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Abstract Objective: Prediction of moving objects with un-
certain motion patterns is emerging rapidly as a new exciting
paradigm and is important for law enforcement applications
such as criminal tracking analysis. However, existing algo-
rithms for prediction in spatio-temporal databases focus on
discovering frequent trajectory patterns from historical data.
Moreover, these methods overlook the effect of some impor-
tant factors, such as speed and moving direction. This lacks
generality as moving objects may follow dynamic motion
patterns in real life.

Methods: We propose a framework for predicating uncer-
tain trajectories in moving objects databases. Based on Con-
tinuous Time Bayesian Networks (CTBNs), we develop a
trajectory prediction algorithm, called PutMode (Prediction
of uncertain trajectories in Moving objects databases). It
comprises three phases: (i) construction of TCTBNs (Tra-
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jectory CTBNs) which obey the Markov property and con-
sist of states combined by three important variables includ-
ing street identifier, speed, and direction; (ii) trajectory clus-
tering for clearing up outlying trajectories; (iii) predicting
the motion behaviors of moving objects in order to obtain
the possible trajectories based on TCTBNs.

Results: Experimental results show that PutMode can
predict the possible motion curves of objects in an accurate
and efficient manner in distinct trajectory data sets with an
average accuracy higher than 80%. Furthermore, we illus-
trate the crucial role of trajectory clustering, which provides
benefits on prediction time as well as prediction accuracy.

Keywords Trajectory prediction · CTBN · Trajectory
clustering · Moving objects databases

1 Introduction

Information technologies have been increasingly applied to
fight against criminals and terrorists in recent years [1–3].
With the rapid development in the wireless and mobile tech-
nology, law enforcement agencies are provided with a large
volume of trajectory data of “moving objects” such as the
movement of vehicles and criminals. From these data, we
can easily obtain the instant information of these objects,
such as the current location and moving direction. Such in-
formation can be very helpful for law enforcement agencies
in various applications such as criminal location analysis
and border safety control.

In general, these data can be stored in the form of trajec-
tories which hide large amounts of valuable knowledge de-
scribing their behaviors [4]. A trajectory of a moving object
consists of several motions during a specified time interval,
and it contains the following characteristics:
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– It is often constrained in a network composed of several
streets and buildings and it is not arbitrary like animal
movement paths.

– The trajectory inside an electronic map has numerous dis-
tribution rules due to several factors, e.g., city planning,
traffic planning, population distribution, etc.

It is important to accurately predict the current position
of a moving object at a given time instant or in a given area.
For instance, it can help law enforcement agencies to accu-
rately track criminals who have committed car theft during a
particular time interval. Usually, the position information is
periodically delivered to the police center. However, the pe-
riodicity of position acknowledgement is apt to be affected
by several unavoidable factors, i.e., signal congestions, sig-
nal losses due to natural phenomena, the power supply short-
age of the mobile device, etc. [4]. Whenever the position of a
moving object is unknown, an effective trajectory prediction
approach is very useful in various applications.

However, accurate trajectory prediction of moving ob-
jects is difficult and challenging. Firstly, uncertainty is in-
herent to moving objects, and the spatio-temporal databases
are utilized to store the positioning information of individ-
ual objects [5]. The spatio-temporal data of moving objects
cannot precisely depict its real location due to continuous
motions or network delays [6]. Secondly, the location pre-
diction mechanism must guarantee to return accurate loca-
tion of moving objects while not requiring extensive com-
putation. Thirdly, the performance of prediction should not
fall drastically as the number of objects explodes. Finally,
prediction efficiency is as important as prediction accuracy,
since the success of a location-based service depends on
whether the service is delivered to a particular object at a
particular location and on particular time [4]. Specifically,
if the objects (i.e., fleeing criminals) often change speed or
directions, the approach of prediction should give a quick
response while the objects still reside at a certain location.

In general, the trajectory of a moving object is modelled
as a polyline in 3D space, with two dimensions for geogra-
phy and one for time [7]. The data collected from moving
objects accumulate a large amount of useful knowledge that
depicts the typical movement rules of objects [4]. In partic-
ular, these rules can be used to describe and predict the mo-
tion of objects. Existing trajectory prediction approaches [4,
7, 8] have several drawbacks such as: they do not utilize his-
torical data, the cost of calculation is quite high, and they
cannot scale up with the number of objects.

In order to predict the location of moving objects, we
propose to construct CTBNs [9] based on trajectory data. A
CTBN is a probability model that describes the underlying
changing rules of these uncertain trajectories. For each can-
didate trajectory, we use an intensity matrix [10] to compute
the state transition probability. More specifically, our pro-
posed algorithm PutMode trains CTBNs offline due to its

computation intensity, whereas the possible trajectory can
be quickly predicted in an online manner. For example, a
crime investigator can resort to it to find the possible path of
a fleeing criminal instantaneously. In summary, the original
contributions of this paper include the following:

– We propose a trajectory clustering method to filter outly-
ing trajectories and perform prediction on trajectory clus-
ters.

– We use TCTBNs to model uncertain trajectories and ob-
tain the state transition rules of moving objects, and intro-
duce a TCTBN construction approach.

– We propose a novel trajectory prediction algorithm based
on TCTBNs, called PutMode, which takes into account
the effect of moving speed as well as moving direction.

– We perform experiments to evaluate the efficiency and
effectiveness of our proposed algorithms by comparing
them with the naive solution in several aspects.

The rest of this paper is organized as follows. Section 2
surveys the related work. Section 3 briefly addresses the
trajectory prediction problem. Section 4 presents a trajec-
tory clustering approach for clearing up outlying trajecto-
ries. Section 5 reviews the TCTBN framework, introduces
the background knowledge related to TCTBNs, and presents
the construction method for TCTBNs. Section 6 proposes
a TCTBN-based trajectory prediction algorithm. Section 7
describes performance studies and discusses experimental
results. Finally, Sect. 8 gives the concluding remarks and
outlines the directions for future work.

2 Related work

The problem of discovering uncertain trajectories in mov-
ing objects databases has recently received increasing atten-
tion. Existing work related to trajectory mining mainly fo-
cuses on mining frequent trajectory patterns [4, 11, 12] and
trajectory queries for moving objects [6–8, 13]. However,
most of these works assume that exact trajectory information
was available during a certain time interval. Unfortunately,
in real life situations, this assumption cannot be guaranteed
where the uncertainty and incomplete information are inher-
ent to trajectories in moving objects databases [13].

