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Random Variables

Discrete Random Variables

A random variable (r.v.) is a variable that takes on numerical values realized by the
outcomes in the sample space generated by a random experiment.
- Mathematically, a random variable is a function from S to R.
- In this and next lectures, we use capital letters, such as X , to denote the random
variable, and the corresponding lowercase letter, x , to denote a possible value.

A discrete random variable is a random variable that can take on no more than a
countable number of values.
- e.g., the number of customers visiting a store in one day, the number of claims on
a medical insurance policy in a particular year, etc.
- "Countable" includes "finite" and "countably infinite".
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Random Variables

Continuous Random Variables

A continuous random variable is a random variable that can take any value in an
interval (i.e., for any two values, there is some third value that lies between them).
- e.g., the yearly income for a family, the highest temperature in one day, etc.
- The probability can only be assigned to a range of values since the probability of
a single value is always zero.

Recall the distinction between discrete numerical variables and continuous
numerical variables in Lecture 1.

Modeling a r.v. as continuous is usually for convenience as the differences
between adjacent discrete values (e.g., $35,276.21 and $35,276.22) are of no
importance.

On the other hand, we model a r.v. as discrete when probability statements about
the individual possible outcomes have worthwhile meaning.
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Probability Distributions for Discrete Random Variables
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Probability Distributions for Discrete Random Variables

Probability Distribution Function

The probability distribution (function), p (x), of a discrete r.v. X represents the
probability that X takes the value x , as a function of x , i.e.,

p (x) = P (X = x) for all values of x .

- Sometimes, the probability distribution of a discrete r.v. is called the probability
mass function (pmf).
- Note that X = x must be an event; otherwise, P (X = x) is not well defined.

p (x) must satisfy the following properties (implied by the probability postulates in
Lecture 2):

1 0� p (x)� 1 for any value x ,
2 ∑x2S p (x) = 1, where S is called the support of X , i.e., the set of all x values

such that p (x)> 0.

Notation: I will use p (x) and p (rather than P (x) and P as in the textbook) for pmf
and an interested probability to avoid confusion with the probability symbol P.
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Probability Distributions for Discrete Random Variables

Example 4.1: Number of Product Sales
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Probability Distributions for Discrete Random Variables

Cumulative Distribution Function

The cumulative distribution function (cdf), F (x0), of a r.v. X , represents the
probability that X does not exceed the value x0, as a function of x0, i.e.,

F (x0) = P (X � x0) .

- The definition of cdf applies to both discrete and continuous r.v.’s, and x0 2R.
- F (x0) for a discrete r.v. is a step function with jumps only at support points in S .
[figure here]
- p (�) and F (�) are probabilistic counterparts of histogram and ogive in Lecture 1.

Relationship between pmf and cdf for discrete r.v.’s:

F (x0) = ∑
x�x0

p (x) .

From the definition of cdf, we have (i) 0� F (x0)� 1 for any x0; (ii) if x0 < x1,
F (x0)� F (x1), i.e., F (�) is an (weakly) increasing function.

From the figure in the next slide, we can also see (iii) F (x0) is right continuous,
i.e., limx#x0

F (x) = F (x0); (iv) limx0!�∞ F (x0) = 0 and limx0!∞ F (x0) = 1.
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Probability Distributions for Discrete Random Variables

Example Continued
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Properties of Discrete Random Variables
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Properties of Discrete Random Variables

Mean

The pmf contains all information about the probability properties of a discrete r.v.,
but it is desirable to have some summary measures of the pmf’s characteristics.

The mean (or expected value, or expectation), E [X ], of a discrete r.v. X is defined
as

E [X ] = µ = ∑
x2S

xp (x) .

- The mean of X is the same as the population mean in Lecture 1, µ = ∑N
i=1 xi
N , but

we use the probability language here: think of E [X ] in terms of relative
frequencies,

∑N
i=1 xi

N
= ∑

x2S

x
Nx

N
,

weighting each possible value x by its probability.
- In other words, the mean of X is is a weighted average of all possible values of X .
- For example, if we roll a die once, the expected outcome is

E [X ] =
6

∑
i=1

i� 1
6
= 3.5.
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Properties of Discrete Random Variables

Variance

The variance, Var (X ), of a discrete r.v. X is defined as

Var (X ) = σ
2 = E

h
(X �µ)2

i
= ∑

x2S

(x�µ)2 p (x) .

