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Continuous Random Variables

Cumulative Distribution Function

The cumulative distribution function (cdf), F (x), for a continuous r.v. expresses
the probability that X does not exceed the value x , as a function of x , i.e.,

F (x) = P (X � x) .

- This definition is the same as in the discrete r.v. case, but there F (x) is a step
function so is not differentiable.
- This definition of cdf implies P (a< X � b) = F (b)�F (a); recall that the
probability of a single value is zero for a continuous r.v., so whether a and b are
included in the interval or not does not affect the result.

The counterpart of pmf for a continuous r.v. is the probability density function (pdf),
which is defined as

f (x) =
d
dx

F (x) . [figure here]

- Since F (x) is nondecreasing, f (x)� 0. We denote the area where f (x)> 0 as
S , called the support of X .1

- P (a� X � b) =
R b
a f (x)dx ,

R ∞
�∞ f (x)dx =

R
S f (x)dx = 1 and

F (x) =
R x
�∞ f (x)dx =

R x
xm

f (x)dx , where xm = inf (S ). [figure here]

1(**) Usually, S is defined as the closure of this area, but we will not distinguish this difference in this lecture.
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Continuous Random Variables

S-Shaped CDF Implies the
Bell-Shaped PDF at Right

P (a� X � b)
=
R b
a f (x)dx

R
S f (x)dx = 1 and F (x) =

R x
xm

f (x)dx
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Continuous Random Variables

Example: Gasoline Sales

Assume the gasoline sales at a gasoline station is equally likely from 0 to 1,000
gallons during a day; then the gasoline sales follow a uniform (probability)
distribution:

F (x) =

8<:
0,
0.001x ,
1,

if x < 0,
if 0� x � 1000
if x > 1000,

whose pdf is

f (x) =

�
0.001,

0,
if 0� x � 1000
otherwise.

= 0.001 �1(0� x � 1000),

where 1(�) is the indicator function which equals 1 when the statement in the
parentheses is true and 0 otherwise. [figure here]
In general, the uniform distribution on (a,b) has the pdf

f (x) =
1

b�a
�1(a� x � b),

and the cdf
F (x) =

x �a
b�a

for x 2 [a,b] .
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Continuous Random Variables
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Degenerate S-shaped cdf and bell-shaped pdf?

We denote a r.v. X with a uniform distribution on (a,b) as X � U (a,b).
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Continuous Random Variables

Approximate PDF by PMF

Suppose S = (a,b), where a can be �∞ and b can be ∞. We can partition S into
small subintervals with length ∆, and then approximate the pdf f (x) by the pmf

p
�

a+
�

i+
1
2

�
∆
�
= P (a+ i∆ < X � a+(i+1)∆) =

Z a+(i+1)∆

a+i∆
f (x)dx ,

where i = 0,1, � � � , b�a
∆ �1.2

Figure: PDF of Wage: wage � exp
�
N
�
µ,σ2

��
with N

�
µ,σ2

�
defined below, a= 0,b = ∞

2 i = 0, a+ i∆ = a, and i = b�a
∆ �1, a+(i+1)∆ = a+ b�a

∆ ∆ = b.
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Expectations for Continuous Random Variables

Mean

The mean (or expected value, or expectation) of a continuous r.v. can be defined
through an approximation of a discrete r.v. in the previous slide:

µX := E [X ] �
(b�a)/∆�1

∑
i=0

�
a+

�
i+ 1

2

�
∆
�

P (a+ i∆ < X � a+(i+1)∆)

�
(b�a)/∆�1

∑
i=0

�
a+

�
i+ 1

2

�
∆
�

f
�

a+
�

i+ 1
2

�
∆
�

∆

∆!0�!
R b
a xf (x)dx .

∑ !
R

, a+
�

i+ 1
2

�
∆! x , and ∆! dx .

The mean is the center of gravity of a pole (a,b) with density at x being f (x).

In general, the mean of any function of X , g (X ), is

E [g (X )] =
Z
S

g(x)f (x)dx .

