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Random Experiment and Sample Space

@ A random experiment is a process leading to two or more possible outcomes,
without knowing exactly which outcome will occur.

@ Examples:
- A coin is tossed and the outcome is either a head or a tail.
- A company has the possibility of receiving 0-5 contract awards.

@ The possible outcomes from a random experiment are called the basic outcomes,
and the set of all basic outcomes is called the sample space, denoted as S.
- No two basic outcomes can occur simultaneously.
- The random experiment must necessarily lead to the occurrence of one of the
basic outcomes.

- So after a random experiment is conducted, one and only one basic outcome will
occur.



Event, Intersection and Mutually Exclusive

@ An event, E, is any subset of basic outcomes from the sample space. An event
occurs if the random experiment results in one of its constituent basic outcomes.
- The null event represents the absence of a basic outcome and is denoted as @.
- e.g., {contract rewards are odd} and {contract rewards are less than 3} are both
events.
- This definition of "event" is different from our everyday notion, which requires that
some changes occur (e.g., we would not refer to the contract reward being odd as
an event, but we would refer to that the reward increases as such.).
- Another way of thinking of an event is this: any declarative statement (a
statement that can be true or false) is an event.

@ The intersection of two events, A and B, denoted as AN B, is the set of all basic
outcomes that belong to both A and B, i.e., ANB occurs iff both A and B occur.
[figure here]

- We can similarly define E;NE;N---NEg.

@ If the events A and B have no common basic outcomes (i.e., cannot co-occur),
they are called mutually exclusive, i.e., ANB = @. [figure here]
- We can similarly define Eq,E5, --- ,Ex to be mutually exclusive as pairwisely
mutually exclusive.



Random Experiment, Outcomes, and Events

(a) (b)
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Figure: Venn Diagrams for ANB and A and B are Mutually Exclusive



Random Experiment, Outcomes, and Events

Complement

@ The complement of A, denoted as A, is the set of basic outcomes belonging to S

but not to A. [figure here]

Table 3.2 Intersection of and Mutually Exclusive Events

(a) Intersection of Events

(b) Mutually Exclusive Events
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Union, Collectively Exhaustive and Partition

@ The union of two events, A and B, denoted as AUB, is the set of all basic
outcomes that belong to at least one of A and B, i.e., AUB occurs iff either A or B
or both occur. [figure here]

- We can similarly define E; UE, U--- UEg.

o IfE;UE,U---UEK =S, then these K events are said to be collectively exhaustive.

@ A mutually exclusive and collectively exhaustive set of events {B;}\*_; is called a
partition of the sample space S.

- Exactly one of the events {Bi}ﬁl must be true.

- The set of all basic outcomes is a partition of S, and so are {A,A} and
{ANB,A—(ANB),B—(ANB),ANB} in Table 3.2.

- We can also partition any event A in the same way.

S
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Classical Probability

@ We consider three definitions of probability: classical probability, relative frequency
probability and subjective probability.

@ The classical probability is the proportion of times that an event will occur,
assuming that all outcomes in a sample space are equally likely to occur,
specifically,

Na

N
where N, is the number of outcomes that satisfy the condition of event A, and N is
the total number of outcomes in the sample space.
- The basic idea is that the probability can be developed from fundamental
reasoning about the process.
- e.g., tossing a coin 10 times, what is the probability with 5 successive heads?

@ Formula for Counting the Number of Combinations: the number of combinations of
X objects chosen from n:

P(A) =

n!
P=——with0! =1,
Cy = XI(n—x)! with O

wheren!:=n-(n—1)----- 2-1lis read "n factorial".

- Sometimes, the notation ( )r(] ) is used for C{.



With/Without Replacement and Ordered/Unordered Counting

@ When counting the number of objects in a set, there are two important distinctions.
Counting may be with replacement or without replacement. Counting may be
ordered or unordered.

Without Replacement  With Replacement
Ordered (nE!x)! =:P] n*
Unordered ch cptx-t
@ P! is the number of permutations of x objects chosen from n, and "=:"is read as
"defines".!

@ (*) This following part will be discussed in the next tutorial class.

@ The unordered counting with replacement is more challenging. It is the number of
distinct solutions to the equation

Zl+zz++zn:X,WhereZ| 6{0,1,21"'1)(}'

- thinking of z; as z; bars, then we are arranging x bars and (n—1) plus signs (+)
to get different patterns.

1m="is read as "is defined as".



Relative Frequency Probability and Subjective Probability

@ The relative frequency probability is the limit of the proportion of times that an
event will occur in a large number of trials, specifically,

Na
P(R)= -2,
where np is the number of A outcomes, and n is the total number of trials or
outcomes. The probability is the limit as n becomes large (or approaches infinity).
- e.g., the probability of family income above $75,000.
- This probability can be obtained from more than one data sources to
cross-validate each other.