This study is relevant to two research problems. The first
one is managing uncertain trajectories of moving objects.
The second one is the prediction of trajectories with time
annotations (stamps). Existing work on uncertainty manage-
ment for moving objects pays attention to modelling un-
certain trajectories based on historical object movements.
A typical work was done by Mamoulis et al. [14]. They
proposed a top-down technique, called STPMine2, for effi-
ciently discovering periodic patterns from historical spatio-
temporal data. In addition, the authors proposed an indexing
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scheme that adopted discovered patterns to effectively man-
age the uncertain data.

In order to capture uncertainty of trajectories, Trajcevski
et al. [6, 7] model a trajectory as a 3D cylindrical body,
which incorporates uncertainty in a manner that enables ef-
ficient querying and is especially suitable for objects that
are inside the region sometime during the time interval, or
for the ones that are always inside during the time interval.
Moreover, Mokhtar and Su represented each coordinate of a
trajectory as a stochastic process with a time-parametric uni-
form distribution [13]. By experiments, they demonstrated
that it was reasonable to use a uniform distribution to rea-
son about in query evaluation. In particular, they validated
the fact that “the state transitions of moving objects consist
of a set of stochastic processes”. This motivates us to rep-
resent each trajectory as a Markov process [15] whose state
transition model is determined by its previous states.

Most of the above approaches for managing uncertainty
of moving objects assume that the objects move according
to linear functions. This limits their applicability, since the
movement of objects is often unknown and may follow dras-
tically changing motion patterns [8]. Aiming to cope with
these problems, Tao et al. proposed a client-server architec-
ture for querying spatio-temporal objects. Each client uses
a recursive motion function to capture the motions of tra-
jectories, while a server uses STP-tree (spatio-temporal pre-
diction tree) to index the expected trajectories by a poly-
nomial function. Another trajectory prediction approach is
Traj-PrefixSpan [4], which combined the PrefixSpan [16]
and the FP-tree [17] algorithms to predict unknown trajecto-
ries and moving rules of objects. However, the mining of fre-
quent trajectory patterns needs very large amounts of com-
putation, and the generation of indices for moving objects is
quite high. This also pushes us to develop an efficient and ef-
fective trajectory prediction approach by utilizing the inher-
ent properties of moving objects in order to mine unknown
rules from trajectory data.

CTBN [9, 10] was proposed for structured stochastic
processes with finite states that evolve over continuous time.
It is particularly suitable for depicting uncertain trajectories
of moving objects. Specifically, it can be used to approxi-
mately infer the successive state probabilities of objects in
an instantaneous and effective manner. Therefore, we in-
troduce CTBNs for managing and predicting trajectories of
moving objects in this study. The experimental results shows
that the average accuracy is higher than 80% which is con-
sidered to be a surprisingly good result by the policemen. To
the best of our knowledge, there is no relevant work that has
been done to predict uncertain trajectories of moving objects
based on CTBNs despite its importance.

3 Problem statement

In this section, we present a formal definition of trajectory
with temporal annotations and address the problem of pre-
dicting uncertain trajectories in moving objects databases.

The goal of trajectory prediction is to predict the possible
motion behaviors of moving objects. The possible motion
behaviors contain such information as “which street or di-
rection will the moving object choose to go in the future, or
whether it is going to accelerate or slow down in the street”.
Relying on these behaviors, we can finally obtain possible
trajectories of moving objects based upon kinematic formu-
lations.

In general, the position of a moving object is represented
by Cartesian coordinates. A trajectory of a moving object
is treated as a sequence of time-stamped locations, depict-
ing the traces and instant positions collected by wireless de-
vices [12] as formally defined below.

Definition 1 (Trajectory) A trajectory of a moving object is
a sequence of triples:

S = {(x1, y1, t1) . . . (xi, yi, ti ) . . . (xn, yn, tn)} (1)

where ti is a time stamp, ∀i ∈ [1, n − 1], ti < ti+1, and
(xi, yi) represents the 2D coordinates.

The trajectory is defined beyond the concept of tempo-
rally annotated sequences (TAS) [18]. A typical example of
TAS over the train travel route in China is denoted by latitude
and longitude as: (126.7, 45.8, 13:00 PM)→(116.4, 39.9,
0:30 AM)→(104.1, 30.7, 2:30 AM), representing a path that
starts from the city of Harbin, then after 11.5 hours arrives
at Beijing and finally, after 26 hours ends with Chengdu.

Since it is difficult to locate exactly the positions of mov-
ing objects in real-life scenarios, we use the possible motion
curves composed of line segments inside a trajectory vol-
ume [7] to approximate the trajectories. If an object falls in
the disk of a trajectory volume, we use the xy-coordinate of
the central point in the corresponding disk to represent its lo-
cation. The graphical representation of a trajectory volume
and the possible motion curve is illustrated in Fig. 1.

For each point (x, y, t) along a trajectory, the uncertain
area is a disk with radius r . A possible motion curve PT

of trajectory T can be represented by a continuous function
fPT

: t → r2 such that for any time t ∈ [t1, tm]. Assuming
a object moves at the constant speed of vi , the 3D point
(fPT

, t) is inside an uncertain area of the expected location
at a given time instant t satisfying:

(x − (xi + vx
i · t))2 + (y − (yi + v

y
i · t))2 ≤ r2 (2)

A trajectory can be modelled as Markov processes with a
time-parametric uniform distribution. In particular, the loca-
tion (xtn , ytn) of a moving object p at a time instant t obeys
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Fig. 1 Trajectory volume and possible motion curve

the Markov property which states that:

Pr{X(tn+1) = xn+1|X(tn) = xn, . . . ,X(t1) = x1}
= Pr{X(tn+1) = xn+1|X(tn) = xn} (3)

For any time instant ti (i = 1, . . . , n) where tj > tk for
j > k, the above equation still holds for any ytn . In order to
model a trajectory, we define an electronic map as follows.

Definition 2 (Electronic Map) An electronic map consists
of streets, that are represented by triplets with the following
attributes:

– SId: the identifier of a street;
– Polyline: a trajectory composed of streets between a start-

ing point and an ending point;
– Length: the length of a street.

To illustrate this, consider an example of an electronic
map in Fig. 2, which is composed of five streets. Here, three
streets intersect at point B , which means there are three can-
didate streets to follow when residing at B .

