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Random Experiment, Outcomes, and Events

Random Experiment and Sample Space

A random experiment is a process leading to two or more possible outcomes,
without knowing exactly which outcome will occur.

Examples:
- A coin is tossed and the outcome is either a head or a tail.
- A company has the possibility of receiving 0-5 contract awards.

The possible outcomes from a random experiment are called the basic outcomes,
and the set of all basic outcomes is called the sample space, denoted as S.
- No two basic outcomes can occur simultaneously.
- The random experiment must necessarily lead to the occurrence of one of the
basic outcomes.
- So after a random experiment is conducted, one and only one basic outcome will
occur.
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Random Experiment, Outcomes, and Events

Event, Intersection and Mutually Exclusive

An event, E , is any subset of basic outcomes from the sample space. An event
occurs if the random experiment results in one of its constituent basic outcomes.
- The null event represents the absence of a basic outcome and is denoted as ?.
- e.g., {contract rewards are odd} and {contract rewards are less than 3} are both
events.
- This definition of "event" is different from our everyday notion, which requires that
some changes occur (e.g., we would not refer to the contract reward being odd as
an event, but we would refer to that the reward increases as such.).
- Another way of thinking of an event is this: any declarative statement (a
statement that can be true or false) is an event.

The intersection of two events, A and B, denoted as A\B, is the set of all basic
outcomes that belong to both A and B, i.e., A\B occurs iff both A and B occur.
[figure here]
- We can similarly define E1\E2\�� �\EK .

If the events A and B have no common basic outcomes (i.e., cannot co-occur),
they are called mutually exclusive, i.e., A\B = ?. [figure here]
- We can similarly define E1,E2, � � � ,EK to be mutually exclusive as pairwisely
mutually exclusive.
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Random Experiment, Outcomes, and Events

Figure: Venn Diagrams for A\B and A and B are Mutually Exclusive
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Random Experiment, Outcomes, and Events

Complement

The complement of A, denoted as Ā, is the set of basic outcomes belonging to S
but not to A. [figure here]
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Random Experiment, Outcomes, and Events

Union, Collectively Exhaustive and Partition

The union of two events, A and B, denoted as A[B, is the set of all basic
outcomes that belong to at least one of A and B, i.e., A[B occurs iff either A or B
or both occur. [figure here]
- We can similarly define E1[E2[�� �[EK .
If E1[E2[�� �[EK = S, then these K events are said to be collectively exhaustive.
A mutually exclusive and collectively exhaustive set of events fBigK

i=1 is called a
partition of the sample space S.
- Exactly one of the events fBigK

i=1 must be true.
- The set of all basic outcomes is a partition of S, and so are

�
A, Ā

	
and�

A\B,A� (A\B) ,B� (A\B) , Ā\ B̄
	

in Table 3.2.
- We can also partition any event A in the same way.
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Probability and Its Postulates

Classical Probability

We consider three definitions of probability: classical probability, relative frequency
probability and subjective probability.
The classical probability is the proportion of times that an event will occur,
assuming that all outcomes in a sample space are equally likely to occur,
specifically,

P (A) =
NA

N
,

where NA is the number of outcomes that satisfy the condition of event A, and N is
the total number of outcomes in the sample space.
- The basic idea is that the probability can be developed from fundamental
reasoning about the process.
- e.g., tossing a coin 10 times, what is the probability with 5 successive heads?
Formula for Counting the Number of Combinations: the number of combinations of
x objects chosen from n:

Cn
x =

n!
x ! (n�x)!

with 0! = 1,

where n! := n � (n�1) � � � � �2 �1 is read "n factorial".

- Sometimes, the notation
�

n
x

�
is used for Cn

x .
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Probability and Its Postulates

With/Without Replacement and Ordered/Unordered Counting

When counting the number of objects in a set, there are two important distinctions.
Counting may be with replacement or without replacement. Counting may be
ordered or unordered.

Without Replacement With Replacement
Ordered n!

(n�x)! =: Pn
x nx

Unordered Cn
x Cn+x�1

x

Pn
x is the number of permutations of x objects chosen from n, and "=:" is read as

"defines".1

(*) This following part will be discussed in the next tutorial class.

The unordered counting with replacement is more challenging. It is the number of
distinct solutions to the equation

z1+ z2+ � � �+ zn = x , where zi 2 f0,1,2, � � � ,xg .

- thinking of zi as zi bars, then we are arranging x bars and (n�1) plus signs (+)
to get different patterns.