- Recall that E [g (X )] 6= g(E [X ]) unless g (X ) is linear in X .
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Expectations for Continuous Random Variables

Variance

The variance of X is defined as

σ
2
X = E

h
(X �µX )

2
i
= E

h
X2
i
�µ

2
X .

- µX measures the center of the distribution, while σ2
X measures the dispersion or

spread of the distribution.

The standard deviation of X , σX =
q

σ2
X .

Example: For the uniform distribution on (a,b),

µX =
Z b

a
x

1
b�a

dx =
a+b

2
,

σ
2
X =

Z b

a
x2 1

b�a
dx�

�
a+b

2

�2

=
(b�a)2

12
,

i.e., the mean is the center of the range, and when the range (a,b) is wider, the
variance is larger.
For W = a+bX with a and b being constant fixed numbers,

µW = a+bµX ,σ
2
W = b2

σ
2
X and σW = jbjσX .

- For the z-score of X , Z = X�µX
σX

, µZ = 0 and σ2
Z = 1.
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The Normal Distribution
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The Normal Distribution

The Normal Distribution

The pdf for a normally distributed r.v. X is

f
�

x jµ,σ2
�
=

1p
2πσ2

e�
(x�µ)2

2σ2 for �∞< x < ∞, (1)

where µ 2R, and σ2 2 (0,∞), e is Euler’s number, and π = 3.14159 � � � is
Archimedes’ constant (the ratio of a circle’s circumference to its diameter).
- Since the normal distribution depends only on µ and σ2, we denote a r.v. X with

pdf (1) as X � N
�

µ,σ2
�

.

The cdf of the normal distribution, F
�

x jµ,σ2
�
=
R x
�∞ f

�
x jµ,σ2

�
dx , does not have

an analytic form (i.e., a closed-form expression), but computation of probabilities
based on the normal distribution is direct nowadays.

This distribution has many applications in business and economics, e.g., the
dimensions of parts, the heights and weights of human beings, the test scores, the
stock prices, etc. all roughly follow normal distributions.

As will be discussed in Lecture 5, the distribution of sample mean will converge to
a normal distribution when the sample size gets large.
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The Normal Distribution

History of the Normal Distribution

Normal Distribution is also called Gaussian Distribution.

Carl F. Gauss (1777-1855), Göttingen3

3He is also referred to as the "prince of mathematics", known for many things, e.g., the least squares.
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The Normal Distribution

Properties of the Normal Distribution: Mean, Variance and Skewness

For X � N
�

µ,σ2
�

,

µX = µ [easy] and σ
2
X = σ

2 [proof not required],

so a normal distribution is determined completely by its mean and variance.

The shape of f
�

x jµ,σ2
�

is a symmetric bell-shaped curve centered on the mean

µ, which implies the skewness of X is 0. [figure here]
- Recall from Lecture 1 that the (population) skewness is

SkewX =
E
h
(X �µX )

3
i

σ3
X

=:
µ3

σ3 ,

and the sample skewness is

skewness=
∑n

i=1 (xi � x̄)3

ns3 ,

where µ3 is the third central moment, and s is the sample standard deviation.
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The Normal Distribution

Figure: f
�
x jµ,σ2

�
with Different µ and σ2’s: (a) same σ2, different µ ’s; (b) same µ = 5, different

σ2’s.

The normal distribution is a symmetric, bell-shaped distribution with a single peak.
Its peak corresponds to the mean, median, and mode of the distribution.
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The Normal Distribution

Properties of the Normal Distribution: Kurtosis

The tail of f
�

x jµ,σ2
�

is approximately e�x2
which shrinks to zero very quickly.

The (population) kurtosis is often used to measure the heaviness of a distribution’s
tail [why?]:

KurtX =
E
h
(X �µX )

4
i

σ4
X

=:
µ4

σ4 ,

where µ4 is the fourth central moment.

- It can be shown that the kurtosis of N
�

µ,σ2
�

is 3, which is chosen as a

benchmark, i.e., if a distribution’s kurtosis is larger than 3, it is called heavy tailed,
and if less than 3, called light tailed. Heavy-tailed phenomena seem more frequent
than light-tailed ones since the tail of a normal distribution is already very thin.