Since the tragic event of the attacks from terrorists on
the United States on September 11, 2001, both citizens and
authorities have realized that knowledge about the terrorists
or criminals and how to surveil them will be a key factor
of safeguarding world peace [19]. We intend to develop a
sub-system, which is a component of our CrimeMiner sys-
tem and can be used to predict the path of fleeing criminals
via mobile or traffic devices equipped with GPS in an ac-
curate and instantaneous manner. The prediction task is to
find the most likely next move (i.e., the most possible trajec-
tory). The CrimeMiner system is an intelligent crime data
mining system [20] that integrates the following capabili-
ties: (1) classify criminals and predict crime events [21], (2)

Fig. 2 Example of an electronic map

predict the possible trajectories of fleeing criminals, (3) an-
alyze and visualize the criminal networks [22, 23] and dis-
cover the deep hierarchical structure of criminal gangs [24],
and (4) discover crime hotspots.

We propose a general client-server framework for pre-
dicting uncertain trajectories of moving objects as illustrated
in Fig. 3.

The main characteristic of this framework lies in the no-
tion the possible trajectories can be forecasted in an online
manner while the motion behaviors of objects are extracted
from historical data offline. In terms of our prediction sys-
tem, the online prediction is very fast and accurate, while
the time spent on building the TCTBN with a large num-
ber of transition states is much costly than that for trajectory
prediction.

4 Trajectory clustering

Trajectory clustering is regarded as a preprocessing process,
i.e., clearing up the outlying (noise) trajectories, in order to
save calculation time. It plays an essential role in accurate
trajectory prediction due to two reasons. Firstly, the phase
of clustering can partition one data set into several sub-
sets, and we only need to predict on a compressed TCTBNs
due to state reduction. This can greatly help save time.
Secondly, it can be used to filter such trajectories that are
rarely visited, which benefits improving prediction accu-
racy. We use a density-based clustering method analogous
to DBSCAN [25].

The key steps in this algorithm are outlined as follows.

1. Initialize a cluster identifier (cId) and label all candidate
trajectories as ‘UNCLASSIFIED’ (lines 1–3).
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Fig. 3 System framework

Algorithm 1 Trajectory clustering
Input: a trajectory set T, a distance threshold ε, a minimum

number threshold minPts.
Output: a set of trajectory clusters O = {O1, . . . ,Onum}.

1. cId ←0;
2. for each Tr ∈ T do
3. Tr.cLab ←UNCLASSIFIED;
4. for each Tr ∈ T do
5. if Tr.cLab ==UNCLASSIFIED then
6. S ←Tr.GetNeighbors(ε);
7. if S.size() < minPts then
8. Tr.cLab ←NOISE;
9. continue;

10. else
11. for each unclassified trajectory L ∈ S do
12. L.cLab ← L.cId;
13. S ′ ← L.GetNeighbors(ε);
14. if S ′.size() ≥ minPts then
15. for each trajectory L′ ∈ S ′ do
16. if L′.cLab ==UNCLASSIFIED then
17. S .Add(L′); L′.cLab ← cId;
18. if L′.cLab ==NOISE then
19. L′.cLab ← cId;
20. cId++;
21. for i := 0 to cId − 1 do
22. output Oi ;

2. Scan each trajectory Tr, if its label (cLab) is marked as
‘UNCLASSIFIED’ (lines 4–5), then perform the follow-
ing operations.
(a) Pick the neighbors whose distance to Tr is less than

a distance threshold ε (lines 5–9).
(b) In the ε-neighborhood, if the number of Tr’s neigh-

bors is greater than a minimum number threshold
minPts, then treat it as a core object.

(c) Repeat the above two steps on each core object’s
neighbors until all trajectories are processed (lines
10–20).

3. Output each trajectory cluster Oi (lines 21–22).

If a trajectory is labeled as ‘NOISE’ before trajectory
clusters are returned, it is treated as an outlier and is deleted.

Note that we employ the function of GetNeighbors(·) to ob-
tain Tr’s neighbors. In GetNeighbors(·), we use the starting
point, the middle point, and the ending point of a trajectory
to approximate the distance between two trajectories. If the
geometric mean distance among these points is less than ε,
these two trajectories are treated as neighborhoods. By our
definition, a trajectory is regarded as its own neighbor.

By trajectory clustering, we partition trajectories based
on their geographical information. As a consequence, we
build a TCTBN for each cluster. Hereafter, a problem is
raised as: how to choose appropriate TCTBNs correspond-
ing to a given initial state of an object to perform prediction.
A simple method is prediction on the TCTBNs where the
initial state occurs.

5 Trajectory continuous time Bayesian networks

5.1 Motivation

Our solution is inspired by the following two observations.

1. There exist several unknown rules behind historical tra-
jectory data and they can be applied in a wide variety of
applications. A typical example is path planning. When
a car moves along a street, the probabilities of selecting
the next street are not similar in most cases. In practice,
we can obtain the probabilities by analyzing historical
data. For instance, assume that 300 objects have visited
street A. Out of these 300 objects, 150 choose B as the
next street to visit, 100 choose C, and 50 choose D. Then,
it is easy for us to compute that the probability for objects
to ‘jump’ from A to B is 1/2, to C is 1/3, and to D is 1/6,
respectively. So, it is suitable to use a Bayesian network
to model an uncertain trajectory in which the transition
intensities do not depend on time.

2. It is intuitive for us to cope with the path planning prob-
lem by defining a CTBN based on the stochastic variable
street identifier (i.e., SId). However, it has two demerits:
(i) in spite of getting a so-called possible path, we cannot
describe the change of moving speed that can greatly af-
fect the path selection of moving objects. Accordingly, it
does not consider the effect of time that is an important
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Fig. 4 Example of path planning

Fig. 5 Dependence relationship
among three variables

factor for trajectory prediction, because each point in a
trajectory is time-stamped; (ii) the identifier is not fully
independent from other factors, such as speed or direc-
tion. Take Fig. 4 as an example, if an object is in street 4
and moving east at a high speed, it is more likely to go
straight to street 7. In contrast, if it is moving slowly, it
may turn to street 5 or 6. In addition, if it moves west,
street 1, 2 and 3 will be its candidates.

From the above discussion, we conclude that street iden-
tifier, speed, and direction are dependent on the other two
factors which builds in the illustration of Fig. 5.

As shown in Fig. 5, it is a complete graph among three
variables, which means that the state transition of one vari-
able is affected by other two variables. Based on their depen-
dence relationship, we employ a hash function to map them
into a unique value corresponding to one state in a TCTBN.