@ The subjective probability expresses an individual’s degree of belief about the
chance that an event will occur.
- This probability is personal, so different individuals (with different information or
different views) may have different probabilities.



Probability Postulates

@ We postulate the following properties of probability to assess and manipulate it.

@ IfAisaneventinS, then
o<P (A) <1.

- An event with probability 0 is impossible; an event with probability 1 is certain.

@ Let Abe aneventin S and O; be the basic outcomes. Then

P(A)= P(Oi)::;P(Oi)-

OieA

- Why? P (A) = liMp_e B2 = liMp_e0 8™ = S pliMp 0o T = $ P (O)).
Q@ P(S)=1

- When a random experiment is carried out, something has to happen.
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History of Probability Theory

Andrey N. Kolmogorov (1903-1987), Russian?

2Vladimir Arnold, a student of Kolmogorov, once said: "Kolmogorov — Poincaré — Gauss — Euler
— Newton, are only five lives separating us from the source of our science".
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Consequences of the Postulates

@ If S consists of n equally likely basic outcomes, O4,05,---,Op, then (from
postulates 2 and 3)

P(O)=".

- tossing a coin, P (head) = 1/2.

@ If S consists of n equally likely basic outcomes and event A consists of np of these
outcomes, then (from consequence 1 and postulate 2)

nA
P(A)=—.
(A) =7
@ If A and B are mutually exclusive, then (from postulate 2)
P(AUB)=P(A)+P(B).

- A similar result applies to mutually exclusive events Eq,E;,---,Ek.
@ IfEq,Ey, -+, Ek are collectively exhaustive, then (from postulate 3)

P(ELUE,U---UEKk) =1.
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Complement Rule and Addition Rule

@ We develop some rules for computing probabilities for compound events.
@ We will illustrate these rules using an empirical example at the end of this section.
@ The complement rule: for an event A and its complement A,

P(A)=1-P(A).

- This is because 1 =P (S) =P (AUA) =P (A) +P (A).
@ The addition rule: for two events A and B,
P(AUB) =P (A)+P(B)—P(ANB).
- This is because P (AUB) =P (A)+P (ANB) and P (B) =P (ANB) +P (ANB).

[figure here]
- P (ANB) is called the joint probability of A and B.



Probability Rules

s P(AUB)

g P(A) & P(B) s P(ANB)

[]
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Figure: Venn Diagram for Addition Rule



Conditional Probability

@ The conditional probability of event A given that event B occurred, denoted as

P (AB), is

P(AB) = % provided that P (B) > 0;
similarly,

P (B|A) = % provided that P (A) > 0.

- refer to the figure in the previous slide.
- P (A|B) can be thought of filtering or stratifying the data when calculating the
“relative frequency" probability; it cannot be smaller than P (ANB).

Table 3.3 4 —
Joint Probability A
of Aand B B P(ANB) P(ANB) P(B)
B P(ANB) P(ANB) P(B)
P(A) P(A) 1.0
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@ P (A) can be dramatically different from P (A|B) (i.e., the probability we assign to
an event depends on the knowledge we condition on; e.g., P (COVID-19) and
P (COVID-19|temperature = 40°C)).



Multiplication Rule and Statistical Independence

@ The multiplication rule: for two events A and B,
P(ANB)=P(AB)P(B) =P (BJA)P (A).
@ Two events A and B are (statistically) independent iff
P(ANB)=P(A)P(B).
- This implies

P(AB) = P(A) (ifP(B)>0),
P(BIA) = P(B) (ifP(A)>0),

either of which can be used as the definition of independence.
- Generally, the events Eq,E», - -+, Ex are mutually independent iff

P(ElﬂEzm“'ﬂEK):P(El I_lI 1



continue

@ Intuitively, independence between A and B means that knowing B occurred will not
change the assessment of A’s probability.
- It is hard in practice for two events to be "strictly" independent, but we can
“"approximately" assume it for simplicity; e.g., P (you have the COVID-19) ~
P (you have the COVID-19|your friend Joe is 42 years old).

@ If two events A and B are not independent, then they are dependent.
- Dependence and independence are symmetric relations — if A is dependent on
B, then B is dependent on A, and if A is independent on B, then B is independent
on A (Formally, P (A|B) = P (A) = P (B|A) = P (B)). This makes intuitive sense:
if "smoke" tells us something about "fire", then "fire" must tell us something about
"smoke".

@ Independence is different from "mutually exclusive": the latter implies
P (ANB) =0 and the former means P (ANB) =P (A)P (B).
- ANB = @ implies "if A occurs, then B cannot", so they are not be independent
(unless P (A) or P (B) is zero).



Examples 3.14 and 3.15: Choice of Cell Phone Features

@ 75% customers use text messaging (A), 80% use photo capability (B), and 65%

use both (ANB).