- This definition of Var (X ) is the same as the population variance in Lecture 1.
- It is not hard to see that

σ
2 = ∑

x2S

(x �µ)2 p (x) = ∑
x2S

x2p (x)�2µ ∑
x2S

xp (x)+ µ
2 ∑

x2S

p (x)

= E
h
X2
i
�2µE [X ]+ µ

2 = E
h
X2
i
�2µ

2+ µ
2

= E
h
X2
i
�µ

2,

i.e., the second moment � first moment2,1 where in the third equality, p (x) is the
probability of X2 = x2,2 and ∑x2S p (x) = 1.

The standard deviation, σ =
p

σ2, is the same as the population standard
deviation in Lecture 1.

1σ2 is also called the second central moment.
2What will happen if X can take both 1 and �1? ∑x2=1 x2�P

�
X 2 = x2

�
= ∑x2=1 x2� (p (1)+p (�1))

= 12�p (1)+ (�1)2�p (�1) .
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Properties of Discrete Random Variables

Mean of Functions of a R.V.

For a function of X , g (X ), its mean, E [g (X )], is defined as

E [g(X )] = ∑
x2S

g (x)p (x) .

- e.g., X is the time to complete a contract, and g (X ) is the cost when the
completion time is X ; we want to know the expected cost.

E [g (X )] 6= g(E [X ]) in general, e.g., if g (X ) = X2, then

E [g (X )]�g(E [X ]) = E
h
X2
i
�µ

2 = σ
2 > 0.

- However, when g (X ) is linear in X , E [g (X )] = g(E [X ]).

Ping Yu (HKU) Discrete Random Variables 14 / 37



Properties of Discrete Random Variables

Mean and Variance of Linear Functions

For Y = a+bX with a and b being constant fixed numbers,

µY := E [Y ] = E [a+bX ] = a+bE [X ] =: a+bµX ,

σ
2
Y := Var (Y ) = Var (a+bX ) = b2Var (X ) =: b2

σ
2
X ,

and
σY =

q
Var (Y ) = jbjσX .

- The proof can follow similar steps as in the last last slide. [Exercise]
- The constant a will not contribute to the variance of Y .
Some Special Linear Functions:
- If b = 0, i.e., Y = a, then E [a] = a and Var (a) = 0.
- If a= 0, i.e., Y = bX , then E [bX ] = bE [X ] and Var (bX ) = b2Var (X ).

- If a= �µX /σX and b = 1/σX , i.e., Y = X�µX
σX

is the z-score of X , then

E
�

X �µX
σX

�
=

µX
σX

� µX
σX

= 0

and

Var
�

X �µX
σX

�
=

Var (X )

σ2
X

= 1.
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Binomial Distribution
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Binomial Distribution

Bernoulli Distribution

The Bernoulli r.v. is a r.v. taking only two values, 0 and 1, labeled as "failure" and
"success". [figure here]

If the probability of success, p (1) = p, then the probability of failure,
p (0) = 1�p (1) = 1�p. This distribution is known as the Bernoulli distribution,
and we denote a r.v. X with this distribution as X �Bernoulli(p).

The mean of a Bernoulli(p) r.v. X is

µX = E [X ] = 1�p+0� (1�p) = p,

and the variance is

σ
2
X = Var (X ) = (1�p)2�p+(0�p)2� (1�p)

= p (1�p) .

- When p = 0.5, σ2
X achieves its maximum; when p = 0 and 1, σ2

X = 0. [why?]
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Binomial Distribution

History of the Bernoulli Distribution

Jacob Bernoulli (1655-1705), Swiss

Jacob Bernoulli (1655-1705) was one of the many prominent mathematicians in
the Bernoulli family.
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Binomial Distribution

Binomial Distribution

The binomial r.v. X is the number of successes in n independent trials of a
Bernoulli(p) r.v., denoted as X �Binomial(n,p).