5.2 Basic definitions

Following [10], a CTBN is a graphical model whose nodes
are random variables, whose states change continuously
over time, and where the evolution of the variables depends
on its previous states. In principle, the processes in a CTBN
are defined as matrices of transition intensities [9]. The
states in a CTBN are inhomogeneous Markov processes [10]
where the intensities vary with time. As for the property of
continuous time in terms of each variable in the same state, it
is reasonable to model a trajectory as a CTBN. This network

proposed in this study is called TCTBN due to its relevance
to trajectories and is defined as follows.

Definition 3 (Trajectory continuous time Bayesian network)
Let X be a set of three random variables {x1, x2, x3}, rep-
resenting street identifier, moving speed, and moving di-
rection, respectively. Each xi has a finite domain of values
D(xi). A TCTBN consists of two components: an initial dis-
tribution φ0

X of three variables, denoted as a Bayesian net-
work N over X, and a continuous transition model, speci-
fied as:

– A directed graph G whose nodes are x1, x2, x3, Pre(xi)

denotes the previous state (parent state) of xi .
– A trajectory conditional intensity matrix Mxi |Pre(xi ), for

each xi ∈ X.

TCTBN is distinct from CTBN in the following two as-
pects.

1. CTBN relies on exponential distributions for modelling
temporal distributions [26]. Unfortunately, the assump-
tion of exponential distribution in terms of time is not
consistent with the state transition in TCTBNs. Neverthe-
less, we use kinematic formulations in physics to com-
pute the time interval spent on each edge (street). For
example, for the case of uniform acceleration, the time
interval can be calculated by the following formula.

�t = 2

√
(xi+1 − xi)2 + (yi+1 − yi)2

vi + vi+1
(4)

2. In order to combine the dynamic rules of all variables,
several Conditional Intensity Matrices (CIMs) should be
combined to produce a single CIM for the whole CTBN
by the amalgamation operation [10]. However, we build
an integral CIM without amalgamation. Because once we
obtain the state of an object at a certain time instant, the
values of all three variables are known. At the next time-
stamp, another three state values are retrieved. Based on
this information, a CIM can be built by calculating the
occurrence frequency of each state represented by three
variables. Moreover, the values of anti-diagonal elements
cannot be calculated by amalgamation and are simply set
to 0 in a CTBN. Whereas, we can obtain these values
from historical data in TCTBNs. Because, there is, how-
ever, one state transition, the transition probability of this
shift does not equal 0.

We extend CIM and propose a new concept called Tra-
jectory Conditional Intensity Matrix (TCIM) as follows.

Definition 4 (Trajectory conditional intensity matrix) Let L

be a combination of three variables x1, x2, x3 (street iden-
tifier, speed, and direction, respectively) whose domain is
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f (L) = {l1, l2, . . . , ln}. Assume that L evolves as a TCTBN,
L(t) whose transition are conditioned on a set L′ of vari-
ables evolve under time. A TCIM is defined as a matrix:

ML|L′ =

⎛

⎜⎜⎜⎜
⎝

−pl
1(L

′) pl
12(L

′) · · · pl
1n(L

′)

pl
21(L

′) −pl
2(L

′) · · · pl
2n(L

′)
...

...
. . .

...

pl
n1(L

′) pl
n2(L

′) · · · −pl
n(L

′)

⎞

⎟⎟⎟⎟
⎠

(5)

In the above intensity matrix, the element pl
ij (L

′) in a
TCIM represents the instantaneous probability of state tran-
sition from li to lj , The transition probability can be com-
puted by pl

ij (L
′) = f l

ij (L
′)/

∑
i 	=j f l

ij (L
′), and f l

ij (L
′) is

the occurrence frequency of visiting a street in a trajectory
where the state of a object shifts from li to lj , and the fre-
quency can be easily calculated from historical data. The
intensity of the diagonal element pl

i(L
′)=

∑
i 	=j pl

ij (L
′)=1 is

the probability of leaving state li . It is appropriate to set the
diagonal elements to 1, since the objects move dynamically
which makes it impossible for them to stay in one state.

TCIM is distinct from CIM, because each state in a TCIM
is represented by three variables, i.e., li = Hash(ni, si , di).
Hash(·) represents a hash function for mapping the iden-
tifier of the ith street, the speed level and moving direc-
tion into a unique state value of TCIM. For instance, l1 =
Hash(n1, s1, d1). Note that we use speed level to depict
speed information of moving objects.

In summary, TCIM is more expressive and can be used
to accurately describe the state transition possibility. Be-
cause it contains all state transition information depending
on street identifier, speed, and direction. In addition, the
state transition probability is obtained from historical data.
In particular, the TCTBN N can be described by the joint
intensity matrix in the following equation, where a single
variable xi ∈ X shifts from state xi to xj with probability
px

ij (Pre(X)) in Definition 5.

PN =
∏

xi∈X

Pxi |Pre(xi ) (6)

5.3 Naive solution for trajectory prediction

Figure 6 shows a typical map, where the arrows represent
possible directions, the hollow circle is a node representing
the road crossing. Each street is annotated by a character,
and the real number with an edge is the transition probabil-
ity. Note that A is an initial street where the object firstly
traverses. Intuitively, the sum of transition intensities of the
edges ejecting from one road crossing equals 1.

Take Fig. 6 as an example, a naive solution of trajectory
prediction assumes that the object moves in a uniform speed
and does not turn around. When the object shifts from one

Fig. 6 A real-world scenario of trajectory prediction

edge to another one, the state transition occurs. We can ob-
tain the most possible route Tr = A → C → E → I , since
the product of probabilities Pr in Tr is highest, i.e., Pr(Tr) =
Pr(C|A) ∗ Pr(E|A,C) ∗ Pr(I |A,C,E) = 0.6 ∗ 0.7 ∗ 0.5 =
0.21, which represents the most possible candidate trajec-
tory.

5.4 Higher than first-order Markov chain in TCTBNs

According to [27], the naive approach constructs a first-
order Markov chain with the random variable street iden-
tifier. However, this assumption does not obey the reality
without considering other important factors.

– Speed. The change of speed can cause the moving object
to shift from one street to another one as well as affect-
ing the transition probability. For example, when the ob-
ject traverses the crossing at high speed, it is more likely
to go straight instead of turning around or shifting to a
street that has a big turning angle from its current direc-
tion. Similarly, when moving at low speed, the object may
sometimes turn around. In this study, the speed is catego-
rized into six levels according to the speed criterion, rep-
resent by {s1, s2, . . . , s6}.

