: Solving

3= (T

to have
___ Ne(l-p)
(N-1)oZ+p(1-p)
- Since p (1 —p) is unknown, the largest possible value of n is
0.25N
(N-1)o5+0.25

Nmax =

- A 95% Cl for p will extend approximately 1.96c on each side of p.

@ Example 7.16: Campus Survey: Suppose a random sample of the 1,395 U.S.
colleges is taken to estimate the proportion for which the business statistics
course is two semesters long. For a 95% ClI to extend no further than 0.04 on
each side of the sample proportion, how many samples should be taken?

@ Solution: 1.960 = 0.04 = o5 = 0.020408. So

_ 0.25N _ 0.25x1,395 _ _
Mmax = (N-1)62+0.25 ~ 1,394x0.020408+0.25 — 419.88 = n = 420.
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Confidence Interval Estimation: Two Populations

Confidence Interval Estimation: Two Populations
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Confidence Interval Estimation: Two Populations Matched Pair: Two Means

Matched Pair: Two Means

@ Inverting the test statistic
t— d—po
sq/vn
in testing Ho : g == Uy — Hy = o VS. Hy t iy # Lo, we have the (1 - a) Cl for pq

d—ug 3 Sd
— 2 <t =d+t,_ —,
{No\ sq/vn| = n 1,05/2} n 1,a/2\m
where d = X —¥, and sq is the sample standard deviation of {d; }{_; with

di =X —yi.
-ME = tn—l,a/zﬁ-
- If the CI contains 0, then we cannot reject u, = p,,.
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Confidence Interval Estimation: Two Populations Independent Samples: Two Normal Means, Known Population Variances

Independent Samples: Two Normal Means, Known Population
Variances

@ Inverting the test statistic
_ (X=Y)—Ho

zZ =
2

oi_i'_&

n, " ny

intesting Hy : g = 1o vs. Hy : g # U, we have the (1— o) Cl for py is

- - 2 2
X—y)—u - of ©
Mol (F=3) ~to S2g 0= (R =Y) £2a2(| >+ 2.
o2 o Ny I'ly
2x 4 Y
Ny ny
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- L. ST
Confidence Interval Estimation: Two Populations VEUEGILES
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Independent Samples: Two Normal Means, Unknown Equal Population
Variances

@ Inverting the test statistic
(X—¥)—Ho

2 2
SJ_FSJ
Ny ny

intesting Hy : fiq = 1o vs. Hy : g # g, we have the (1— o) Cl for uq is

. 2 2
X—y)—u o [s2 s
ol (x-Y)~to 2) 20 Sthzase p =(X-Y)tth 24/2 *np +7an
Sp Sp X y
Ve Tay

where n = ny 4+ ny, and the pooled sample variance

t=

(nx —1)sZ +(ny —1)s7

2
SH =
P Ny +ny —2

s3 | s?
- ME = tn—z,a/zﬁ/i + %.
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Confidence Interval Estimation: Two Populations VEUEGILES

Independent Samples: Two Normal Means, Unknown Unequal
Population Variances

@ Inverting the test statistic

(X—¥)—Ho

2 2
Six+siy
n T ny

intesting Hy : g = 1o vs. Hy : iy # U, we have the (1— o) Cl for uy is

X—y)— o s2 s
ol ( ) Lo <tya/2 :(X*y)itv,a/z 7x+7y’
s2 s2 Ny ny
X+
X y
2 s2 2
G)+(3)] < defined i
where v = is defined in the last lecture.

(%)zunx—lw(%)z/(nwn

2 2
-ME :tv,a/Z\/ %XJFS*V

X r'|y :
- Whether 62 = c§ or not can be tested using the test in the last lecture.
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Independent Samples: Two Proportions, Large Samples
Independent Samples: Two Proportions, Large Samples

@ Recall that the test statistic is
Px — Py
\/po (1—po) +P0 (T=po) '

Ny

in testing Hy : px —py = 0 vs. Hy : px —py # 0, which employs the null information
px = Py in estimating the variance of px — Py .
@ Intesting Hg : px —Py = Po VS. H1 : px — Py # Po, the proper test statistic is

(Px —Py) —Po
\/pxu ) | BullBy)

Nx Ny

t=

inverting which to have the (1—a) Cl for px —py as

Px —Py) — A Px (1P by (L—pP
Pol (B ) —Po <Zgs2 p = (Px —py)iza/Z\/px( Po) , Py (1=fy)
Px(1-px) | Py(1-Py) n Ny
Ny + Ny

'ME:Za/Z\/pX(l px)ery(l Py)

Ny ny
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Confidence Interval Estimation: Two Populations Independent Samples: Two Proportions, Large Samples

Comparison of the Neyman-Pearson Approach, Fisher’s p-Value
Approach and Neyman'’s ClI

@ Consider testing Hg : 1 = g vs. Hy : 1 # g at the significance level o.

@ The Neyman-Pearson approach can only make a decison for a fixed ug and a
fixed o each time.

@ Fisher's p-value approach can make a decision for any « but a fixed pq each time.
@ Neyman’s Cl can make a decision for any pq but a fixed « each time.
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