Denote Xi as the outcome in the i th trial, then the binomial r.v. X = ∑n
i=1 Xi .

After some thinking, we can figure out that the number of sequences with x
successes in n trials is Cn

x , and the probability of any sequence with x successes
is px (1�p)n�x by the multiplication rule.

By the addition rule, the binomial distribution is

p (x jn,p) = Cn
x px (1�p)n�x , x = 0,1, � � � ,n.

From the discussion on multivariate r.v.’s below, we can show

µX = E [X ]
(�)
=

n

∑
i=1

E [Xi ] = np,

and

σ
2
X = Var (X )

(��)
=

n

∑
i=1

Var (Xi ) = np (1�p) .

- (*) holds even if Xi ’s are dependent, while (**) depends on the independence of
Xi ’s; see the slides on jointly distributed r.v.’s.
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Binomial Distribution
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Figure: Binomial Distributions with Different n and p
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Poisson Distribution

Poisson Distribution
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Poisson Distribution

Poisson Distribution

The Poisson distribution was proposed by Siméon Poisson in 1837. [figure here]
Assume that an interval is divided into a very large number of equal subintervals
so that the probability of the occurrence of an event in any subinterval is very small
(e.g., � 0.05). The Poisson distribution models the number of events occuring on
that inverval, assuming

1 The probability of the occurrence of an event is constant for all subintervals.
2 There can be no more than one occurrence in each subinterval.
3 Occurrences are independent.

From these assumptions, we can see the Poisson distribution can be used to
model, e.g., the number of failures in a large computer system during a given day,
the number of ships arriving at a dock during a 6-hour loading period, the number
of defective products in large production runs, etc.
The Poisson distribution is particularly useful in waiting line, or queuing, problems,
e.g., the probability of various numbers of customers waiting for a phone line or
waiting to check out of large retail store.
- For a store manager, how to balance long lines (too few checkout lines, losing
customers) and idle customer service associates (too many lines, resulting
waste)?
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Poisson Distribution

History of the Poisson Distribution

Siméon D. Poisson (1781-1840), French
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Poisson Distribution

continue

Intuitively, the Poisson r.v. is the binomial r.v. taking limit as p! 0 and n! ∞. If
np! λ which specifies the average number of occurrences (successes) for a
particular time (and/or space), then the binomial distribution converges to the
Poisson distribution:

p (x jλ ) = e�λ λ
x

x !
,x = 0,1,2, � � � ,

where e = 2.71828 � � � is the base for natural logarithms, called Euler’s number.
[proof not required]
- We denote a r.v. X with the above Poisson distribution as X �Poisson(λ ).
- When n is large and np is of only moderate size (preferably np � 7), the binomial
distribution can be approximated by Poisson(np). [figure here]

µX = E [X ] = λ , and σ2
X = Var (X ) = λ .

- np! λ , and np (1�p) = np�np �p! λ �λ �0= λ .

The sum of independent Poisson r.v.’s is also a Poisson r.v., e.g., the sum of K
Poisson(λ ) r.v. is a Poisson(K λ ) r.v..
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Poisson Distribution
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Figure: Poisson Approximation

For an example whether the approximation is not this good, see Assignment
II.8(ii).
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Hypergeometric Distribution

Hypergeometric Distribution
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Hypergeometric Distribution

Hypergeometric Distribution

If the binomial distribution can be treated as from random sampling with
replacement from a population of size N, S of which are successes and S/N = p,
then the hypergeometric distribution models the number of successes from
random sampling without replacement.
- These two random sampling schemes will be discussed more in Lecture 5.

The hypergeometric distribution is

p (x jn,N,S) =
CS

x CN�S
n�x

CN
n

, x =max (0,n� (N�S)) , � � � ,min (n,S) ,

where n is the size of the random sample, and x is number of successes.
- A r.v. with this distribution is denoted as X �Hypergeometric(n,N,S).

The binomial distribution assumes the items are drawn independently, with the
probability of selecting an item being constant.