The sample kurtosis is

kurtosis=
∑n

i=1 (xi � x̄)4

ns4 .
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The Normal Distribution

The Standard Normal Distribution

If X � N (0,1), then we call X follows the standard normal distribution.

Because Z = X�µ

σ
has mean 0 and variance 1 for X � N

�
µ,σ2

�
, and the normal

distribution is completely determined by its mean and variance, we conclude that

Z � N (0,1) if X � N
�

µ,σ2
�

.4

The pdf of N (0,1) is often denoted as φ (�), and the cdf is denoted as Φ (�).
The upper αth quantile of N (0,1), i.e., the solution to 1�Φ (z) = α, is denoted as
zα . [The αth quantile of N (0,1) is the solution to Φ (z) = α, i.e., Φ�1 (α)]
- By symmetry of Φ (�), 1�Φ (z) = Φ (�z), so zα = �Φ�1 (α). [figure here]

The relationship between F
�

x jµ,σ2
�

and Φ (z) and between f
�

x jµ,σ2
�

and

φ (z):

F
�

x jµ,σ2
�

= P (X � x) = P
�

X �µ

σ
� x �µ

σ

�
= Φ

�
x �µ

σ

�
,

f
�

x jµ,σ2
�

=
d
dx

Φ
�

x�µ

σ

�
=

1
σ

φ

�
x �µ

σ

�
,

where the second result is from the chain rule and Φ0 (�) = φ (�).
4(**) Linear transformations maintain normality, but nonlinear ones need not.
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The Normal Distribution

Figure: Normal Density Function with Symmetric Upper and Lower Values
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The Normal Distribution

Normal Probability Plot

Since the normal distribution is most-used, we often need a way to check whether
the data in hand are approximately normally distributed.
Normal probability plots (or QQ-plots with Q for "quantile") provide an easy way to
achieve this goal; Lecture 8 will provide a more rigorous test.
If the data are indeed from a normal distribution, then the plot will be a straight
line. [figure here]
- The vertical axis has a transformed cumulative normal scale.
- Two dotted lines provide an interval within which data points from a normal
distribution would occur most cases.
(**) Justification for QQ-plots: Suppose we order the data fxign

i=1 from the

smallest to the largest, and denote the order statistics as
n

x(i)
on

i=1
. If xi is from

the standard normal distribution, we expect the points
n�

i
n+1 ,Φ

�
x(i)
��on

i=1
in the

xy -plane to lie approximately on the line y = x . The same must then hold for the

points
n�

Φ�1
�

i
n+1

�
,x(i)

�on

i=1
. More generally, if xi � N

�
µ,σ2

�
, then

x(i) � µ+σΦ�1
�

i
n+1

�
. So we expect the points meantioned above to lie on the

line y = µ+σx .
If the data are not from a normal distribution, then the plot will deviate from a
straight line. [figure here]
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The Normal Distribution

Figure: Normal Probability Plot for Data Simulated from a Normal Distribution
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The Normal Distribution

Figure: Normal Probability Plot for Data Simulated from a Uniform Distribution
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Normal Distribution Approximation for Binomial Distribution

Normal Distribution Approximation for Binomial
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Normal Distribution Approximation for Binomial Distribution

Normal Distribution Approximation for Binomial Distribution

Recall that a binomial r.v. X = ∑n
i=1 Xi , where Xi

iid�Bernoulli(p) with iid meaning
"independent and identically distributed".
When np (1�p)> 5, N (np,np (1�p)) provides a good approximation of
Binomial(n,p), which is known as the De Moivre-Laplace theorem. [figure here]
- A more rigorous justification when p is fixed and n! ∞ is provided in Lecture 5.
- Interestingly, we are using a continuous r.v. to approximate a discrete r.v..

Figure: Galton Board (or quincunx, or bean machine): X = ∑n
i=1 Xi , where Xi

iid�Bernoulli(0.5)
2 f�1,1g
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Normal Distribution Approximation for Binomial Distribution

History of the De Moivre-Laplace Theorem

Abraham de Moivre (1667-1754), French5 Pierre-Simon Laplace (1749-1827), French6

The phonomenon of de Moivre–Laplace theorem was first observed by de Moivre
in a private manuscript circulated in 1733 and published in 1738 with the title "The
Doctrine of Chances". Later, Laplace formally proved the theorem in 1810.