@ Then P (Au B)=

o P(AB) = "ig) = 588

P (A) +P(B)
= 0.8125 is the probability that a person who wants

—P(ANB)

=0.75+0.80—-0.65 = 0.90.

photo capablllty also wants texting messaging.

P(A)

textlng messaging also wants photo capability.

Tahle 3.4
Joinl Probibilily
for Example 3.15

Table 3.5
Joint Probability
tar Photo and
Meassaging Wheon
They Are
Independent
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Example 3.20: The Birthday Problem

@ What is the probability that at least 2 people in a party have the same birthday
(month and day, neglecting Feb. 29)?

@ Itis easier to calculate A, i.e., the probability that "all M people have different
birthdays".

@ After some thinking, you can figure out that

Pl:\;/IGS
A) =
(A) = 365w
soP(A)=1-P (A)
M 10 20 22 23 30 40 60

P(A) | 0.117 0.411 0.476 0507 0.706 0.891 0.994

@ The probability that any given pair of people will have the same birthday is 1/365,
but as M increases, the number of possible matches increases, until P (A)
becomes quite large.
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Bivariate Probabilities

Table 3.6

Outcomes for B B, Bx

Bivariate Events A, P(A; N By) P(A;NBy) T P(A; N Bg)
A,  P(ANB) P(A, N B,) .. P(AyNBy)
AH P(AIIHB]> p(AHmBZ) p(AlInBK)

Copyrght 62013 Pearson

@ The events A and B; are mutually exclusive and collectively exhaustive within their
sets; all interactions A; NB; can be regarded as basic outcomes of a random
experiment.

@ The probabilities P (A NB;) are called bivariate probabilities.
@ The following slide provides an empirical example.



Bivariate Probabilities

Table 3.7 Probabilities for Television Viewing and Income Example

VIEWING FREQUENCY Hicu INcoME MipDLE INCOME Low INncoMmE ToraLs
Regular 0.04 0.13 0.04 0.21
Occasional 0.10 0.11 0.06 0.27
Never 0.13 0.17 0.22 0.52
Totals 0.27 0.41 0.32 1.00

Copyright ©2013 Pearsan Education, publishing as Prentice Hall
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Joint and Marginal Probabilities

@ P (A;NB) are joint probabilities, and P (A;) or P (B;) are called marginal
probabilities and put at the margin of a table as above.

@ The marginal probabilities P (A;) (P (Bj)) are obtained by summing the
probabilities for a particular row (column) or from tree diagrams as below. [why?]

P PR Y
T

A Negularty wealch

A Deesonally winte
A4 Nirwar wwatch

Yy Highk inceme

L= Widd e incoime

by Low inzome

Py L= =
A UDEME 2 SpEca
RIAMa T SENT
B T )

ST -

FALW) -2

AT e e g ek =



Law of Total Probability

@ Given a partition of S, {B;}K ,, it is not hard to see that {ANB;}K_, is a partition of
A. So we have the law of total probability:

P(A):‘iP(AﬂBi). )

- Calculating P (A) in this way is called marginalizing over {Bi}fil, and the
resulting probability P (A) is of course the marginal probability of A.

@ Because P (ANB;j) =P (A|B;j) P (Bj), (1) can be rewritten as

K
P(A)= > P(ABi)P(Bj). )
=1

- The decomposition in (2) is often referred to as conditionalizing on {B; }iKzl.

- This conditionalizing is useful because it is often hard to assess P (A) directly,
but easier to assess conditional probabilities such as P (A|B;), which are tied to
specific context [we will give an example when discussing Bayes’ theorem below].



Conditional Probabilities and Independent Events

Table 3.8 Conditional Probabilities of Viewing Frequencies, Given Income Levels

Yoirwoir, Fregeesey HiciH Imcarar i e Trcome lavew T e
Regular Q.15 (.32 012
Clceasinnal 037 0.27 e
Muver 048 0.4 nas

Izmdghie s DRt lnaw sk b oraa Pk e

P(ANB; ", P(ANB; P(B; . -
o 3T P (AR = 31, Fpgt) = 2l Bl — BEL 1 ie., P (B)) is like a

"probability".

@ The joint and marginal probabilities can also be used to check whether paired
events are statistically independent: P (A;NB;) =P (Aj)P (B;)?
-e.g., P (A2 N Bl) =0.1 75 0.27x0.27=P (Az) P (Bl)

@ For a pair of events, A and B, A is partitioned into A;,i=1,--- ,H,and B is
partitioned into Bj,j = 1,---,K. If every A; is independent of every B;, then A and

B are independent events.
- "viewing frequency" and "income" are not independent since A, and B; are not.