This assumption can be met in practice if a small sample is drawn (without
replacement) from a large population (e.g., N > 10,000 and n/N < 1%). [figure
here]

When we draw from a small population, the probability of selecting an item is
changing with each selection because the number of remaining items is changing.
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Hypergeometric Distribution
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Figure: Comparison of Binomial and Hypergeometric Distributions

µX = E [X ] = np, and σ2
X = Var (X ) = np (1�p) N�n

N�1 � np (1�p),3 where p = S
N .

[proof not required]

3When n
N is small, N�n

N�1 is close to 1, matching the variance of the binomial r.v.
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Jointly Distributed Discrete Random Variables

Jointly Distributed Discrete Random Variables
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Jointly Distributed Discrete Random Variables

Bivariate Discrete R.V.’s: Joint and Marginal Probability Distributions

We can use bivariate probability distribution to model the relationship between two
univariate r.v.’s.

For two discrete r.v.’s X and Y , their joint probability distribution expresses the
probability that simultaneously X takes the specific value x and Y takes the value
y , as a function of x and y :

p (x ,y) = P (X = x \Y = y) ,x 2SX and y 2SY .

- p (x ,y) is a straightforward extension of joint probabilities in Lecture 2, where
X = x and Y = y are two events with x and y indexing them.
- From probability postulates in Lecture 2, 0� p (x ,y)� 1, and
∑x2SX ∑y2SY

p (x ,y) = 1.

The marginal probability distribution of X is

p (x) = ∑
y2SY

p (x ,y) ,

and the marginal probability distribution of Y is

p (y) = ∑
x2SX

p (x ,y) ,
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Jointly Distributed Discrete Random Variables

Conditional Probability Distribution and Independence of Bivariate R.V.’s

These two concepts are parallel to conditional probabilities and independent
events in Lecture 2.
The conditional probability distribution of Y , given that X takes the value x ,
expresses the probability that Y takes the value y , as a function of y , when the
value x is fixed for X :

p (y jx) = p (x ,y)
p (x)

;

similarly, the conditional probability distribution of X , given Y = y , is

p (x jy) = p (x ,y)
p (y)

.

- One way of thinking of conditioning is filtering a data set based on the value of X .
Two r.v.’s X and Y are independent iff

p (x ,y) = p (x)p (y)

for all x 2SX and y 2SY , i.e., independence of r.v.’s can be understood as a set
of independencies of events. E.g., "height" and "musical talent" are independent.
- Generally, k r.v.’s are independent if p (x1, � � � ,xk ) = p (x1)p (x2) � � �p (xk ).
- X and Y are independent iff p (y jx) = p(y) or p (x jy) = p (x) (=)symmetric).
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Jointly Distributed Discrete Random Variables

Conditional Mean and Variance

The conditional mean of Y , given that X takes the value x , is given by

µY jX=x = E [Y jX = x ] = ∑
y2SY

yp (y jx) .

- For any constants a and b, E [a+bY jX = x ] = a+bE [Y jX = x ].

The conditional variance of Y , given that X takes the value x , is given by

σ
2
Y jX=x = Var (Y jX = x) = ∑

y2SY

�
y �µY jX=x

�2
p (y jx) .

- For any constants a and b, Var (a+bY jX = x) = b2Var (Y jX = x).

Notation: The notations used in the textbook, µY jX and σ2
Y jX , are not clear.
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Jointly Distributed Discrete Random Variables

Mean and Variance of (Linear) Functions

For a function of (X ,Y ), g (X ,Y ), its mean, E [g (X ,Y )], is defined as

E [g(X ,Y )] = ∑
x2SX

∑
y2SY

g (x ,y)p (x ,y) .

For a linear function of (X ,Y ), W = aX +bY ,

µW := E [W ] = aµX +bµY , [verified in the next slide]

σ
2
W := Var (W ) = a2

σ
2
X +b2

σ
2
Y +2abσXY [see the next3 slide for σXY ].