– Direction. In general, there exists two pairs of directions:
North/South, East/West in a map. The object often goes
forward along the path, whereas in some specific cases, it
acts out of normal behaviors and moves back. Thus, we
must take into account the affect of moving directions.
For instance, assume that the object is currently running
in street E in Fig. 6, if it decides to turn around, there
is no opportunity for it to go forward to street I . Fur-
thermore, the selection of directions can affect the tran-
sition probability of moving objects. Note that, in terms
of streets stretching from Northeast to Southwest or from
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Table 1 2nd-order probability matrix

Direction E W S N

EE 0.6 0.1 0.15 0.15

EW 0 0.6 0.2 0.2

ES 0.2 0.2 0.5 0.1

EN 0.15 0.15 0.3 0.4

WE 0.5 0 0.25 0.25

WW 0.1 0.6 0.15 0.15

WS 0.15 0.15 0.6 0.1

WN 0.1 0.1 0.2 0.6

Northwest to Southeast, we use the most approximate di-
rection to represent its move trend, e.g., Northwest can be
replaced by North.

The direction actually contains some second-order infor-
mation which takes into account specific situations. For ex-
ample, if we know the previous street, we could estimate
roughly the direction at the current street. Therefore, our ap-
proach is more expressive than the naive method. Table 1
gives a simple second-order matrix in terms of direction,
where E, W, S, N represent four distinct directions.

For the values of the first line in Table 1, the current and
the previous state are “EE”, it has 60% probability to move
east (a object is more likely to keep its moving direction) and
10% probability to move west. For south and north direction,
it has equivalent state transition probability. It is intuitive
that the sum of the probability values of each line equals 1.

In terms of Markov process, we actually use the nth-order
Markov chain to construct a TCTBN, where n ∈ (1,2). This
is because our model is built based on the first-order vari-
ables (i.e., street identifier and speed) and the moving di-
rection that contains second-order information. For space
limitation, we omit the other eight lines of state transition
probabilities of second-order state space in Table 1.

5.5 Construction of TCTBNs

In this section, we describe the approach of building
TCTBNs and introduce a method of mapping three impor-
tant variables into a unique state value in a TCIM. The im-
portant parameters and their meanings are given in Table 2.

In principle, a trajectory composed of several states at
distinct time instants forms a state chain. The algorithm of
constructing a TCTBN is shown in Algorithm 2. Without
loss of generality, we do not only consider the state transi-
tion at each node of a street, but also the case occurs in the
street.

In Algorithm 2, we firstly initialize a null intensity ma-
trix M (line 1). Then, we obtain the initial state χ of a state
chain corresponding to a trajectory composed of edges from
E and nodes from N in D (lines 2–3). Next, we continue to

Table 2 Parameter introduction

Parameter Definition

s state information of an object at some time instant

M a trajectory conditional intensity matrix

Id street identifier

Dir moving direction

sLevel speed level, e.g., low, normal, high

H a hash table used to store the state information

E a set of edges in a map

N a set of node in a map

Algorithm 2 Construction of TCTBNs
Input: a trajectory cluster D, a set of edges E , a set of nodes

N .
Output: a trajectory conditional intensity matrix M.

1. M ← ∅;
2. for each state chain C ∈ < E , N > in D do
3. χ = GetState(s0);
4. for k := 1 to Len(C) − 1 do
5. χ ′ ← GetState(sk);
6. if χ == χ ′ then
7. continue;
8. else
9. M.Set(χ ,χ ′,n++);

10. M.Set(χ ,χ ,n++);
11. χ = χ ′;
12. for i := 1 to RowLen(M) do
13. for j := 1 to ColumnLen(M) do
14. if i == j then
15. continue;
16. else
17. M.Set(i,j ,M.Get(i,j ) / M.Get(i,i));
18. M.Set(i,i,1);
19. output M;

check the next state χ ′ and compare it with χ until finding
a transited state (lines 4–7). After that, we record the tran-
sition from one state to another by increasing the frequency
(line 9) as well as increasing the sum of shifts by one w.r.t.
s0 (line 10), and set the current state as χ ′ (line 11). Finally,
we compute the transition probability of each element in M
except the diagonal elements (set to 1) (lines 12–18) and
output M (line 19). Intuitively, the time complexity of Algo-
rithm 2 is O(m ∗ n) where m is the number of state chains
corresponding to trajectories and n is the number of states
in each state chain.

The function of GetState(·) is crucial and used to trans-
form the state information, i.e, street identifier, speed level
and moving direction, into a key value corresponding to an
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Algorithm 3 GetState(State s)
1. H = ∅;
2. Id ←s.GetId();
3. Dir ←s.GetDirection();
4. sLevel ←s.GetSpeedLevel();
5. F ← E .size() ∗ Id + 4 ∗ Dir + sLevel;
6. if F ∈ H then
7. return H.GetKey(F );
8. else
9. n = H.size(); n++;

10. H.Put(F ,n);
11. return n;

existing state in a TCIM. The details are shown in Algo-
rithm 3.

In Algorithm 3, we firstly create a null hash table (line 1).
Lines 2–4 are employed to obtain the value of street identi-
fier, speed level and direction. Note that we use the num-
ber from 0 to 5 to represent distinct speed levels (0 to 3 to
represent directions, respectively). In particular, we define a
hash function as presented in line 5 to convert the state in-
formation that is represented by three key parameters into
a unique integer F . If F exists in the hash table H, then
output its key value (lines 6–7). Otherwise, we increase the
number n of elements in H (lines 8–9), treat n as the key of
F and put it together with F into H (line 10). Finally, the
algorithm returns the value of n (line 11). Here, the function
size() returns the number of elements in the set.

The design of the hash function is an important step in
Algorithm 3, since it should guarantee to map three state
variables into one unique state value in a TCIM. By extend-
ing this hash function, we propose a general hash function
and provide a sufficient condition that makes this function
unique.

Theorem 1 Given a state s(x, y, z) of a moving object,
where x ∈ [0,m], y ∈ [0, n], and z ∈ [0,p], for the hash
function f (x, y, z) = a ∗ x + b ∗ y + c ∗ z, the sufficient
condition to make it unique is: c > 0, b > c ∗ p, and a >

b ∗ n + c ∗ p, where x, y, z, a, b, c are integers.

Proof We prove the theorem by using the method of reduc-
tion to absurdity. Suppose this theorem does not hold when
the sufficient condition is satisfied, and there exists two state
s1 = (x1, y1, z1) and s2 = (x2, y2, z2) satisfying: s1 	= s2, but
f (s1) = f (s2).