1":=" is read as "is defined as".
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Probability and Its Postulates

Relative Frequency Probability and Subjective Probability

The relative frequency probability is the limit of the proportion of times that an
event will occur in a large number of trials, specifically,

P (A) =
nA

n
,

where nA is the number of A outcomes, and n is the total number of trials or
outcomes. The probability is the limit as n becomes large (or approaches infinity).
- e.g., the probability of family income above $75,000.
- This probability can be obtained from more than one data sources to
cross-validate each other.

The subjective probability expresses an individual’s degree of belief about the
chance that an event will occur.
- This probability is personal, so different individuals (with different information or
different views) may have different probabilities.
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Probability and Its Postulates

Probability Postulates

We postulate the following properties of probability to assess and manipulate it.

1 If A is an event in S, then
0� P (A)� 1.

- An event with probability 0 is impossible; an event with probability 1 is certain.
2 Let A be an event in S and Oi be the basic outcomes. Then

P (A) = ∑
Oi2A

P (Oi ) =: ∑
A

P (Oi ) .

- Why? P (A) = limn!∞
nA
n = limn!∞

∑A ni
n = ∑A limn!∞

ni
n = ∑A P (Oi ).

3 P (S) = 1.
- When a random experiment is carried out, something has to happen.
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Probability and Its Postulates

History of Probability Theory

Andrey N. Kolmogorov (1903-1987), Russian2

2Vladimir Arnold, a student of Kolmogorov, once said: "Kolmogorov – Poincaré – Gauss – Euler
– Newton, are only five lives separating us from the source of our science".
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Probability and Its Postulates

Consequences of the Postulates

If S consists of n equally likely basic outcomes, O1,O2, � � � ,On, then (from
postulates 2 and 3)

P (Oi ) =
1
n
.

- tossing a coin, P (head) = 1/2.

If S consists of n equally likely basic outcomes and event A consists of nA of these
outcomes, then (from consequence 1 and postulate 2)

P (A) =
nA

n
.

If A and B are mutually exclusive, then (from postulate 2)

P (A[B) = P (A)+P (B) .

- A similar result applies to mutually exclusive events E1,E2, � � � ,EK .

If E1,E2, � � � ,EK are collectively exhaustive, then (from postulate 3)

P (E1[E2[�� �[EK ) = 1.
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Probability Rules

Complement Rule and Addition Rule

We develop some rules for computing probabilities for compound events.

We will illustrate these rules using an empirical example at the end of this section.

The complement rule: for an event A and its complement Ā,

P
�
Ā
�
= 1�P (A) .

- This is because 1= P (S) = P
�
A[ Ā

�
= P (A)+P

�
Ā
�
.

The addition rule: for two events A and B,

P (A[B) = P (A)+P (B)�P (A\B) .

- This is because P (A[B) = P (A)+P
�
Ā\B

�
and P (B) = P (A\B)+P

�
Ā\B

�
.

[figure here]
- P (A\B) is called the joint probability of A and B.
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Probability Rules

Figure: Venn Diagram for Addition Rule
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Probability Rules

Conditional Probability

The conditional probability of event A given that event B occurred, denoted as
P (AjB), is

P (AjB) = P (A\B)
P (B)

provided that P (B)> 0;

similarly,

P (BjA) = P (A\B)
P (A)

provided that P (A)> 0.

- refer to the figure in the previous slide.
- P (AjB) can be thought of filtering or stratifying the data when calculating the
"relative frequency" probability; it cannot be smaller than P (A\B).

P (A) can be dramatically different from P (AjB) (i.e., the probability we assign to
an event depends on the knowledge we condition on; e.g., P (COVID-19) and
P (COVID-19jtemperature= 40�C)).
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Probability Rules

Multiplication Rule and Statistical Independence

The multiplication rule: for two events A and B,

P (A\B) = P (AjB)P (B) = P (BjA)P (A) .

Two events A and B are (statistically) independent iff

P (A\B) = P (A)P (B) .

- This implies

P (AjB) = P (A) (if P (B)> 0),

P (BjA) = P (B) (if P (A)> 0),

either of which can be used as the definition of independence.
- Generally, the events E1,E2, � � � ,EK are mutually independent iff

P (E1\E2\�� �\EK ) = P (E1) � � �P (EK ) =: ∏K
i=1 P (Ei ) .
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Probability Rules

continue

Intuitively, independence between A and B means that knowing B occurred will not
change the assessment of A’s probability.
- It is hard in practice for two events to be "strictly" independent, but we can
"approximately" assume it for simplicity; e.g., P (you have the COVID-19)�
P (you have the COVID-19jyour friend Joe is 42 years old).

If two events A and B are not independent, then they are dependent.
- Dependence and independence are symmetric relations – if A is dependent on
B, then B is dependent on A, and if A is independent on B, then B is independent
on A (Formally, P (AjB) = P (A) =) P (BjA) = P (B)). This makes intuitive sense:
if "smoke" tells us something about "fire", then "fire" must tell us something about
"smoke".