- e.g., W is the total revenue of two products with (X ,Y ) being the sales and (a,b)
the prices.
- If a= b = 1, then E [X +Y ] = E [X ]+E [Y ], i.e., the mean of sum is the sum of
means.
- If a= 1 and b =�1, then E [X �Y ] = E [X ]�E [Y ], i.e., the mean of difference is
the difference of means.
- If a= b = 1 and σXY = 0, then Var (X +Y ) = Var (X )+Var (Y ), i.e., the
variance of sum is the sum of variances.
- If a= 1,b = �1 and σXY = 0, then Var (X �Y ) = Var (X )+Var (Y ), i.e., the
variance of difference is the sum of variances.
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Jointly Distributed Discrete Random Variables

(*) Verification and Extensions

µW :

µW = ∑
x2SX

∑
y2SY

(ax +by)p (x ,y)

= a ∑
x2SX

"
x ∑

y2SY

p (x ,y)

#
+b ∑

y2SY

"
y ∑

x2SX

p (x ,y)

#
= a ∑

x2SX

xp (x)+b ∑
y2SY

yp (y)

= aµX +bµY ,

σ2
W can be derived based on this result. [Exercise]

Extension I: If W = ∑K
i=1 aiXi , then

µW = E [W ] =
K

∑
i=1

aiE [Xi ] =:
K

∑
i=1

ai µ i ,
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Jointly Distributed Discrete Random Variables

continue

and

σ
2
W = Var (W ) =∑K

i=1 a2
i Var (Xi )+2∑K�1

i=1 ∑K
j>i aiajCov

�
Xi ,Xj

�
=: ∑K

i=1 a2
i σ

2
i +2∑K�1

i=1 ∑K
j>i aiaj σ ij .

- If ai = 1 for all i , then we have

E
h
∑K

i=1 Xi

i
=∑K

i=1 µ i and Var
�
∑K

i=1 Xi

�
=∑K

i=1 σ
2
i +2∑K�1

i=1 ∑K
j>i σ ij ,

where Var
�

∑K
i=1 Xi

�
reduces to ∑K

i=1 σ2
i if σ ij = 0 for all i 6= j .

Extension II: For W = aX +bY and a r.v. Z different from (X ,Y ),

E [W jZ = z] = aµX jZ=z +bµY jZ=z ,

Var (W jZ = z) = a2
σ

2
X jZ=z +b2

σ
2
Y jZ=z +2abσXY jZ=z ,

where Var (W jZ = z) reduces to a2σ2
X jZ=z +b2σ2

Y jZ=z if σXY jZ=z = 0.
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Jointly Distributed Discrete Random Variables

Covariance and Correlation

These two concepts are the same as those in Lecture 1 but in the probability
language.

The covariance between X and Y

Cov (X ,Y ) = σXY = E [(X �µX ) (Y �µY )] = ∑
x2SX

∑
y2SY

(x �µX ) (y �µY )p (x ,y) .

- It is not hard to show that Cov (X ,Y ) = E [XY ]�µX µY , which reduces to

Var (X ) = E
h
X2
i
�µ2

X when X = Y .

The correlation between X and Y

Corr (X ,Y ) = ρXY =
Cov (X ,Y )

σX σY
.

Recall that σXY is not unit-free so is unbounded, while ρXY 2 [�1,1] is more
useful.

Recall that σXY and ρXY have the same sign: if they are positive, X and Y are
called positively dependent, when they are negative, X and Y are called negatively
dependent, when they are zero, there is no linear relationship between X and Y .
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Jointly Distributed Discrete Random Variables

Covariance and Independence

If X and Y are independent, then Cov (X ,Y ) = Corr (X ,Y ) = 0. [Exercise]
- The converse is not true; recall the figure in Lecture 1.

Here is a concrete example: if the distribution of X is

p (�1) = 1/4,p (0) = 1/2 and p (1) = 1/4,

then Cov (X ,Y ) = 0 with Y = X2. Why?

Because X can determine Y , X and Y are not independent.

The distribution of X implies E [X ] = 0.

The distribution of Y is p (0) = p (1) = 1/2, i.e., Y is a Bernoulli r.v., which implies
E [Y ] = 1/2.

The joint distribution of (X ,Y ) is

p (�1,1) = 1/4,p (0,0) = 1/2,p (1,1) = 1/4,

which implies E [XY ] = 0, so Cov (X ,Y ) = E [XY ]�E [X ]E [Y ] = 0.

Portfolio analysis in the textbook (Pages 190-192, 236-240) will be discussed in
the next tutorial class.
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