If x1 	= x2, suppose x1 > x2 (the case is similar when
x1 < x2), x1 − x2 = r(r > 0).

∵ a ∗ x1 + b ∗ y1 + c ∗ z1 = a ∗ x2 + b ∗ y2 + c ∗ z2

∵ y1 − y2 ≤ n, z1 − z2 ≤ p

∴ a(x1 − x2) = b(y2 − y1) + c(z2 − z1) ≤ b ∗ n + c ∗ p

∵ a(x1 − x2) ≥ a

∴ a ≤ b ∗ n + c ∗ p, which is a contradiction.

∴ x1 = x2.
Suppose y1 > y2, the case is the same when y1 < y2.
∵ a ∗ x1 + b ∗ y1 + c ∗ z1 = a ∗ x2 + b ∗ y2 + c ∗ z2

∴ b ∗ y1 + c ∗ z1 = b ∗ y2 + c ∗ z2 ⇐⇒ b(y1 − y2) =
c(z1 − z2)

∵ b(y1 − y2) > b, c(z1 − z2) ≤ p

∴ b < c ∗ p, which is a contradiction.
∴ y1 = y2, z1 = z2

∴ s1 = s2, which is contradict to the assumption.
∴ f (x, y, z) is unique when c > 0, b > c ∗ p, and a >

b ∗ n + c ∗ p. �

6 Trajectory prediction

In this section, we present and analyze the trajectory predic-
tion algorithm based on TCTBNs. The details are given in
Algorithm 4.

Our approach of predicting uncertain trajectories can be
partitioned into four phases. Firstly, we create a null trajec-
tory sequence set N and a null state chain C0 (line 1), then
add the initial state s0 to C0 (line 2) and C0 to N (line 3).
For each state chain in N , we firstly find the last state i of
Ci (lines 4–5). Secondly, for each state j in the ith row of M
and M(i, j) 	= 0, if the result of its current transition proba-
bility multiplies the product of the previous transition prob-
abilities is greater than ε, then we add j to the trajectory se-
quence, compute its new transition probability (lines 6–9),
and add the extended state chain C′

p to N and remove Cp

Algorithm 4 Trajectory prediction based on TCTBNs
Input: A TCIM M, an initial state s0 of a moving object,

a probability threshold ε, a radius r of a trajectory vol-
ume.

Output: a set of possible trajectories T = {T1, . . . , Tnum}.
1. N ← ∅; C0 ← ∅;
2. C0.Add(s0); C0.prob = 1;
3. N .Add(C0);
4. for each Cp ∈ N do
5. i ←Cp .LastIndex();
6. for each state j in the ith row of M & M(i, j) 	= 0 do
7. if Cp.prob ∗ M(i, j) ≥ ε then
8. C′

p = Cp; C′
p .Add(j );

9. C′
p.prob ← C′

p.prob ∗ M(i, j);
10. N .Add(C′

p);
11. for each Cp ∈ N do
12. Create a new trajectory Tp;
13. for each state κ in Cp do
14. τ ←ComputeTime(κ);
15. Tp .Add(κs ,κe,τ );
16. output Tp;
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from N simultaneously (line 10). Thirdly, we create a trajec-
tory for each state chain in N with an initial point (lines 11–
12). Finally, we employ lines 14 to compute the time inter-
val from κs to κe of passing a street by kinematic formu-
lations like (4) (κs and κe represent the starting point and
the ending point, respectively) corresponding to each state
in Cp∈N and add the state information into Ti (line 15) in
order to output the prediction results (line 16). In particular,
the state information contains speed and direction, and it can
be used to obtain more accurate time stamps and positions
than the naive approach.

Here we give a straightforward example of this approach.
Assume a car is located at point A in Fig. 2. We can easily
obtain the state transition rules based on TCTBNs. Suppose
the car has a 90% chance to go through path ‘ABCF’ at high
speed and a 10% probability to visit path ‘ABDE’ at uniform
speed. Then, we obtain the possible trajectory ‘ABCF’ with
probabilities higher than a predefined threshold 20%. Then,
we calculate the position of this object at certain time stamps
using speed and direction information stored in a TCTBN,
and finally output the trajectory represented by 2D points.

The time and space complexity of Algorithm 4 is
O(m ∗ n) and O(n), where m is the number of state chains,
and n is the number of states in each state chain.

7 Experiments and discussions

7.1 Experimental setting

In this section, we report the experimental studies by com-
paring PutMode with the naive prediction algorithm (called
Naive for short), and PutMode without the phase of trajec-
tory clustering, namely PutMode-I. Basically, the naive ap-
proach does not take into consideration the effect of mov-
ing speed or direction when building TCTBNs or predicting
trajectories. The transition probability from one state to an-
other state is only determined by the visiting frequencies of
streets. In order to evaluate the importance of clustering in
PutMode, we also compare it with a reduced version of Put-
Mode, i.e., PutMode-I. All algorithms are implemented in
Java and the experiments are conducted on an AMD Athlon
5000+, 3.0 GHz CPU with 2.0 GHz of main memory, run-
ning on Ubuntu Linux 8.04.

All experiments were run on the following data sets
generated by Brinkhoff’s famous network-based genera-
tor.1 The data were generated based on real-world maps
by the network-based spatio-temporal data generating ap-
proach [28].

1http://www.fh-oow.de/institute/iapg/personen/brinkhoff/generator/.

Fig. 7 The main interface of trajectory prediction modular

– The Oldenburg data set (denoted as Oldenburg) contains
more than 100,000 trajectories with 6105 nodes and 7035
edges of one day movement over the road-network of the
city of Oldenburg.

– The Tiger data set of one city in California (denoted as
CA) consists of 1448 nodes and 1573 edges. The real-
world map are obtained from U.S. Government Informa-
tion and Maps Department2 and its size is around two
times larger than that of Oldenburg map.

This prediction modular is one part of our CrimeMiner
system and can be used to predict the possible motion curve
of fleeing criminals in an accurate and efficient manner. It
consists of two components: the network training and tra-
jectory predicting component as given in Fig. 7 and the tra-
jectory visualization of moving objects at any time stamps
as shown in Fig. 8.