Odds

@ The odds in favor of a particular event are given by the ratio of the probability of
the event divided by the probability of its complement. The odds in favor of A are

__PMA) _PH
Odds_m_ﬁﬁ\).

@ Conversely, we can convert the odds in favor of A to the probability of A, e.g., the
odds in favor of A, 2 to 1, implies

ie., P(A)=0.67.



(*) Overinvolvement Ratios [Next Tutorial]

@ Sometimes, the desired conditional probabilities are hard to obtain due to high
enumeration costs or some critical, ethical, or legal restrictions, but alternative
conditional probabilities are available.

@ Given an event A, and two mutually exclusive and collectively exhaustive events
B; and B,, the overinvolvement ratio is defined as

P (A1]By1)

P (A1[B)
- e.g., A; is "seeing our advertisement", B; is "purchasing our products" and
B, = B;. We want to know whether advertising influences purchase behavior, but
we only observes P (A;1|B;) and P (A1|B>).

@ An overinvolvement ratio greater than 1 implies that event A; increases the
conditional odds ratio in favor or By:

P(BilA1) _ P(By)

P(B2|A1) = P(B2)
- e.g., in the above example, the overinvolvement ratio greater than 1 implies that
advertising influences purchase behavior.

P(B1/A1) _ P(AiNB1)/P(A;) _ P(AiB1)P(B1)/P(A1) _ P(AiB1) P(Bi) _ P(Bi) .

® Why? PEBZ}AJ = PEAmBz;/PEAlg = PEAJBZ;PEBZ;/PEAJ = PEAJBZ; : Pgszg > Pgszg if
P(A{[B1) >1
P(ABy) ~ =
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Bayes’ Theorem

@ Bayes’ Theorem: For two events A; and By,

P (A1|B1)P (B1)

P(Bl‘Al) = P(Al)

. [figure here] 3)
@ Alternative Form: Let Eq,--- ,Ex be a partition of S and A; be some other event.
Then
P (A1|Ei)P (Ei)
3141 P (AllE) P (E)

where from (2), P (A1) = 3% P (A1|Ei) P (Ey).
- The advantage of this form of Bayes’ theorem is that the probabilities it involves
are often those that are available as argued in (2) [see the example below].

P (EilA1) =



History of Bayes’ Theorem

Thomas Bayes (1701-1761), English Reverend?

3He never published what would eventually become his most famous accomplishment; his
notes were edited and published after his death by Richard Price.
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Subjective Probabilities Interpretation of Bayes’ Theorem

@ We can loosely refer to the event B, as "hypothesis" and A, as "evidence". In
many cases, we can easily determine P (A;|B;) (the probability that a piece of
evidence will occur, given that our hypothesis is correct), but it is much harder to
figure out P (B1|A;) (the probability of the hypothesis being correct, given that we
obain a piece of evidence). Yet the latter is the question that we most often want to
answer in real world.

- deduction P (A1|B1) vs. induction P (B1|A; ); the latter is much more difficult than
the former to human beings.

@ Bayes’ theorem provides a mechanism for updating a prior probability of B, to a
posterior probability when some additional evidence A, is available.

@ Subijective Probabilities Interpretation of Bayes’ Theorem: In (3), we are interested
in the probability of hypothesis B;. P (B1) is its prior probability, A, is the
additional evidence, and P (B1|A;) is the updated probability of B; after observing
A1, termed as the posterior probability of B;. The updating is through multiplying

P (By1) by the likelihood ratio Pl(f(ﬂil) — the relative improvement on the
assessment of evidence A;’s probability given B;.

- The more surprising the evidence A, the more convinced one should become of
the hypothesis Bq; e.g., A; = {Christ rose from the dead}, and

B, = {Christ is the son of God}.




Example 3.23: Drug Screening

@ In practice, we should first well define E; and A1, and then obtain the required
probabilities and conditional probabilities in Bayes’ theorem, and finally apply
Bayes’ theorem to get the desired conditional probability.

@ Let D; be the event of actually using performance-enhancing drugs, D, = D1, T;
be the event that a screening test indicates using drugs. From experiences,
P(D;)=0.1, P (T1|D1) =0.9and P (T1|D,) = 0.1. How effective is the test?

@ Solution: From Bayes’ theorem,

P (T1|D1)P (D1) 0.9x0.1

POuT) = P (T1|D1)P (D1)+P (T1|D2)P (D)  0.9x01+01x(1-0.1)
= 05>01=P(Dy),
P (Do) = P (T2|D,) P (D,) _ (1-0.1)x (1-0.1)

P (T2|D1)P (D1) +P (T2JD2)P (D2)  (1-0.9)x 0.1+ (1-0.1) x (1-0.1)
= 0.988>0.9=P(D,).

So a negative test result is reliable, but a positive one is not although it enhances
the unconditional probability from 0.1 to 0.5.
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