5He was exiled to England due to religious persecution, and became a friend of Newton there. To make a
living, he became a private tutor of mathematics.

6He was referred to as the French Newton. His students include Poisson and Napoleon.
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Normal Distribution Approximation for Binomial Distribution

continue

Because normal distributions are easier to handle, this approximation can simplify
the analysis of some problems. For example, if X is the number of customers after
n people browsed a store’s website, and based on past experiences, the
probability of visiting the store after browsing is p, the manager wants to predict
the probability of the number of customers falling in an interval, say, [a,b].
- From the normal approximation,

P (a� X � b) = P

 
a�npp
np (1�p)

� X �npp
np (1�p)

� b�npp
np (1�p)

!

� Φ

 
b�npp
np (1�p)

!
�Φ

 
a�npp
np (1�p)

!
.

The normal approximation can also be applied to the proportion (or percentage)
r.v., P = X /n:

P
approx .� N

�
np
n
,
np (1�p)

n2

�
� N

�
P,

P (1�P)
n

�
,

where the last approximation is from using P to substitute p, i.e., p is estimated
rather than known a priori.
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Normal Distribution Approximation for Binomial Distribution

Summary of Approximations of Binomial(n,p)

Conditions Approximating Distributions
n large and p � 0.05 such that np � 7 Poisson(np)
N large and n

N small Hypergeometric(n,N,S) with S
N � p

n large such that np (1�p)> 5 N (np,np (1�p))
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The Exponential Distribution

The Exponential Distribution
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The Exponential Distribution

The Exponential Distribution

The pdf for an exponentially distributed r.v. T is

f (t jλ ) = λe�λ t �1(t > 0),

denoted as T �Exponential(λ ), i.e., T can take only positive values, and the
distribution is not symmetric – the right tail is heavier than that of the normal
distribution, and the left tail is thinner. [figure here]

The cdf of exponential(λ ) is

F (t jλ ) =
�

1�e�λ t
�
�1(t > 0),

which implies that the survivor function is

S(t) := P (T > t) = 1�F (t jλ ) = e�λ t

for t > 0.
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The Exponential Distribution

Figure: f (t jλ ) with λ = 0.2
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The Exponential Distribution

Properties of the Exponential Distribution

F (t jλ ) can be used to model the waiting time, i.e., the probability that an arrival
will occur during an interval of time t (T is the waiting time before the first arrival),
so is particularly useful for waiting-line, or queuing, problems.
- In survival analysis, S (t) is more popular since it can be used to model the
survival time, i.e., the probability that a patient can survive for time t .

The exponential distribution is closely related to the Poisson distribution: If

T1, � � � ,Tn
iid� Exponential(λ ), then

max
n

nj∑n
i=1 Ti � 1

o
� Poisson (λ ) ; [proof not required]

i.e., Poisson(λ ) is the number of arrivals in a unit time.

For T �Exponential(λ ),

µT =
1
λ

and σ
2
T =

1

λ
2 ,

so an exponential distribution is determined completely by its mean.

- µT =
1
λ

is expected from the mean of Poisson(λ ) which is λ from Lecture 4.
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The Exponential Distribution

Constant Harzard Function

Constant Hazard Function: The harzard function (or hazard rate) is defined as

λ (t) =
f (t)

1�F (t)
=

f (t)
S(t)

, t > 0,

so for the exponential distribution,

λ (t) =
λe�λ t

e�λ t
= λ

does not depend on t .
- λ (t) is the probability of "instantaneous" death given than an item has survived
for time t :

λ (t)dt � P (t < T � t+dt)
P (T > t)

=
P (t < T � t+dt \T > t)

P (T > t)
=P (t < T � t+dt jT > t) .