The network training and trajectory predicting compo-
nent consists of three distinct parts. The user chooses which
component to view by selecting the tab corresponding to the
desired component. When selecting the tab labelled “choose
map”, the user has to choose the edge and node file of a
map. The format of these two data files are similar to the
ones used in the network-based generator of moving ob-
jects proposed by Thomas Brinkhoff [28]. When selecting
the “build model” tab, we have to choose the data set and set
the maximum speed of moving objects first, than train this
model and obtain the trained TCTBN. Finally, we select the
“traj.predict” component and use it to predict the positions
of different number of moving objects by adding the speci-
fied objects with distinct initial states. Specifically, the user

2http://www.census.gov/geo/www/tiger/tgrcd108/tgr108cd.html.

http://www.fh-oow.de/institute/iapg/personen/brinkhoff/generator/
http://www.census.gov/geo/www/tiger/tgrcd108/tgr108cd.html
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Fig. 8 The main interface of trajectory prediction modular

can set the position (denoted by the xy-coordinates) and the
speed of objects. In addition, we provide a specific function
to add all test objects by clicking on the button labelled “Add
All”. After selecting the “Predict” button, we can obtain the
results shown in Fig. 8.

In the trajectory visualization component, the user can
adjust the position and control the size of the specified map
by clicking on distinct function buttons below it. For exam-
ple, by hitting the “In” button, we can zoom in the map.
Most importantly, trajectory visualization of objects at the
specified time stamp is controlled by clicking on the arrows
before and after the label denoted “Time Control”. Note that,
in Fig. 8, the initial objects are filled as red color and the po-
sitions of black objects are the predicted results at the spec-
ified time stamp.

7.2 Parameter tuning

There are two important parameters that need to be tuned
first, i.e., the radius r of a disk in a trajectory volume and the
probability threshold p. In this section, we conduct several
experiments in order to determine values for parameters that
are of interest in practical applications.

In principle, r as depicted in Fig. 1 is used to determine
whether a trajectory is a possible motion curve, which di-
rectly impacts the accuracy of prediction. p is used to deter-
mine whether the product

∏
of state transition probabilities

w.r.t. a trajectory T is large enough. If
∏ ≥ p, T is regarded

as a candidate trajectory. Here, we increase r and p gradu-
ally in order to find an appropriate value with a high proba-
bility of obtaining a high prediction accuracy. The prediction

Table 3 Parameter settings for turning

Parameter Oldenburg CA

Map width 23,572 492,826

Map height 26,915 60,2851

Number of moving objects 100,005 25,005

Time interval 15 7

Range of p 0.03∼0.1 0.01∼0.1

Range of r 200∼1200 200∼2000

accuracy is defined as follows by employing the basic idea
of τ -containment [11].

Accuracy(Tr) = |Tr|
|Tr∗| (7)

where Tr is the hits set of trajectories and Tr∗ is the real-
world trajectories during a given time interval. | · | is used to
compute the number of trajectories.

For o = (s1, τ1) ∈ Tr and o∗ = (s2, τ2) ∈ Tr∗ where s is a
set of streets and τ is a set of time stamps, o should obey the
constrain �τ which means o is contained in o∗ satisfying:

1. ∀0≤k≤ns1,k ⊆ s2,ik

2. ∀1≤k≤n|τ1,k − τ∗,k| ≤ τ

where τ∗,k = ∑ik
j=ik−1

τ2,j , ∀k ∈ [1, n]. Here, τ is set to 1
(i.e., one time unit). The trajectory is time stamped, so we
have to predict trajectories constrained at a specified time
interval. In this study, we use time units to measure the time
interval, i.e., Np = Tp/τ0, where Tp is the ordinary predic-
tion time and τ0 is the cost per time unit. The experiments
are conducted on both Oldenburg and CA data sets. The pa-
rameter settings are shown in Table 3.

To facilitate understanding, we explain the meaning of
parameters given in Table 3. Take Oldenburg data set as
an example, we firstly set r to 200 (in pixel) at the basic
scale 1 (i.e. in basic coordinates) in a 23,572 × 26,915 elec-
tronic map, then gradually increase it by the step of 100 un-
til reaching 1200.The product of state transition probabili-
ties in a state chain will decay drastically by increasing the
number of states, so it is appropriate to specify a small prob-
ability threshold. In this set of experiments, we observe the
accuracy of prediction under distinct probability thresholds
changing from 0.01 to 0.06. In this study, Np is set to 15 (for
Oldenburg data) and 7 (respectively, for CA data), which are
empirical values large enough to obtain most complete tra-
jectories and are comparable between PutMode and Naive
without the bias of using relatively short time interval.

The results of two versions of PutMode are shown in
Fig. 9 with the Oldenburg data, and in Fig. 10 with the CA
data, respectively, where the x-axis represents the length of
r , the y-axis is the accuracy of prediction.
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Fig. 9 Accuracy of prediction under distinct probability thresholds in
Oldenburg data set: (a) PutMode-I and (b) PutMode

As we can see from Figs. 9 and 10, the higher a p

value, the lower is the accuracy of prediction. The reason
is straightforward: when the probability threshold is set to
a higher value, PutMode has to find possible trajectories re-
stricted by a further limit, i.e., such street in a trajectory is
frequently visited, which leads to the decline of accuracy.
For instance, in Fig. 9(a), the curve p = 0.03 is beyond the
curve p = 0.04 as r grows.

Another observation does tell us that the accuracy corre-
sponding to distinct p values increases with r . This is be-
cause PuteMode can find more possible trajectories with the
increase of r . Most importantly, we must choose an appro-
priate r value that complies with the real-world cases. Since
a quite high r value violates the principle that “it is appro-
priate to find possible motion curves in a disk with a small
radius of a trajectory volume” in a real-world scenario. Ac-
cording to the map size of distinct data sets, r is set to 700
for Oldenburg data, and 1800 for CA data. As we can see
in Fig. 9(a), even p = 0.06, the accuracy is higher than 50%

Fig. 10 Accuracy of prediction under distinct probability thresholds
in CA data set: (a) PutMode-I and (b) PutMode

that is an acceptable result when r = 700. For the conse-
quent experiments, p is set to 0.03. If p is specified to a
very small value (e.g., 0.01), our approach does not make
sense since almost all trajectory are treated as candidates,
which causes the accuracy to equal 1.

It is interesting to see that the accuracy improvement is
not apparent when r reaches a large enough value in Figs. 9
and 10, which further prove that the accuracy is affected by
the selection of streets instead of the error of position cal-
culation. In addition, we find that the prediction accuracy
of PutMode is higher than that of PutMode-I under similar
situations. For instance, PutMode in Fig. 10(a) outperforms
PutMode-I in Fig. 10(b) in the same settings of p value and
r value. We will further compare the performance of two
versions of PutMode.