Independence is different from "mutually exclusive": the latter implies
P (A\B) = 0 and the former means P (A\B) = P (A)P (B).
- A\B = ? implies "if A occurs, then B cannot", so they are not be independent
(unless P (A) or P (B) is zero).
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Probability Rules

Examples 3.14 and 3.15: Choice of Cell Phone Features

75% customers use text messaging (A), 80% use photo capability (B), and 65%
use both (A\B).
Then P (A[B) = P (A)+P (B)�P (A\B) = 0.75+0.80�0.65= 0.90.

P (AjB) = P(A\B)
P(B) = 0.65

0.80 = 0.8125 is the probability that a person who wants
photo capability also wants texting messaging.

P (BjA) = P(A\B)
P(A) = 0.65

0.75 = 0.8667 is the probability that a person who wants
texting messaging also wants photo capability.
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Probability Rules

Example 3.20: The Birthday Problem

What is the probability that at least 2 people in a party have the same birthday
(month and day, neglecting Feb. 29)?

It is easier to calculate Ā, i.e., the probability that "all M people have different
birthdays".

After some thinking, you can figure out that

P
�
Ā
�
=

P365
M

365M ,

so P (A) = 1�P
�
Ā
�
:

M 10 20 22 23 30 40 60
P (A) 0.117 0.411 0.476 0.507 0.706 0.891 0.994

The probability that any given pair of people will have the same birthday is 1/365,
but as M increases, the number of possible matches increases, until P (A)
becomes quite large.
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Bivariate Probabilities

Bivariate Probabilities

The events Ai and Bj are mutually exclusive and collectively exhaustive within their
sets; all interactions Ai \Bj can be regarded as basic outcomes of a random
experiment.

The probabilities P
�
Ai \Bj

�
are called bivariate probabilities.

The following slide provides an empirical example.
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Bivariate Probabilities

Ping Yu (HKU) Probability 26 / 36



Bivariate Probabilities

Joint and Marginal Probabilities

P
�
Ai \Bj

�
are joint probabilities, and P (Ai ) or P

�
Bj
�

are called marginal
probabilities and put at the margin of a table as above.

The marginal probabilities P (Ai ) (P
�
Bj
�
) are obtained by summing the

probabilities for a particular row (column) or from tree diagrams as below. [why?]
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Bivariate Probabilities

Law of Total Probability

Given a partition of S, fBigK
i=1, it is not hard to see that fA\BigK

i=1 is a partition of
A. So we have the law of total probability:

P (A) =
K

∑
i=1

P (A\Bi ) . (1)

- Calculating P (A) in this way is called marginalizing over fBigK
i=1, and the

resulting probability P (A) is of course the marginal probability of A.

Because P (A\Bi ) = P (AjBi )P (Bi ), (1) can be rewritten as

P (A) =
K

∑
i=1

P (AjBi )P (Bi ) . (2)

- The decomposition in (2) is often referred to as conditionalizing on fBigK
i=1.

- This conditionalizing is useful because it is often hard to assess P (A) directly,
but easier to assess conditional probabilities such as P (AjBi ), which are tied to
specific context [we will give an example when discussing Bayes’ theorem below].
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Bivariate Probabilities

Conditional Probabilities and Independent Events

∑H
i=1 P

�
Ai jBj

�
= ∑H

i=1
P(Ai\Bj )

P(Bj )
= ∑H

i=1 P(Ai\Bj )
P(Bj )

=
P(Bj )
P(Bj )

= 1, i.e., P
�
�jBj

�
is like a

"probability".

The joint and marginal probabilities can also be used to check whether paired
events are statistically independent: P

�
Ai \Bj

�
= P (Ai )P

�
Bj
�
?

- e.g., P (A2\B1) = 0.1 6= 0.27�0.27= P (A2)P (B1).

For a pair of events, A and B, A is partitioned into Ai , i = 1, � � � ,H, and B is
partitioned into Bj , j = 1, � � � ,K . If every Ai is independent of every Bj , then A and
B are independent events.
- "viewing frequency" and "income" are not independent since A2 and B1 are not.
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Bivariate Probabilities

Odds

The odds in favor of a particular event are given by the ratio of the probability of
the event divided by the probability of its complement. The odds in favor of A are

Odds=
P (A)

1�P (A)
=

P (A)
P
�
Ā
� .