- (**) λ (t) is defined by f (t) and F (t). Actually, we can also recover f (t) and F (t)
from λ (t):

F (t) = 1�e�Λ(t), and f (t) = λ (t)e�Λ(t),

where Λ (t) =
R t
0 λ (s)ds if F (0) = 0 is the cumulative hazard function. This is

because λ (t) = �S0(t)
S(t) = � log (S(t))0.
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The Exponential Distribution

Memoryless

The constancy of the hazard function for the exponential distribution leads to the
memoryless property.

Memoryless:

P (T > s+ t jT > s) =
P (T > s+ t \T > s)

P (T > s)

=
P (T > s+ t)

P (T > s)

=
e�λ (s+t)

e�λs

= e�λ t

= P (T > t) ,

where P (T > t) = 1�F (t) = e�Λ(t) = e�
R t

0 λdt = e�λ t as already known.
- If T is conditioned on a failure to observe the event over some initial period of
time s, the distribution of the remaining waiting time is the same as the original
unconditional distribution.
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Jointly Distributed Continuous Random Variables

Jointly Distributed Continuous Random Variables
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Jointly Distributed Continuous Random Variables

Jointly Distributed Continuous R.V.’s

This section is parallel to the section on multivariate discrete r.v.’s.
Let X1, � � � ,XK be continuous r.v.’s.

1 Their joint cdf
F (x1, � � � ,xK ) = P (X1 � x1\�� �\XK � xk ) .

2 The cdf, F (x1) , � � � ,F (xK ), of individual r.v.’s are called their marginal distributions.
3 The r.v.’s are independent iff for all x1, � � � ,xK ,

F (x1, � � � ,xK ) = F (x1) � � �F (xK ) .

The counterparts of the joint and marginal probability distributions for multivariate
discrete r.v.’s are the joint pdf

f (x1, � � � ,xK ) =
dn

dx1 � � �dxK
F (x1, � � � ,xK )

and the marginal pdf

f (xi ) =
d

dxi
F (xi ) =

Z
� � �
Z

f (x1, � � � ,xK )dx1 � � �dxi�1dxi+1 � � �dxK .

- The independence of X1, � � � ,XK can be equivalently defined as
f (x1, � � � ,xK ) = f (x1) � � � f (xK ) for all x1, � � � ,xK .

Ping Yu (HKU) Continuous Random Variables 35 / 37



Jointly Distributed Continuous Random Variables

Conditional Mean and Variance

For two continuous r.v.’s (X ,Y ), the conditional pdf of Y given X = x is

f (y jx) = f (x ,y)
f (x)

.

The conditional mean of Y given X = x is

µY jX=x = E [Y jX = x ] =
Z

yf (y jx)dy .

The conditional variance of Y given X = x is

σ
2
Y jX=x = Var (Y jX = x) =

Z �
y �µY jX=x

�2
f (y jx)dy .

These concepts can be extended to multivariate continuous r.v.’s in an obvious
way.

The results such as E [a+bY jX = x ] = a+bE [Y jX = x ] and
Var (a+bY jX = x) = b2Var (Y jX = x) for constants a and b also hold.
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Jointly Distributed Continuous Random Variables

Mean and Variance of (Linear) Functions

For a function of X1, � � � ,XK , g (X1, � � � ,XK ), its mean, E [g (X1, � � � ,XK )], is defined
as

E [g(X1, � � � ,XK )] =
Z
� � �
Z

g (x1, � � � ,xK ) f (x1, � � � ,xK )dx1 � � �dxK .

If W = ∑K
i=1 aiXi , then

µW = E [W ] =
K

∑
i=1

ai µ i ,

and
σ

2
W = Var (W ) =∑K

i=1 a2
i σ

2
i +2∑K�1

i=1 ∑K
j>i aiaj σ ij ,

which reduces to ∑K
i=1 σ2

i if σ ij = 0 for all i 6= j and ai = 1 for all i .

Actually, all the results on mean and variance for discrete r.v.’s apply to continuous
r.v.’s.

The covariance and correlation between two continuous r.v.’s (X ,Y ) are similarly
defined as

Cov (X ,Y ) = σXY = E [(X �µX ) (Y �µY )] = E [XY ]�µX µY ,

Corr (X ,Y ) = ρXY =
σXY

σX σY
.
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