7.3 Performance analysis of TCTBN construction

In this section, we analyze the time trend and the change of
memory cost in terms of TCTBN construction as the num-
ber of trajectories grows in the Oldenburg and the CA data
sets. The results are shown in Figs. 11 and 12, where the x-
axis is the number of trajectories and the y-axes are the time
and the memory cost of TCTBN construction, respectively.
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Fig. 11 Execution time of constructing TCTBNs with (a) Oldenburg
and (b) CA data

Empirically, the training time of a TCTBN with 10,000 tra-
jectories is around 9 minutes.

From Fig. 11, the construction time increases linearly
with the number of trajectories. The reason is that the time
complexity of TCTBN construction is O(m ∗ n). In real-life
situations, m � n where m is the number of state chains
corresponding to trajectories and n is the number of states
in each state chain. Thus, the time complexity is approxi-
mately equivalent to O(m) that complies with our experi-
mental results. In summary, we conclude that the time of
TCTBN construction is mainly determined by the cardinal-
ity of trajectories. In general, when the number of trajecto-
ries grows to 100,000, the execution time of TCTBN con-
struction is about one and half hours. Our approach yields
the similar results when the number of trajectories changes
from 2000 to 100,000, we omit these plots for brevity.

According to Fig. 12, the memory cost of TCTBN con-
struction increases with the number of trajectories, but it
does not change drastically when the number of trajecto-
ries is greater than 4000 for Oldenburg data and 2000 for
CA data. This is because there exist several overlap states
when building TCTBNs with a large number of trajectories,
and the duplicate states can be represented by one state that
provides benefits on memory cost of storing distinct states.

Fig. 12 Memory cost of constructing TCTBNs with (a) Oldenburg
and (b) CA data

7.4 Prediction accuracy evaluation

In this section, we use Accuracy to evaluate these three pre-
diction algorithms: Naive, PutMode-I, and PutMode in two
distinct data sets. The results are shown in Fig. 13, where the
x-axis is the number of initial states (i.e., the initial moving
objects) and the y-axis is the accuracy of prediction.

In Fig. 13(a)–(b), PutMode outperforms PutMode-I in the
accuracy of prediction in all cases with an average gap of
10.5% for Oldenburg data and 6.16% for CA data, respec-
tively. The role of clustering in PutMode is of great impor-
tance, because it can filter noise data that, thus helping per-
form prediction on the concentrated trajectory clusters. In
particular, the prediction accuracy of PutMode is higher than
82.4% and 80% on average for the Oldenburg and CA data,
respectively. The results have been confirmed by law en-
forcement authorities, who stated that the results are surpris-
ingly good for criminal escape route prediction. We observe
that these two approaches outperform Naive by integrat-
ing more complex factors, i.e., speed and direction, in both
TCTBN-building and trajectory-predicting processes. This
is because Naive only uses first-order probability matrix
to predict trajectories, whereas PutMode can obtain more
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Fig. 13 Prediction accuracy comparison of three algorithms with
(a) Oldenburg and (b) CA data

accurate results based on nth-order Markov chains where
n ∈ (1,2). In other words, PutMode will benefit from more
complicated consideration of real-world cases than the intu-
itive Markov processes. Empirically, PutMode outperforms
Naive with an average gap of 20.1% in accuracy for the Old-
enburg data set and 16.2% for the CA data set.

We also observe that the accuracies for two versions of
PuteMode do not change drastically as the number of initial
states grows, which shows that our approach is scalable with
the number of initial moving objects. The reason is that we
use the motion behaviors of objects discovered from histor-
ical data to obtain the possible trajectories, and the accuracy
is determined by the TCTBN model without being affected
by the number of initial states. As mentioned earlier, several
outlying trajectories are eliminated by applying the cluster-
ing approach, which provides benefits for PutMode to use
relatively less time to construct TCTBNs than PutMode-I.
More details are given in the following subsection.

7.5 Prediction time comparison

In this section, we compare the performance of trajectory
prediction among three algorithms by evaluating the pre-

Fig. 14 Prediction time comparison of three algorithms with (a) Old-
enburg and (b) CA data

diction time as the number of initial states increases. Fig-
ure 14(a) and (b) show the prediction time comparison
across three algorithms in the Oldenburg and the CA data
sets, respectively, where x-axis is the number of initial states
and y-axis represents the prediction time.

In Fig. 14(a) and (b), we can see that the prediction time
of PutMode is less than that of PutMode-I in all cases and
achieves an improvement of 17%–33% for the Oldenburg
data and 20%–39% for the CA data, respectively. Overall,
Naive is the winner in all cases, since it is simple and just
uses the shift from one street to another street to represent
one state transition. However, PutMode employs three vari-
ables to determine one state transition, and there are more
candidate states than that of Naive. It is interesting to see
that the prediction time of PutMode increases linearly with
the number of initial states. This is because the time cost
of predicting is mainly determined by the number of state
chains (the reason is similar to the time trend analysis of
TCTBN construction in Sect. 7.3), while the number of state
chains depends on the number of initial states.
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8 Conclusions and future work

Existing trajectory prediction approaches either predict pos-
sible trajectories by discovering frequent trajectory patterns,
or fall short in concerning dynamic motion patterns. Specif-
ically, this paper has provided a solution for the prediction
of uncertain trajectories in moving objects databases.

To handle these limitations, the paper has proposed an
efficient and effective trajectory prediction algorithm, called
PutMode. It works by: (1) clustering trajectories in order to
detect outlying trajectories; (2) modeling uncertain trajecto-
ries by constructing TCTBNs; and (3) combining three im-
portant variables (i.e., street identifier, moving speed, and
moving direction) to predict possible motion trajectories.
Experimental studies with data sets generated on real-world
maps have demonstrated that PutMode is capable of provid-
ing high prediction accuracy with a guarantee of time effi-
ciency.

In terms of future research directions, we will extend this
trajectory prediction approach to handle more intricate and
unpredictable phenomena by taking into account other im-
portant factors, such as weather and road conditions. An-
other challenging problem on our research agenda is extend-
ing PutMode towards tracing fleeing criminals by integrat-
ing the methodology of crime psychology, since it is diffi-
cult to predict the possible motion patterns of criminals who
often break the common rules to avoid being hunted. More-
over, the optimization of TCTBNs is important. Since the
more states one trajectory has, more time are spent on build-
ing this network. An intuitive solution is to use the popu-
lar data reduction approaches, e.g., PCA (Principle Compo-
nent Analysis) and neural networks to optimize TCTBNs.
Finally, the optimization of the storage space needed for tra-
jectories is of practical interest as well.
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