Conversely, we can convert the odds in favor of A to the probability of A, e.g., the
odds in favor of A, 2 to 1, implies

2
1
=

P (A)
1�P (A)

,

i.e., P (A) = 0.67.
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Bivariate Probabilities

(*) Overinvolvement Ratios [Next Tutorial]

Sometimes, the desired conditional probabilities are hard to obtain due to high
enumeration costs or some critical, ethical, or legal restrictions, but alternative
conditional probabilities are available.
Given an event A1, and two mutually exclusive and collectively exhaustive events
B1 and B2, the overinvolvement ratio is defined as

P (A1jB1)

P (A1jB2)
.

- e.g., A1 is "seeing our advertisement", B1 is "purchasing our products" and
B2 = B1. We want to know whether advertising influences purchase behavior, but
we only observes P (A1jB1) and P (A1jB2).
An overinvolvement ratio greater than 1 implies that event A1 increases the
conditional odds ratio in favor or B1:

P (B1jA1)

P (B2jA1)
>

P (B1)

P (B2)
.

- e.g., in the above example, the overinvolvement ratio greater than 1 implies that
advertising influences purchase behavior.

Why? P(B1jA1)
P(B2jA1)

=
P(A1\B1)/P(A1)
P(A1\B2)/P(A1)

=
P(A1jB1)P(B1)/P(A1)
P(A1jB2)P(B2)/P(A1)

=
P(A1jB1)
P(A1jB2)

� P(B1)
P(B2)

>
P(B1)
P(B2)

if
P(A1jB1)
P(A1jB2)

> 1.
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Bayes’ Theorem

Bayes’ Theorem

Bayes’ Theorem: For two events A1 and B1,

P (B1jA1) =
P (A1jB1)P (B1)

P (A1)
. [figure here] (3)

Alternative Form: Let E1, � � � ,EK be a partition of S and A1 be some other event.
Then

P (Ei jA1) =
P (A1jEi )P (Ei )

∑K
j=1 P

�
A1jEj

�
P
�
Ej
� ,

where from (2), P (A1) = ∑K
i=1 P (A1jEi )P (Ei ).

- The advantage of this form of Bayes’ theorem is that the probabilities it involves
are often those that are available as argued in (2) [see the example below].
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Bayes’ Theorem

History of Bayes’ Theorem

Thomas Bayes (1701-1761), English Reverend3

3He never published what would eventually become his most famous accomplishment; his
notes were edited and published after his death by Richard Price.
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Bayes’ Theorem

Subjective Probabilities Interpretation of Bayes’ Theorem

We can loosely refer to the event B1 as "hypothesis" and A1 as "evidence". In
many cases, we can easily determine P (A1jB1) (the probability that a piece of
evidence will occur, given that our hypothesis is correct), but it is much harder to
figure out P (B1jA1) (the probability of the hypothesis being correct, given that we
obain a piece of evidence). Yet the latter is the question that we most often want to
answer in real world.
- deduction P (A1jB1) vs. induction P (B1jA1); the latter is much more difficult than
the former to human beings.

Bayes’ theorem provides a mechanism for updating a prior probability of B1 to a
posterior probability when some additional evidence A1 is available.

Subjective Probabilities Interpretation of Bayes’ Theorem: In (3), we are interested
in the probability of hypothesis B1. P (B1) is its prior probability, A1 is the
additional evidence, and P (B1jA1) is the updated probability of B1 after observing
A1, termed as the posterior probability of B1. The updating is through multiplying

P (B1) by the likelihood ratio P(A1jB1)
P(A1)

– the relative improvement on the

assessment of evidence A1’s probability given B1.
- The more surprising the evidence A1, the more convinced one should become of
the hypothesis B1; e.g., A1 = fChrist rose from the deadg, and
B1 = fChrist is the son of Godg.
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Bayes’ Theorem

Example 3.23: Drug Screening

In practice, we should first well define Ei and A1, and then obtain the required
probabilities and conditional probabilities in Bayes’ theorem, and finally apply
Bayes’ theorem to get the desired conditional probability.

Let D1 be the event of actually using performance-enhancing drugs, D2 = D1, T1
be the event that a screening test indicates using drugs. From experiences,
P (D1) = 0.1, P (T1jD1) = 0.9 and P (T1jD2) = 0.1. How effective is the test?

Solution: From Bayes’ theorem,

P (D1jT1) =
P (T1jD1)P (D1)

P (T1jD1)P (D1)+P (T1jD2)P (D2)
=

0.9�0.1
0.9�0.1+0.1� (1�0.1)

= 0.5> 0.1= P (D1) ,

P (D2jT2) =
P (T2jD2)P (D2)

P (T2jD1)P (D1)+P (T2jD2)P (D2)
=

(1�0.1)� (1�0.1)
(1�0.9)�0.1+(1�0.1)� (1�0.1)

= 0.988> 0.9= P (D2) .

So a negative test result is reliable, but a positive one is not although it enhances
the unconditional probability from 0.1 to 0.5.
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